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Abstract. The content-based publish/subscribe model has been adbptenany
services to deliver data between distributed users basexpplication-specific se-
mantics. Two key issues in such systems, the semantic ekyasss of content
matching and the scalability of the matching mechanism,oéten found to be in
conflict due to the complexity associated with content matghin this paper, we
present a novel content-based publish/subscribe artingebased on peer-to-peer
matching trees. The system achieves scalability by pamtitg the responsibility of
event matching to self-organized peers while allowing @ustable matching func-
tionalities. Experimental results using a variety of reafh datasets demonstrate the
scalability and flexibility of the system.
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1 Introduction

The deployment and application of event-based publiskfgilte services has increased
considerably over the past years. A number of emerging egtjpins, ranging from simple
personal tools to large-scale and critical systems, befrefit this paradigm. Examples
include stock quote notification, Internet news feeds tiea traffic control, and various
monitoring/management systems. Publish/subscriberagstieliver events from publish-
ers to subscribers based on their interests. Publisherswatribers can be completely
unaware of one another and communicate via the messagebthkématch events to in-
terested data users. This decoupling provides an atteactimmunication mechanism for
building large scale distributed systems.

The expressiveness of subscriber interests is a key fattswah middlewares. Early
publish/subscribe systems like TIBCO [20] and CORBA evdramels [13] are subject-
based. Subscribers join a set of subject groups that theintrested in and receive all
messages associated with the subjects.

Content-based publish/subscribe systems allow more fligxin specifying subscriber
interests. Subscriptions specify filters on event contéditdy those events with attributes
matching the filters are delivered to the subscriber. A tgpapplication is stock quote
notification. The events carry attributes of prices anddraolumes of individual stocks.
Subscribers may specify triggering ranges of price or vadar the stocks that they are
interested in. They get notification once events matchieg gubscriptions occur. Another
scenario is literature reference tracking. Researcheyssubscribe to new publications
matching certain keywords in their titles, abstracts orib®dThey may also choose to
track new papers from certain authors or citing certain ipreyworks. In both examples,
content-based filtering provides fine-grained control @r#levance of messages.



However, the power of expressiveness introduces an additomst of matching events
to the complex filters specified by subscribers. As the systates with the number of sub-
scriptions and the volume of event messages, a centraliaéching solution cannot meet
the computation and communication requirements. Thezefoe seek a solution to the
scalability issue by distributing the matching respongjbio many machines. In particu-
lar, we leverage peer-to-peer overlay techniques to builglaly scalable publish/subscribe
system. In our system, broker nodes self-organize and maiatdecentralized data struc-
ture that stores the subscriptions, match the events touthsceptions, and deliver the
events to relevant subscribers. Broker nodes may be addedramoved from the sys-
tem without global coordination. A key problem facing suchcalable system is how to
partition the workload among patrticipating peers in a Ibatknced fashion.

The flexibility provided by content expressiveness createdlenges to system scala-
bility. While a subject-based publish/subscribe systemezsily partition the workload of
event delivery to a large set of servers by hashing the st#g@cong the servers, content-
based systems have more complex subscription structuaesrthede the workload parti-
tion. Three factors contribute to this difficulty:

1. High dimensionality of the content spacea general publish/subscribe system might
have to operate in a setting that involves a large numbertidbaties. To make things
even worse, subscribers and publishers do not always sheaame schema. Sub-
scribers seldom know in advance the schemas used by (ikgntiany) publishers.
Even if they do, they might be interested in only a subset of it

2. Type flexibility : attributes may have various types that require differdteriing tests.

3. Skewed data distribution is common in real world subscriptions and events. It can
create a load imbalance in the system that throttles thalsitig.

Previous work on workload partitioning usually impose rietibns on the flexibility of
subscriptions and events. In [22] and [19], the set of aiteéb and their values are hashed
to decide the servers managing the subscriptions. Thisresgevents and subscriptions to
follow certain pre-defined schemas, and only works well wifnality tests. It is difficult to
efficiently support range subscriptions in such systemghdeot [9] leverages CAN [15]
to partition the multi-attribute space. Though it can suppange subscriptions, it is still
confined to numerical attributes and also can not handleesttelistributions efficiently.

