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Abstract

There is an increasing trend in the use of on-premise clus-
ters within companies. Security, regulatory constraints, and
enhanced service quality push organizations to work in these
so called private cloud environments. On the other hand,
the deployment of private enterprise clusters requires care-
ful consideration of what will be necessary or may happen
in the future, both in terms of compute demands and failures,
as they lack the public cloud’s flexibility to immediately pro-
vision new nodes in case of demand spikes or node failures.

In order to better understand the challenges and trade-
offs of operating in private settings, we perform, to the best
of our knowledge, the first extensive characterization of on-
premise clusters. Specifically, we analyze data ranging from
hardware failures to typical compute/storage requirements
and workload profiles, from a large number of Nutanix clus-
ters deployed at various companies.

We show that private cloud hardware failure rates are
lower, and that load/demand needs are more predictable than
in other settings. Finally, we demonstrate the value of the
measurements by using them to provide an analytical model
for computing durability in private clouds, as well as a ma-
chine learning-driven approach for characterizing private
clouds’ growth.

Categories and Subject Descriptors C.2.4 [Computer Com-
munication Networks]: Distributed Systems; D.4.8 [Soft-
ware]: Operating Systems—Performance

Keywords Private clouds, Measurements, Performance and

Reliability.
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1.

There is growing use of on-premise computing clusters
in enterprises, commonly called “private clouds”. Retain-
ing control of their infrastructure, having greater security,
greater proximity to other enterprise resources, and stronger
SLA guarantees, among others, lead organizations to operate
in internal cloud environments. On the other hand, private
clouds require enterprises to provision sufficient compute
resources to deal with worst-case demand spikes and hard-
ware failures. Therefore, in their choice of private clouds,
enterprises have to trade-off the greater control and secu-
rity with the lack of flexibility to add or drop capacity in
response to load changes/failures.

In order to understand this trade-off, we need measure-
ment data regarding hardware reliability of enterprise-grade
equipment, the resource demands in such settings, and other
application characteristics of enterprise workloads. While
there have been many measurement studies characterizing
some of these issues in the context of desktop environ-
ments and public clouds [12, 15, 22], it is unclear whether
these previous results carry over to private cloud settings
due to a number of reasons. First, private cloud deployments
use enterprise-grade hardware, which has greater reliabil-
ity than the consumer-grade hardware used in desktops and
many large-scale public clouds. Second, the private cloud
workloads contain long-running enterprise applications that
might have different characteristics than short-running jobs
deployed on public clouds. Finally, private clouds represent
the long tail of enterprise needs, which likely differ from the
computational needs of much-studied large-scale enterprises
such as Google or Facebook.

In this work, we perform an extensive measurement study
of private cloud infrastructure, namely the installations of
Nutanix! private clouds at various enterprises. In particular,
we analyze data from approximately two thousand clusters.
Our measurement study provides data on various aspects of
private clouds ranging from hardware reliability to applica-
tion characteristics. First, we provide measurement data on

Introduction

' Nutanix is a provider of enterprise clusters. For more details refer to
http://www.nutanix.com.


http://www.nutanix.com

the failure rates of hardware components. In addition to fo-
cusing on enterprise-grade hardware, our work differs from
other measurement studies in its analysis of the failure char-
acteristics of all critical components in a cluster node. We
also include measurements of virtualization-related failures,
e.g., hypervisor bugs and misconfigurations. Furthermore,
we provide measurements on the storage and compute re-
quirements of enterprise clusters. We characterize the overall
dataset and working set sizes that are managed by the clus-
ters, and how these storage needs change over time. Simi-
larly, we provide measurements regarding the CPU and I/O
needs of the clusters and how they vary over time.

Among our main findings, we show that hard disk failures
account for less than 20% of the total hardware failures,
and that virtualization-related failures are almost as high as
hardware ones. Further, we show that load/demand needs
in private settings are predictable. While compute/storage
elasticity is great to have, private clouds try to provision
most resources upfront, and elasticity requirements are not
as extreme as what is expected of public cloud workloads.

We then demonstrate the value of this measurement data
by using it to quantify some of the trade-offs associated
with the use of private clouds and how they should be pro-
visioned. We first provide an analytical model of how the
durability needs of the enterprise can be met given the fail-
ure characteristics of the hardware. We also provide a model
for predicting when enterprises would opt to add more nodes
to their clusters in response to the demands they observe.

1.1 Contributions

We present the first large-scale measurement study of enter-
prise private clouds that enables a better understanding of
the challenges and trade-offs of operating in private settings.
Summarizing, our main contributions are:

e We provide an extensive characterization of failures in
on-premise clusters equipped with enterprise-grade hard-
ware. We present measurements of all critical compo-
nents in a node as well as virtualization-related problems
(e.g., hypervisor bugs and misconfigurations).

e We characterize the storage, compute, and I/O needs in
private clouds, and how these needs vary over time. Fur-
ther, we analyze the profile of workloads that typically
run in these clusters.

¢ Finally, we use the collected data in an analytical model
for characterizing durability in private clouds. We also
formulate a machine learning-driven approach for pre-
dicting cluster growth, using the measurement data to
train our model.