Our Solution

In this paper, we propose a peer-to-peer architecture thad\aes high scalability and gen-
erality. We address the expressiveness problem with a rapehatching tree structure. This
tree organizes the subscriptions into hierarchical grdgsed on their similarity. It sup-
ports flexible schemas and multiple attribute types in stipsons and events, and allows
customization of new attributes and filtering types. Werihate this matching tree in a
peer-to-peer system where each peer processor managel fiagnaent of the tree. They
maintain the distributed tree by peer-wise communicatwittsout global coordination.

Events can enter the system from any processor. A deceeitiatiee navigation algo-
rithm is used to forward the events to those tree fragmeatatiay contain matching sub-
scriptions. In experiments using several real world dats, $ee proposed system demon-
strates excellent scalability: the distributed event miaig only visits a small number of
processors, processors maintain a small amount of staté pbers, and the workload is
well-balanced across the processor set.



The next section gives a survey of related work. Section 8ildahe structure of the
matching tree. Section 4 discusses how the tree is distdbarnd how to navigate the tree
in a decentralized manner. Section 5 focuses on how thehdittd tree is maintained in
the face of churn and changing load conditions. Section $qorts experimental results.

2 Related Work

Several centralized algorithms for content-based puldidiscribe [8,7,2,10] have been
proposed to address the efficiency of the matching opera@ionmatching tree bears some
similarity to previous work, such as [2, 10], which also usarsh tree structures. The key
differences are: 1) Our matching tree is more flexible, paring the subscriptions by
both schema content and attribute value, while [2, 10] oalfifion by the attribute value
specified in subscriptions. 2) We distribute the matchieg imongst peer processors to
address the scalability problem.

Distributed content-based publish/subscribe systemiedametwork of broker servers
to efficiently match and deliver events. Examples includérglL 7], Siena [4], and Gryphon [2].
Elvin uses a central server to store subscriptions and neatehts. Therefore, it still im-
poses a bottleneck at the matching engine. Siena and Gryistoibute the responsibility
of matching events to a set of distributed servers. Evetiada multicast tree to reach
all matching subscribers. However, they require the sifitsens to be replicated on all
servers. This causes a burden on server management andristaisg block to scalability.

To address this scalability problem, several systems den#ie partitioning of content-
space and the subscription set. Rialbsl. have proposed clustering algorithms that par-
tition similar subscriptions into multicast groups. EDN2[2artitions the content space
subject to the restriction that the schema is fixed. For dégyuaist, the attribute IDs and
values are hashed to generate a key to locate the server imgiitag-or inequality tests,
EDN uses an R-tree to decide offline how to assign subscniptimprocessors, and requires
each processor to maintain a complete map of this assignifigistapproach is limited to
small-scale systems with a fixed set of subscriptions, aisdaitso unclear as to whether it
works efficiently for high dimensional content space.

Peer-to-peer overlays have emerged as a promising appt@aehlizing highly scal-
able distributed systems. Several systems provide apiplicievel multicast [12, 3] that
divides the data dissemination responsibilities amongst$ They do not, however, ad-
dress the selective delivery of events. Recently, DisteithiHash Tables (DHTs) have been
employed to build scalable publish/subscribe systemsb&§5] uses Pastry [16] to build
a subject-based publish/subscribe service. It hashestepithto a peer, which then acts
as the rendezvous point. The routing paths from subscribete rendezvous point form
a multicast tree for this subject. This approach, howe\ar, ot be adapted to efficiently
support the content-based publish/subscribe model.

A few previous projects have addressed content-basedspialibscribe in peer-to-peer
systems. [19] partitions the content-space by hashing afsslected attributes and their
values into peer processors. The domain of attribute vavepartitioned into intervals
for the hashing. A range subscription may need to be decoadpmsmultiple intervals,
resulting in storage and matching inefficiency. Furthemntiie subscriptions and events
are limited by the pre-selected attribute sets. Meghddag€]axes the restrictions on sub-
scriptions. It uses CAN [15] to manage the multi-attribubatent-space. A subscription
defines a rectangular region in tligattribute content space bounded by the minimal and



maximal value specified. Unspecified attributes take thelevkialue range. The hyper-
rectangle is projected to a point in2d)-dimension CAN constructed from the minimal
and maximal values of thB-dimension rectangle. An event is then mapped to a rectangle
in the2D space, and the mapping is performed in a manner such thagdtengle covers

all subscription points relevant to the event. This novgdrapch reduces the subscription
matching problem into a range query operation in CAN. Thevieck with this approach

is that subscriptions are limited to numerical comparis@tker tests like keyword subset
can not be supported. Furthermore, the subscriptions &yeapped to the upper-left side

of the diagonal hyper-plane of the CAN space, which may erkestd imbalance.