The remainder of this paper presents these findings as
follows: §2 discusses the background and related work, §3
describes the measurement methodology, and §4 gives an
overview of the enterprise cluster profiles. We describe the
failure analysis in §5, and workload characteristics (storage,
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compute, I/0) in §6. Further, we present our modeling strat-
egy in §7. We describe the durability analysis in §7.1, and
the cluster growth predictive model in §7.2. Finally, we con-
clude in §8.

2. Background and Related Work

The related work can be roughly categorized into two dimen-
sions. One dimension is the setting: public clouds, enterprise
settings, and consumer PCs. The other dimension is what is
studied: e.g., hardware reliability and application workload
characteristics such as storage and compute requirements.
We focus our discussion along the second dimension and
within each of its categories we discuss the setting in which
the measurement work was performed. We note that most of
the prior measurement work is on settings related to public
clouds and consumer PCs, with very little measurement of
private clouds.

2.1 Hardware Reliability

Prior work on understanding the characteristics of hardware
infrastructure exists in the literature. Most previous work
focuses on understanding the reliability aspect of individual
components [2, 6, 18-20], whereas our study attempts to
provide a comprehensive characterization of all components
in a node and how their failure rates relate to each other.

Most hardware failures characterizations were done in
the context of consumer PCs [12], networked systems [24],
Internet services [13], high-performance computing sys-
tems [17], and some, in public clouds settings [14, 22]. Even
in the latter, since public clouds typically employ consumer-
grade equipment, there is not much measurement data re-
garding the reliability of enterprise-grade hardware. In our
work, we include a hardware failure analysis of enterprise-
grade equipment in the context of private clouds.

2.2 Storage Measurements

Although plenty of studies have been done in the storage
measurement space, many of them target desktop settings.
Agrawal et al. [1] presents a study of file system meta-
data from over 60K consumer-grade Windows machines in a
large corporation. They study temporal changes in file size,
age, directory size, namespace structure, storage capacity,
and consumption. Another study [5] of consumer worksta-
tions analyzes the I/O behavior of home workloads, mainly
productivity and multimedia applications running on Apple
Desktop computers. In contrast to these studies, our work
targets enterprise applications of several organizations in
different customer segments, where workloads characteris-
tics can vary significantly among clients. Similar to previ-
ous work, we analyze storage capacity and usage, and how
they change over time. Further, we provide measurements
for data transformations, namely compression and dedupe,
and how they impact the overall storage capacity. We also
contrast our findings to that of studies that measure dedupli-
cation savings in desktop settings [8].



There is some related work that pertains to storage mea-
surements of enterprise workloads. The paper by Leung et
al. [7] provides measurements of two enterprise-class file
servers. In their work, they analyze how their workloads
compare to previously studied traces. While they provide an
in-depth look at access, usage and sharing patterns, our focus
is to provide a higher-level characterization of workloads by
hiding the details of the underlying file system implementa-
tion. Our work also aims to provide measurements on many
private clouds deployments, with a diversity of application
workloads, focusing on describing the working set sizes and
the storage requirements needed by those enterprise clusters.

2.3 Compute Measurements

Google Cluster Data [16, 23] has enabled research on a
broad set of topics, from workload characterizations [10] to
new algorithms for machine assignment [15]. Their work-
loads mainly consist of short running jobs, although most
resources are consumed by a few non-continuous tasks with
long durations that have large demands for CPU and mem-
ory. There is not much data on storage needs in their traces.
As opposed to their predominant short tasks, we mainly
measure long-running enterprise applications in our study.

Mishra et al. [10] proposes a characterization of work-
loads based on Google’s data. They group workloads of sim-
ilar resource needs, which helps both for capacity planning
and task scheduling. Similarly, in our work, we provide a
fine-grained analysis of distinctive workloads and applica-
tions characteristics that typically run in private clouds.

Reiss et al. [15] analyzes Google’s trace data to improve
schedulers. They observe a high degree of heterogeneity in
the resource types (cores, RAM per node) and their usage
(duration, resources needed) patterns. Our work also exam-
ines the heterogeneity in application workloads, but does
that in the context of continuously running enterprise work-
loads used in private clouds.

3. Measurement Methodology

Our measurement study uses data from various Nutanix clus-
ter installations at different enterprises. In this section, we
first describe the Nutanix cluster platform and how instru-
mented data from Nutanix clusters can provide a compre-
hensive view of private cloud characteristics. Then, we de-
scribe the different data sources we use in our study, ranging
from cluster instrumentation to maintenance tickets. Further,
we provide a set of caveats regarding the data collection pro-
cess.

3.1 Nutanix Cluster Architecture

Nutanix is a well-known provider of enterprise cloud plat-
forms. Their clusters provide virtualized execution of (legacy)
applications, typically packaged as virtual machines (VMs),
and virtualized and highly available storage that can be
accessed through legacy filesystem interfaces. The cluster

Data Source Sub-category From
Config 2014-11
Metrics Storage & IOPS  2015-08
CPU 2016-04
Accounts 2011-03
Customers Assets 2015-02
Cases 2011-12
Repair/Maintenance - 2013-08

Table 1: Data Sources Summary

manager software performs various tasks to provide this ab-
straction. For example, it will automatically migrate VMs to
cope with higher than expected resource loads, migrate data
across nodes to both preserve locality as well as achieve
good load balance between them, respond to both temporary
and long-term failures by copying data to live nodes in order
to meet a desired replication level, and so on.

Crucially, the cluster management and storage software
has a comprehensive view regarding cluster state and thus
can be instrumented to provide valuable measurement data.
We can collect data regarding resource utilization on dif-
ferent nodes (e.g., CPU, memory, storage), the number of
VMs running on a node, the I/O operations performed (since
all data access is mediated by Nutanix’s storage layer), and
cluster health attributes. We use these types of data in our
study, collected from different layers of the Nutanix cluster
architecture.

3.2 Data sources

We derive our datasets from the following sources:

® Metrics: a database that contains different metrics up-
loaded by customer clusters. The periodicity varies from
60 seconds to per day. We extract performance related
metrics (e.g., CPU usage, I/0 load), cluster configuration,
and storage usage data.

e Customers: a database that contains customer related in-
formation. We extract customer accounts, associated as-
sets and their configurations, hardware dispatches, etc.
We further obtain case information corresponding to var-
ious issues encountered in customer clusters. This data is
created on demand, i.e., whenever a new hardware dis-
patch is performed, a new database entry is created, and
similarly, whenever a new contract is signed, a new cus-
tomer is added to the database.

® Repair/Maintenance: a service that provides information
related to hardware component return rates, such as hard
disk drives (HDDs), solid-state drives (SSDs), and mem-
ory, as well as product level metrics. This data is updated
on a daily basis.



Configuration Storage Compute Memory (GB)
SSD (GB) HDD (TB) Cores Clock Rate (GHz)
Config-1 1600 8 24 2.5 384
Config-2 800 4 12 24 128
Config-3 800 30 16 2.4 256

Table 2: Node Configurations

3.3 Data Caveats

As most empirical studies, potential threats such as selection
bias and representativeness of the data may risk the validity
of our work. To that end, we make no attempt to cherry-
pick any particular data point. Although we examine data
from around 2K clusters, we have no means of verifying nor
guaranteeing the generality of these results.

The data sources mentioned in §3.2 were originally meant
for different purposes and were not necessarily aimed at
tracking the particular quantities we are interested in. Fur-
ther, their levels of granularity differ, e.g., some metrics are
provided at a cluster level while others at a node or even at
a disk level. We face the challenge of combining these dis-
parate sources and aggregating them in different ways.

Moreover, we have access to different time frames of the
data, and those time frames might even vary between the
different sub-categories within the same data source. Table 1
provides a summary of the start times we have access to for
each of the data sources and its sub-categories (if different).

Further, we extract information related to failures from
the Customers data source, in particular Cases. This source
consists of trouble tickets that are filed for hardware and soft-
ware incidents. We trust the human operator on correctly an-
notating these fields, otherwise we may be underestimating
the total number of failures as well as inaccurately charac-
terizing their types.

4. Cluster Profiles

We focus on characterizing enterprise private clouds de-
ployed across many customers around the globe. To that ex-
tent, in this section, we provide an overview of the general
cluster profiles we study.

4.1 Clusters

We examine around 2000 clusters of different clients from a
wide variety of industries, from retail to automobile, health
care to financial services. Note that this represents only a
fraction of Nutanix’s overall cluster population that collect
and report diagnostic measurement data’. We take a snap-
shot on April-2016 from a subset of the clusters that push
information into Nutanix backends.

2 For confidentiality reasons, we cannot disclose the overall numbers.
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Summary Statistics Value
# of Clusters 2,168
# of Nodes 13,394
# of Disks 70K-90K
Cluster Sizes 3-40

Table 3: Summary Statistics of Clusters in our study

Table 3 shows some summary statistics of our sample.
We study deployments of sizes ranging from 3 to 40 nodes,
with a total number of nodes of 13,394, spread across 2,168
clusters, which gives an average of 6.18 nodes per cluster,
and a disk population of around 70K to 90K. This further
highlights the uniqueness of our dataset, where we have
many relatively small clusters, as opposed to prior work with
few large ones [3, 9, 22]. One of the reasons this happens
is that many of the clusters in our sample are deployed in
remote office/branch office (RoBo) configuration. Also, we
find that some customers create clusters within each line of
business.

4.2 Configurations

Understanding the primary configurations of the different
nodes in the clusters is important to characterize the types
of workloads they can run. Among our sample, we iden-
tify three main node configurations, shown in Table 2. We
observe that Config-1 refers to compute-heavy nodes (24
cores at 2.5 GHz), whereas Config-3 is more storage-heavy
(around 30 TB of storage). Config-2 is a baseline version.

As opposed to prior studies on public clouds, where one
of the most notable characteristics of clusters is the hetero-
geneity of machines [15], in the case of private cloud clus-
ters, we notice a much more homogeneous pattern in terms
of node configurations within a cluster.

4.3 Virtual Machine Usage

In addition to the typical node configurations, the number
of virtual machines per node (and their sizes) can also help
in characterizing the type of applications that execute in
each cluster. To that extent, we group VMs into three main
buckets:

e small: VMs that have 1 vCPU assigned.
® medium: VMs that have between 2 and 4 vCPUs.
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Figure 1: Distribution of VMs per Node

® Jarge: VMs with 5 or more vCPUs. Within this category,
we notice that most VMs lie in between 5 and 8 vCPUs.