3 Content-based Event Matching

In this section, we start by describing the specificationwaings and subscriptions in our
system. We then present the main data structure, the mgttrem, used in the system.

We also note that we focus primarily on the logical organareand navigation of the
matching tree in this section. The distributed operatiacshrmaintenance of the tree will be
presented in following sections.

3.1 Content-based Publish/Subscribe Model

We adopt a general event-space model with multiple ategyuiased on the models used
in previous systems [7, 4, 2]. The contents of an event messagpresented by a set of
attribute-value pairs. Each attribute has a unigue nam®oke support several types
of attributes:numerical (integer, floating point, and date/timejring, andset. The event
message can be representeccas {A; = vi, Ay = vq,..., A = vi}. Events from
different publishers may use different schemas, but wenassuconsistent assignment of
unique attribute IDs and their types across the publisteeasdid naming confusion. One
could also employ hierarchical namespaces to achievedbisimation.

As an example, consider an event from a research referetagage. Its contents may
be formulated agtitle = TTT, date = YYIMM , authors = {A, B,C},references =
{D1, D1, ...D,,}], wheretitle hasstring type,date is numerical, andauthors andreferences
fields are both of typeet, meaning they include an unordered list of keys.

A subscription is a conjunction of predicates over the fatteés. Each predicate speci-
fies a boolean test over an attribute. The test specified bgdigate depends on the type
of the attribute. Table 1 lists the type of tests supportemlinsystem. Disjunction of pred-
icates can be expressed by the “OR” of multiple conjunctisoswe treat a disjunctive
subscription as a set of independent conjunctive subgmnipt

We do not require events and subscriptions to use the samenash There may be a
large number of possible attributes, while any event and&ijition may specify only a
subset of attributes. An event matches a subscription ifyguedicate specified is satisfied
by the attribute-value content of the event message. Naittaibutes in the event need to
appear in the matching subscription. The additional atteib do not affect the matching re-
sults, since the subscription does not care about the vafubese attributes. However, the
event does not match a subscription if an attribute spediiiite subscription’s predicates
is missing from the event. This semi-structured matchirgabdity is important for envi-
ronments with heterogeneous publishers. Some systera£ N [22], require all events
to use the same schema. Such restrictions limit the getyeoélihe system and thus is not
desirable.



type tests
Numerical =<5,>,>
String |=, <, <, >, >, prefix matc
Set 3,2 T

Table 1.Predicates supported in the system

3.2 Content-Space Partition with a Matching Tree

We propose a matching tree algorithm to partition a genemhtespace. A hierarchical
tree structure is used to partition the set of subscriptlmased on their predicates. Each
internal node partitions the subscriptions by a similatétst, so similar subscriptions can
be grouped to the same tree branch. In order to adapt to #exitvibute sets and schemas,
we build the similarity tests dynamically.

Two types of similarities are used in the tests. The firstésdimilarity of the attribute
set. The test takes an attribute from the subscriptions aslods its name. The subscriptions
are assigned to one of two branches based on the hash vateerédursive partitioning
with several levels of internal nodes, each branch will laugscriptions sharing the same
attribute. The second type groups subscriptions havingainalue constraints for a com-
mon attribute. Depending on the type of this attribute, #st &ssigns the subscriptions to
two branches. For convenience, we label the child brandhes imternal nodé andR. In
addition, there is a wildcard branch, labeled-aor subscriptions that do not contain the
attribute specified by the internal node.
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Fig. 1. Matching Tree