Figure 1 shows the average number of VMs per node, to-
gether with their size distribution, among clusters of varying
number of nodes. We observe a median of around 21 VMs
per node. In particular, 3 node clusters have the lowest den-
sity of VMs, followed by 32 and 4 node clusters. On the
other hand, 16 node clusters have on average 32 VMs per
node. Further, we note that the vast majority of VMs in each
of the clusters are medium size, which is also highlighted in
Figure 2.

Figure 2 depicts the average number of vCPUs per VM
for varying cluster sizes. We observe an overall average of
~ 2.6 vCPUs/VM, with 32 node clusters having the maxi-
mum of 3.6 vCPUs/VM on average.

4.4 Workloads

We conduct a survey of Nutanix customers from our cluster
sample, and identify the following four main workload cate-
gories, which typically run in more than 90% of the clusters:

e VDI refers to Virtual Desktop Infrastructure, the practice
of hosting a desktop operating system within a VM run-
ning on a centralized server. Nodes running VDI work-
loads typically have high compute and low storage us-
age. Config-1 is the main node configuration we observe
in this category.

o SERVER: refers to server-like workloads, such as database
servers, web servers, etc. Config-2 and Config-3 are the
dominant node configurations in this type of workloads.
In this case, Config-2 nodes are mainly used for light
server virtualization (~ 5-10 VMs), whereas Config-3
nodes focus more on denser server virtualization (~ 15-
20 VMs), backups and file servers.

® BIG DATA: refers to workloads that analyze massive
amounts of data, such as Splunk and Hadoop. Config-
3 nodes are the most typical in this scenario.

e OTHERS: encompass the rest of the workloads, e.g., IT
infrastructure, custom applications, Sharepoint, Lync,
etc. Here, there is no clear dominant configuration but
is rather a mix.
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Figure 2: Average # of vCPUs per VM by cluster size

Table 4 presents a summary of the common workloads
seen among our cluster sample, together with few sample
applications.

Workloads Example Applications
VDI Citrix XenDesktop, VMware Horizon/View
SERVER SQL Server, Exchange
BIG DATA Splunk, Hadoop
OTHERS IT Infrastructure, Custom Apps

Table 4: Workloads and sample applications

As an interesting finding, we observe that most big enter-
prises have separate clusters for different applications or dif-
ferent classes of applications (i.e., workloads). Further, few
of them create clusters within each line of business, so clus-
ter boundary becomes the multi-tenancy boundary where
they can track the growth and charge-back model for each
sub division. On the other hand, small and medium-sized
businesses are more on the consolidation-side, i.e., all appli-
cations deployed in one cluster.

5. Failure Analysis

We study private cloud clusters built from enterprise-grade
commodity components, each of which may fail with some
probability, potentially leading to unavailability, perfor-
mance degradation or data loss. The possible damage caused
by such failures provides a strong motivation for understand-
ing their characteristics. In this section, we analyze failure
data along various dimensions, e.g., component return rates,
time to repair, etc. In particular, we provide details on two
types of failures: hardware (§5.1) and virtualization (§5.2).
Analyzing other types of failures, e.g., the transient failures
that are automatically handled by Nutanix software, is left
to future work.

5.1 Hardware Failures

Figure 3 shows the distribution of hardware failures in our
private cloud environments. The data is based on Cases
information (Table 1).



We observe that less than 20% of the total hardware
failures are due to HDD problems, followed by a 16% of
memory issues. SSDs and power supply units (PSUs) are
the other two components that make it to the top four.

HDD
Memory
SSD

PSU
BIOS-Image
IPMI

Node
Chassis

NIC
BMC-Image
BMC-Hardware
Cables

CPU

Fan

Rail

GPU

10 15

5 20
% of Total Hardware Cases

Figure 3: Distribution of Hardware Failures

Hardware component manufacturers typically specify the
reliability of their products in terms of annualized failure rate
(AFR), which gives the estimated probability that a compo-
nent will fail during a full year of use. As pointed out by
Schroeder et al. [18], the definition of a “faulty component”
that a customer uses does not necessarily match the defini-
tion used by a manufacturer to make the reliability projec-
tions. As an example, they mention that a disk vendor re-
ported they found no problems in 43% of the disks returned
by customers.

Therefore, strictly speaking, in this work we report the
annual return rate (ARR) seen from component replace-
ments reported by customers.

Table 5 provides ARRs for the four hardware components
that account for more than 60% of the total hardware cases
that occur in private cloud settings. We observe that these
values are lower than typical industry standards. For exam-
ple, HDD replacements rates have been reported to be in
the range of 2-9% [14, 18], whereas SSDs replacement rates
range from 4 to 10% in a four year period [19].

There is one main reason that explains the goodness
of these numbers. We focus our study in enterprise-grade
hardware components, which is in the high-end portion of
commodity hardware. Other studies report numbers based
on consumer-level commodity hardware [14]. Regarding
HDDs, our numbers might also be better off because they
are not being used at the full capacity (§6.1).
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Component ARR (%)
HDD 0.7558
Memory 0.2075
SSD 0.7232
PSU 0.9120

Table 5: Annual Return Rates

5.2 Virtualization Failures

Besides hardware failures, we are also interested in analyz-
ing software-related problems. Including Nutanix-specific
software bugs would conflict our attempt to characterize pri-
vate clouds in general. Therefore, in this section we only
include virtualization-related issues.

We refer to virtualization failures as either software bugs
or misconfigurations in hypervisors. In accordance to pre-
vious studies [4, 11, 25], operator/customer mistakes are
also a common cause of system unavailability in private set-
tings. Here are a few misconfiguration examples the oper-
ations team observed. Many customers attempted to imple-
ment resource pools in VMware (aggregated physical com-
pute hardware — CPU and memory, as well as other compo-
nents — allocated to virtual machines) but mistakenly con-
figured some parameters, and experienced problems in their
clusters. Also, some people tried to migrate from standard to
distributed virtual switch in VMware, and they incorrectly
handled the configuration.

Besides the configuration-related problems, virtualiza-
tion failures also include hypervisor software bugs. One of
the anecdotes the operations team recall was regarding a
customer that experienced repeated disconnections between
vCenter Server, a centralized cluster management software,
and ESXi hypervisor running on a host because of the host
daemon process crashing and restarting. Later on, they found
out the crash was due to a software bug. Specifically, the
host daemon process crashed when responding to esxcli net-
work vswitch dvs vmware list command. The issue was not
a direct cause of data loss or other severe issue, but could
have triggered them. It was alleviated with a work-around
until the actual fix was provided by the hypervisor vendor.
Basically the operations team suggested disabling a cluster
health mechanism that periodically executed that command.

Failure Type Percentage
Hardware 59.32
Virtualization 40.68

Table 6: Hardware vs. Virtualization Cases

Having introduced virtualization-related problems, Ta-
ble 6 shows a comparison between virtualization and hard-
ware failures. We notice that from the total number of
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hardware and virtualization cases reported, around 60%
are due to hardware problems, whereas 40% are due to
virtualization-related issues, either hypervisor bugs or mis-
configurations. Surprisingly, virtualization failures are as
high as hardware failures.

5.3 Time To Repair

Although most of the failures seen in our private clouds are
self-healed, i.e., human operators do not intervene and the
problems are resolved automatically, we only consider cases
that do involve manual intervention. Many of the hardware-
related cases involve shipments of some component, thus,
as an extra caveat, the numbers provided here include oper-
ational latency (e.g., time to ship). Regarding virtualization
failures, in case they are not customer misconfigurations, and
no work-around is available, we depend on the vendor’s bug
resolution latency.

Figure 4 shows the cumulative distribution function
(CDF) of virtualization and hardware cases time to repair
(TTR). We observe that around 25% of hardware cases re-
quire at most 1 day to repair, whereas in the case of hypervi-
sor failures, 50% of the cases are resolved in the same period
of time. One of the reasons of this difference is related to the
fact that many hypervisor cases are misconfigurations, i.e.,
remote troubleshooting by support teams can quickly solve
the issue. Even more, in the case it is an actual software bug,
it may be “solved” by a work-around and the ticket closed,
as was the case of the bug mentioned in §5.2. Finally, we
also notice from Figure 4 that 50% of hardware cases are
closed in < 3 days, as they usually involve actual shipments.

Summary: Our measurement data helps characterizing the
failure rates of all components used in a private enterprise
cluster. Hard-drives failures, memory, SSDs, and PSUs cor-
respond to the bulk of the hardware failures. As expected, the
failure rates of the enterprise-grade hard-drives and SSDs are
significantly lower than that of the consumer-grade equip-
ment characterized by previous studies [12]. Interestingly,
virtualization failures, which include software bugs and con-
figuration errors of the virtualization software, constitute a
significant fraction of the observed failures.
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6. Workload Characteristics

We have described so far private cloud clusters profiles, and
their failure characteristics. In this section, we first focus on
storage-related measurements, and then provide a character-
ization of the typical compute and I/O needs observed in our
private clouds. Lastly, we present a fine-grained analysis of
workload characteristics, using some of the most common
applications we observe in enterprise clusters.

6.1 Storage Measurements

Measurements from Nutanix clusters provide data on en-
terprise workloads that are likely different from consumer
workloads (e.g. desktops[1]) or transient jobs executed on
public clouds [16, 23]. Further, since storage devices are ac-
cessed through a virtualization layer, the instrumentation of
this layer provides valuable data regarding diverse aspects of
the storage workload. We provide a characterization of stor-
age requirements, working set size, and workload-specific
data transformation savings (§6.1.1). Further, we look at
predictability in storage usage among private cloud clusters
(§6.1.2).

6.1.1 Storage Requirements and Data Savings

Figure 5a shows the CDF of the total storage capacity and
used capacity per node in our cluster sample. We observe
that around 50% of the nodes have 5 TB or less of storage
capacity, and that 70% have less than or equal to 10 TB.
Further, about 80% of the nodes use a storage capacity that
is less than 4 TB, and about a third of the nodes use less than
1 TB.

The storage layer keeps track of the application work-
load’s working set with the intention of caching elements
of the working set in SSDs when possible (in order to lower
the access latency). We collect data on the working set sizes
across nodes in all the clusters, and we depict them in Fig-
ure 5b at a node-level. We observe that around 80% of the
nodes have a working set size of 500 GB or less. This value
indicates that a typical 800 GB SSD available on the clus-
ter machines is sufficient to absorb the I/O generated by the
workloads in most of the clusters.