Figure 1 gives an example of the matching tree used for sigbieers to research pub-
lications. The root node partitions the subscriptions dame attributes specified in their
predicates. It takes the first attribute in the subscriptibr), hashes the namel(.name),
and assigns the subscription to one of two branches basdtteatemarcating value of 5
for the result of the hash. The left child node of the rootHertpartitions the subscrip-
tions based on the value of tllete attribute. If a subscription has a predicate that tests
the date attribute, then it is stored in one or both of th@andR branches. For instance, if
the range of the predicate on the ‘date’ attribute intessadth the rang€0, 03/05), the
subscription would be inserted in the left branch; if it istects with the rangi@3,/05, co),
it would be inserted in the right branch; and a subscriptiat tovers a broad range, like
{date > 12/04, authors > X}, would be inserted in both branches. If a subscription’s
first attribute hashes to a value less than 5 and if that sipiiser does not have any pred-



icates referring to théate attribute, then it is stored in the wild-cardbranch. The right
child of the root node patrtitions the subscriptions basetimm they test theuthors at-
tribute. Sincenuthors is a set attribute, we pick any of the keys specified in theipate
testing thenuthors attribute, and hash it to decide the branch the subscripétongs to.
The subscriptioftitle == T'} falls into the default branch, since it does not contain any
predicates testing theuthors attribute.

Event messages also navigate the same matching tree to fioHintasubscriptions.
Figure 1 gives an example of how an event is handled. The stams$ from the root node.
It is passed on to both branches, because the attributeg iaviint,date and authors,
hash to thd. andR branches respectively. The event is further propagatedigr theR
branch at the left child node based ondtge value. At the right child node, both and
R branches are followed, because the elements imfkors field hash to either side of
the pivot value 7. At the leaf nodes, a centralized matchiggrahm like the counting
algorithm [7] is used to match the event to the set of matchirgscriptions.

Next, we give further details regarding the two partitiqgnimnethods.

3.3 Partitioning the Attribute Set

The first type of partitioning tries to group together suljarns that test similar attributes.
We first order the predicates of a subscription based on #addérctivity. For simplicity,
we order equality tests before subset tests, and considgualities as the least selective.
More sophisticated techniques that take into account datahdition to order predicates
regarding their selectivity are also possible. We then thkemost selective predicate in
the subscriptions, and hash the attribute name into &MiA, .name). Each child branch
manage a sequence of hash bins and the subscriptions fillmthe sequence. A pivot
value separates the hash bins of the left and right branches.

While a subscription only descends into either the left entght branch of this internal
node, an event may follow both branches. Given an efdnt= vy, Ao = vo,..., Ay =
vk }, the left branch is taken if any of the hash valdg&A4;.name) corresponds to the bins
on the left side of the pivot. Similarly, the right branch ékén if any of the hash values
corresponds to right-hand side bins. In general, when ¢inia bf partitioning is performed
iteratively at multiple internal nodes, an event withattributes navigates into at mast
branches under attribute set partitioning.

Given a set of subscriptions in a leaf node, we choose the paloe that evenly parti-
tions the subscriptions. When the subscriptions’ mostsigkeattribute is the same, either
because of user subscription pattern or due to prior pamtitg of the attribute set, we parti-
tion based on the second and third most selective attribltesefore, the state information
maintained in an attributed set partitioning node inclutfesorder of the attribute being
hashed, the range of hash bins owned by this node, and thtesplue used for partitioning.

3.4 Partitioning Attribute Content

After partitioning the attribute set, each branch of theahaiy tree contains subscriptions
with similar attributes. We can therefore partition funthusing the value ranges of their
common attributes. We apply different strategies basetheattribute’s data type.

— Value range partition applies to numerical attributes. It splits the value ranfythe
attribute by a pivot value. The value range specified by peads in the subscriptions



are compared to the pivot. If the whole range falls to thérigftt of the pivot, the sub-
scription is assigned to the left/right branch. Otherwike, subscription is replicated
into both branches. This strategy is therefore suitablsditscriptions specifying nar-
row value ranges, for example, equality tests. The attilset partitioning policy that
gives priority to highly selective predicates also impreeéficiency of value range par-
tition. While subscriptions may be replicated in both bizes, an event only descends
into one of them. So this approach reduces matching costiby additional storage.