In many of the clusters in our sample, the storage system
is configured to perform various data transformations, such
as compression and deduplication, in order to reduce storage
overheads. We want to understand the impact of compres-
sion and dedupe on the storage usage in the context of enter-
prise applications. To that end, we analyze clusters with only
compression enabled (~ 50% of the sample), only dedupe
enabled (~ 25% of the sample), and the ones with both com-
pression and dedupe enabled (~ 16% of the sample). The
transformations are performed at the logical block-level of
1 MB to 4 MB chunks, as the Nutanix storage layer operates
below the level of host file systems.

Figure 6 illustrates the savings to total storage usage ratio
per workload for the different clusters. We plot only clusters
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Figure 6: Relative Data Transformation Savings per Workload

with SERVER and VDI workloads, i.e. a fraction of the 50%,
25%, and 16% mentioned above. In both cases, we observe
that compression gives more savings than dedupe.

Figure 6a indicates that 60% of the clusters with com-
pression enabled running mainly SERVER workloads save
up to 40% of the total used space. This means, for example,
that if the total usage with compression is 10 TB, without
compression it could have been 14 TB. Figure 6b shows the
VDI counterpart.

We see that SERVER compression savings are higher
than VDI savings. The 95 percentile for SERVER is 0.8,
whereas for VDI is 0.7. Regarding dedupe savings, we do
not see a big difference between the workloads. The 95"
percentile is around 0.4 for both. It is worth noting that we
observe dedupe savings of 20% or more in less than 20% of
the clusters. This is significantly less than the dedupe savings
obtained from a study that measured deduplication across a
collection of desktop file systems [8].

Further, we observe that clusters with both compression
and dedupe enabled provide more savings than having just
one of the transformations activated, but the bulk of the
savings comes from compression. For example, 50% of the
clusters running SERVER or VDI workloads can save up
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to 40% of the total used space when both mechanisms are
running, while compression alone can provide about 25-30%
of savings in the median case.

Overall, the measurements of the dedupe savings and the
total storage usage in clusters have the following implica-
tions. When application data is stored on disks, given their
low overall utilization, the relatively low amount of savings
obtained from deduplication might not be worth the over-
head associated with performing the transformation. How-
ever, storage savings provide greater head room for recov-
ery as a failed node’s data has to be newly replicated on
live ones. Furthermore, when frequently accessed applica-
tion data is being cached in the SSD tier, the savings from
compression and dedupe will allow more of the application-
level data to be stored in the faster SSD layer, thus improving
overall performance.

6.1.2 Predictability

We are also interested in characterizing how the storage us-
age evolves over time in order to understand whether the
storage demands are somewhat predictable in enterprise set-
tings.

Figure 7 illustrates the CDF of the mean, standard devia-
tion, and 95" percentile of the total usage for different clus-
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ters using eight months of measurement data. We observe
that for 50% of the clusters, the mean storage usage is at
most 20% of the total capacity, with a standard deviation of
at most 3%. Similarly, 80% of the clusters have an average
storage usage of at most 50% of the total storage capacity,
with a standard deviation of < 8%. In the case of the 95"
percentile, we observe that 80% of the clusters use 60% of
the total capacity.

These results show that customers tend to fill the nodes in
a non-chaotic manner, and the usage is quite predictable.

6.2 CPU and I/0 Measurements

In this section we describe the compute and I/O demands we
observe in our sample clusters.

We monitor CPU utilization across clusters and time.
Figure 8 shows the CDF of the average, standard deviation,
and 95" percentile CPU utilization of clusters based on one
month of measurement data with minute-level granularity?.
The cluster CPU utilization is computed as the average of
its nodes’ CPU usage. We see a stable pattern, where around
80% of the clusters use 20% or less CPU on average, with
a standard deviation of at most 5%. It is interesting to note
that CPU utilization is moderately high only in some cases,
e.g., 90% of clusters at the 95" percentile have at most
40% CPU usage. Even at the 99" percentile (not shown
in the figure), the CPU usage is at most 60% for 90% of
the clusters. Overall, similar to storage usage, CPU usage
also seems to be stable over time, which indicates that the
enterprise workloads run on these clusters have limited need
for elasticity.

We also measure the number of I/O operations per sec-
ond (IOPS) performed by the enterprise workloads, as it is
another metric of application activity observed by the cluster
software. Figure 9 illustrates the CDF of the mean, standard
deviation, and 95" percentile of the node IOPS over time.
Around 60% of the nodes perform on average 1K or less I/O
operations per second, with a standard deviation of less than
450. Although the standard deviation seems high compared
to the mean, these numbers are still far from the maximum

3We use a subsample of ~ 100 clusters, as we could only retrieve fine-
grained CPU usage from a smaller fraction of the overall sample.
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number of IOPS supported by the nodes, which simplifies
performance capacity planning tasks in private settings. We
further observe that 95% of the nodes perform at most 6K
TOPS at the 95" percentile.
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Figure 9: Node IOPS

6.3 Workload Analysis

We introduced the typical workloads that run in our sample
clusters in §4.4. Here, we present a fine-grained analysis
of some of their distinctive characteristics. The properties
highlighted in this section serve as indicators for calculating
typical IOPS requirements, vCPUs, size of VMs, etc.

Figure 10 shows the average number of VMs per node
for different workloads by VM size (§4.3). We observe that
VDI workloads (e.g., Citrix XenDesktop and VMware Hori-
zon/View) have on average a higher number of VMs than
the other workloads, around 26, as opposed to ~ 19. Further,
we see that Linux virtual servers run relatively more of the
larger VMs than Windows does. The latter runs more of the
smaller ones. In general, we see that typical SERVER work-
loads (e.g., MySQL, Web Servers) run more larger VMs than
the VDI-like applications. Medium size VMs dominate in
every application, which is further evidenced in Figure 11,
where we observe an average number of vCPUs per VM of
around 2.5. From §4.3, we know that medium VMs have 2-4
vCPUs.

Figure 11 also shows that VDI workloads have on average
less number of vCPUs per VM, which follows from the fact
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that they typically have more VMs per node (Figure 10),
thus, less vCPUs are left for each VM.

Figure 12 depicts the average number of IOPS per node
for the different applications. In general, IOPS tends to be
a big consideration when designing a VDI environment. It
is interesting to see that VMware Horizon/View performs
on average 3.5K I/O operations per second, whereas another
VDI workload, Citrix XenDesktop, executes only 2.5K. We
believe this happens because Citrix uses Intellicache as a
caching proxy to reduce the overall I/O load on the backend.
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Figure 12: Average # of IOPS per Node for the different
workloads
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Summary: We describe storage, compute and I/O needs
in private settings. Among our main findings, we note that
working sets of most applications are small enough to fit
into SSDs, which means caching/tiering is feasible. Further,
we notice there is significant predictability in terms of CPU
load, I/O demand, and storage requirements. Lastly, we show
that application workloads have distinctive features, some of
which are number of VMs and the vCPUs allocated to each
one of them.

7. Modeling

In previous sections we provided a characterization of pri-
vate clouds clusters along many different aspects, from fail-
ures rates to compute/storage requirements, from common
workloads to typical cluster configurations, etc. In this sec-
tion, we build upon those measurements to answer some of
the questions that are pertinent to the use and management of
enterprise clusters. We first provide an analytical model for
durability based on failure rates and storage characteristics
(§7.1). Then, we provide a predictive model that intends to
provide a better understanding of the reasons behind cluster
growth in private settings (§7.2).

7.1 Durability Analysis

We are interested in characterizing data storage durability.
We build on measurements presented in earlier sections
in order to estimate the probability of successive failures
wherein additional nodes fail before the data on the original
failed node can be re-replicated on other nodes in the system.
This analysis can help in determining the level of replication
necessary to meet a desired guarantee on data durability.

7.1.1 Analytical Model

In the analysis below, we assume that the replication factor
used in cluster ¢ is RF24. Further, we assume that the repli-
cation is performed randomly; that is, with RF2, every piece
of data stored on a node is replicated on one other random
node in the cluster.

Let n denote the number of nodes in cluster c. Further, let
d be the storage usage of any node in cluster ¢, and r the rate
of data transfer in the network. Then, the time Af required to
create a new replica with data d when a node goes down in
cluster c is given by:

d

M=o,

ey

Further, let p(Ar) be the probability of a node failure in
At time. We decompose the overall period over which we
want to provide the durability guarantee into a sequence of
intervals each of length Ar. We define a data loss event Q in
a given interval as the event where a node failure f; occurs,
and a subsequent failure f, happens within Ar time of fi,

4 RF2 means the data is stored in two locations, RF3 in three locations, and
so on. The analysis generalizes to other replication factor values.



i.e., the data could not be replicated’. Then, the probability
that there is no data loss in a given interval has the following
upper bound:

P(—Q,At) < (1—p(Ar))"+
np(A)(1— p(An)" ' (1—p(an)"~" (2)

The first term in the summation indicates that there are
no failures in the interval. The product in the second term
has two components: the first refers to the probability that
exactly one node fails in the given interval, whereas the
second indicates that the remaining n — 1 nodes do not fail
within Az of the first failure.

In order to characterize durability on a yearly-basis, we
need to consider all At intervals within a year. Thus, the
probability of no data loss over a one year period becomes:

Pdurabilily = P(ﬁQ,At)N(At) 3)

where N(Ar) is the number of At intervals in a year.

7.1.2 Data Loss in Private Clouds

We now apply the model above to characterize data loss in
private clouds. We use the following measurements observed
in our clusters to perform the durability calculations: (a) fail-
ure rates, (b) I/O replication rate®, and (c) the used storage
capacity. Figure 13 shows the CDF of the data loss probabil-
ity (in log-scale) of our sample clusters. We notice that the
probability of data loss over a period of 1 year for 60% of
the clusters is < 10~ for RF2, which gives a durability of
six 9’s or more. Instead, in the case of RF3, nine 9’s durabil-
ity or more is achieved by most of the clusters. As a rule of
thumb, each additional replica provides an additional five 9’s
of durability given the failure model and the storage charac-
teristics.
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Figure 13: Data Loss in Log-Scale for different RFs

3 Note that this formulation allows for the second failure to be in a following
interval.

©We use r = 40Mbps in our calculations, as this is the typical transfer rate
we observed in the network.

39

7.2 Cluster Growth Analysis

We find that customers periodically add nodes to their exist-
ing clusters. Given that cluster growth is part of the delib-
erate capacity planning activities of an enterprise, it would
be interesting to understand what drives such growth. In do-
ing so, we resort to the machine learning-driven approach
explained below.