— Min/max partition divides the set of subscriptions instead of the value sptice.
minimal/maximal value in the constraints is used to deckdeliranch it belongs to.
Therefore, a subscription is only assigned to one of thérilghit branches. Conse-
guently, an event may need to navigate into both branchesctid matching sub-
scriptions. Figure 2 illustrates differences between lined strategies used to partition
range constraints on a numerical attribute.

— String value partition is similar to value range partitioning. A subscription wih
prefix predicate may be assigned to both branches if the pnefixdes the pivot string.

— Set partition hashes the keys specified in the subscriptions and diviedstbhed key
space into two halves across a pivot key. A subscriptioni§peg several keys for the
set attribute may choose to follow the branch decided by drliekeys. An event
message would have to navigate into all branches that iteegtbers hash to. This is
necessary to ensure that all related subscriptions candobed. Therefore, an event
message specifying keys for the set attribute may navigate into upktdranches
under multiple levels of set partitioning.

(a) Partition by Value Range (b) Partition by Min Value (c) Partition by Max Valt

Fig. 2. Partitioning options based on a numerical attribute.

In all of the above mentioned types of attribute content Baetitioning, the default
* branch may be taken if a subscription does not specify thibat. An event always
traverses into the branch if it exists, unless the attribute being partitiorsetthe only one
specified in the event.

3.5 Choosing Partition Method

The matching tree grows by splitting leaf nodes. We aim atibiging the subscriptions in
the leaf node evenly to the branches of the newly formedraterode. The two partitioning
methods described above have different levels of effentise under different situations.
When the subscriptions carry sets of attributes that dsffgmificantly, partitioning the value
space of any single attribute may only work on a small parubssriptions while leaving
the majority in the wildcard branch. Attribute set partiting is more effective in this case.
After subscriptions with the same attributes are groupgdtteer, partitioning the content
of this attribute will yield more balanced results.

When a leaf node needs to be partitioned, we scan the sutisasipin the node, and
count the number of subscriptions associated with eacibatitr \We try to partition the



attributes that appear in at least half of the subscriptiand choose the partition method
that yields best load balance, defined as the largest nurfibebscriptions in the branches
after split. If such attributes do not exist, we partitior itribute set.

Besides the partitioning approaches discussed above swaisé a special “partition”
method that replicates the set of subscriptions to bothdddil branches. An event may
choose to follow any of the mirrored branches. As the braselie assigned to different
processors, this replication spreads out the load of evathing. We use this method
when the processor managing the leaf node is saturated byehétraffic targeting the leaf
node. Such event hot spots may be found in some subscrifiiahsatch a broad range
of events, for exampld,Volume > Py} in stock quote notification service (Section 6.1).

3.6 Extensibility

The above discussion illustrates that several differertttjwaming methods are used in our
system. Generally, for each data type, the system needssatdee partitioning method to
decide how the subscriptions and the events navigate thehmgttree. Each partitioning
method is implemented as a module that provides three attefinctions:

— Subscription branching: given the state in the node, decide which branch(es) a new
subscription needs to take.

— Event branching: given the state in the node, decide which branch(es) art evessage
needs to take.

— Node split: given the set of subscriptions in a leaf node, decide theviegto partition
the subscriptions once the leaf node gets overloaded.

This modular design allows new data and predicate types tatimluced into our system,
therefore ensuring generality.

4 Peer-to-Peer Matching Tree with Brushwood

In this section, we present the design of our peer-to-pedhitaecture. We distribute the
matching tree using peer-to-peer overlay techniques iardomachieve the following:

— Balanced distribution: We partition the matching tree into a set of subtrees, so that
the workload of managing subscriptions and matching evesmsbe divided among
peer processors in a balanced manner.

— Locality and ability to support complex event filtering: Since the distribution is
at the granularity of subtrees, related subscriptions tared on the same processor.
Furthermore, the generality of the matching tree ensurasatr system can handle
subscriptions with range predicates and efficiently matemts to such subscriptions.