We frame this analysis as a binary classification problem,
where the goal is to predict whether a cluster would increase
its size or not. To that extent, we use a linear classifier, more
specifically, we train a logistic regression model. As we are
more concerned with the interpretability of the results (i.e.,
getting the most important predictive features) rather than
achieving high accuracy, we induce sparsity by adding an /;
regularizer [21].

7.2.1 Data

For this modeling exercise, we use a subsample of clusters
C to build a dataset D of N examples. Each example in
D consists of a tuple (¢;,;,x;,y;) where ¢; € C denotes the
cluster identifier, #; the timestamp, x; € R the features, and
yi € {0,1} the label of example i. Note that every cluster c is
associated with several examples. In particular, we consider
around 200 clusters over a period of 8 months, which gives
a total of 15K examples, split into training (70%), validation
(10%), and testing (20%) samples. We only consider clusters
that grew at least once during that period of time, which
provides some positive instances (i.e., grow the cluster) to
feed into our classifier.

7.2.2 Features and Methods

We construct three sets of basic features, based on general
cluster size characteristics (F¢), based on storage-related
information (F*), and based on performance metrics (F7).
A summary of the features we use is presented in Table 7.

Cluster Features F*¢

n(nodes) discretized # of nodes
n(vms) # of vms per node
Storage Features, F*
r(ssd) ssd usage to ssd capacity ratio
r(hdd) hdd usage to hdd capacity ratio
r(store) storage usage to total capacity ratio per node
Performance Features, F”
n(vepus) # of virtual cpus
n(iops) # of iops per node

Table 7: Features for Predicting Cluster Growth

We consider two main categories of models, Memory
and Memory-less. The former takes into account previous
instances to help predict the current one, whereas the latter



only uses current information. The order in Memory models
is given by the number of steps we look back in the past’.

7.2.3 Evaluation and Results

We evaluate our model using Area Under Curve (AUC),
suitable for binary classification problems with unbalanced
datasets. To measure the contribution of each feature set in
the context of all the other features, we perform an ablation
study, where we train the model using different feature com-
binations. We observe that F¢ features perform quite well
on their own, which seems to indicate that cluster size infor-
mation helps in predicting cluster growth. Further, we note
that storage-related features (F**) seem to be better predictors
than their performance counterparts (F7). In general, Mem-
ory models perform better, especially 21d order models, i.e.,
when we look two steps back in the past. Our best model
achieves an AUC of 0.6430, and combines F¢ and F* fea-
tures, with 2" order information. Going beyond two previ-
ous timestamps does not seem to help.

7.2.4 Discussion

We are interested in understanding the rationale behind clus-
ter growth. Given that we now have a classifier to predict
such growth, we can inspect its internals (i.e., weights) to
better explain its decisions.

Table 8 lists the top three most important features of our
best model together with their weights. Although the exact
weights are not important for the discussion that follows,
we include them for completeness. We are only interested
in the relative ordering of the feature weights, the higher
the weight, the more important the feature. According to our
classifier, the cluster size is one of the most important predic-
tors of cluster growth. In this particular dataset, we observe
that most of the upgrades are done from small-sized clus-
ters, thus the high importance of this feature. Nevertheless,
it is also an intuitive result. The chances that you increase
the size of small-sized clusters is higher than if you already
have big clusters.

HDD usage ratio is also a top feature. By manually in-
specting the positive and negative instances in our dataset,
we find that on average the HDD usage ratio is much lower
in negative instances than in positive ones, which indicates
that growth decisions are also driven by an increase in stor-
age demands. This also matches with the boost in accuracy
seen when we include storage-related features in our mod-
els (§7.2.3). Finally, we observe that the number of VMs per
node from a previous example of the cluster also contributes
to the growth decision. Similar to the HDD case, we man-
ually inspect the dataset and find that on average the num-
ber of VMs in negative examples is lower than in positive
ones. Therefore, according to our model, the third factor that
drives cluster growth in private clouds is given by the need of
more VMs. Interestingly, after controlling for the cluster and

7'We use subscript f to denote the timestamp of each feature.
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storage features, the performance features related to number
of vCPUs or IOPS load do not add much predictive accuracy
in modeling growth.

Feature Weight
n¢(nodes)  0.317107669518

ri(hdd)  0.176336623724
ne—1(vms)  0.0591175856085

Table 8: Most Important Features for predicting Cluster
Growth

8. Conclusions

The adoption of on-premise enterprise clusters within com-
panies is growing at a fast pace. In this work, we present
the first large-scale measurement study of enterprise private
clouds, namely Nutanix deployments at various organiza-
tions, which entails a full characterization of failures, and a
comprehensive description of the storage, compute and 1I/O
demands that are typically observed in these settings.

Among our main findings, we show that hardware fail-
ures are fewer than with consumer hardware, and notice a
surprisingly high percentage of virtualization-related prob-
lems. We further describe the characteristic applications that
run in these environments. Given that private clouds tend to
provision most of the resources upfront and that the usage
behavior observed is quite stable, we highlight that the elas-
ticity requirements in these clusters are not as essential as in
public clouds.

Finally, we build on these measurements and propose an
analytical model of durability, and a predictive model for
analyzing cluster growth. We believe that the observations
arising from our work will enable a better understanding
of the challenges and trade-offs associated with the use of
private clouds, as well as provide useful guidance for their
design and management.
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