— Symmetric distribution that avoids hotspots:We ensure that no processor in the sys-
tem is subject to inordinately high load. We avoid distribatschemes that assign the
root of the matching tree to a single processor, which is sudaject to handling every
new event or subscription. Instead, we make all subtreégasetained and indepen-
dent. Each processor maintains the path from the root of titehing tree to the root
of the subtree in addition to maintaining the full set of mi@ nodes and leaf nodes
of the subtree. An event or subscription could be routed yoome of the processors,
which can either handle it locally or forward it to the appriafe processor(s).



— Scalability: We require that processors maintain small amounts of stgt@rding the
current state of the system. In particular, each processoui system keeps track of
a logarithmic number of peers in the system. Peers peritiglemechange information
regarding their portion of the matching tree, so that theyroaintain a weakly consis-
tent partial view of the global matching tree. This parti@w allows the processors to
forward subscriptions and event messages to relevant mgttthe nodes.

4.1 Brushwood

We extend the Brushwood framework described in our posfiaper [24] to build the peer-
to-peer matching tree. Brushwood is a peer-to-peer seagetdesigned for scalable index-
ing of high dimensional data. Here we adapt its distributeghpization for the publish-
subscribe needs.

Tree distribution: Brushwood partitions a search tree into self-containeghfients coop-
eratively managing the distributed tree. Figure 3 (a) itlates our approach in distributing
a matchingtree. The edges are labeled as ‘L, ‘R’ and **' fft [right and default branches.
We linearize the tree nodes by pre-order traversal and theitipn them into eight frag-
ments separated by the dotted vertical bars. This paiitiipmethod preserves locality of
similar subscriptions since the low level subtrees are plit 3he tree fragments are as-
signed to eight processorks- H, shown as the rectangles below the tree. We identify the
fragments, and the processors managing them, witbfttboundary. The left boundary is
defined as the the left-most tree node in the partition undeppder traversal. This bound-
ary can be uniquely identified by the sequence of edge labmig ¢ghe path from the root
of the matching tree to the boundary node. We use this sequnihelree ID of the tree
fragment. The Tree ID of each of the fragments are shown iptbeessor rectangles.

Data structure maintained by each processor:In a dynamic peer-to-peer system, pro-
cessor joins and departures are frequent events. Eaclgpawture changes the location
of some subtree. Therefore, we can not afford to replicatesaall processors the global
mayp of which processor owns which portion of the tree. Irtstagrocessor only maintains
apartial tree view, which is a sub-graph of the global matching tree. This phitee of a
processor consists of the following: 1) all the leaf nodesagged by the processor, 2) the
left boundary nodes of some selected peer processors, alldr#ernal tree nodes along
the paths from the root of the matching tree to the nodesfspaeibove in (1) and (2). In-
formation about the peer boundary nodes are collected byacting peer processors. The
construction of the partial view is, therefore, a localizgubration with cost proportional
to the number of peers. The selection of peer processorsdsghied later in this section.
Figure 4 shows the partial view of and D.

Event Handling: When a new event is received by a processor, the event is gzete
using the partial tree view. The event is propagated thrahgipartial tree view, starting
from the root of the partial tree, to determine which porsiarfi the tree are related to the
event. During this process, one or more of the following s/pkactions are performed:

— The event is relevant to one or more of theal leaf nodes managed by this processor.
The matching can be then performed locally.



— The event needs to be routed toemote leaf node managed by a peer.

— The event is relevant to sonebscure nodes corresponding to unknown portions of the
matching tree that is not managed by any peer. The eventrisrthited to some peer
that is more likely to be aware of the obscure node.
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Fig. 3. Peer-to-peer Matching Tree
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Fig. 4. Partial Tree Views from Processor A and D

Example: Now we show how to perform event matching in a distribute@ tngth an
example event messadel; = 20, As = 90}. Assume the event enters the system from
processord. A navigates its partial tree to find all subtrees that may éorsiabscriptions
matching this event. In this case, subtr&ds, R+ andx are involved A forwards the query
to the processors managing these regidh®.is managed by pedp. Obscure node&:
and* have to be reached by overlay routing. We route the messagibe tpeer that is
farthest in the same direction as the obscure node (givepréierder linearization of tree
nodes) without passing over the target. In this examplehedle subtrees are forwarded to
peerD for further matchingD further navigates its partial tree to identify related e

to be searched. It performs local matching in subfRée and forwards the messagefb
andG for further matching. Event matching is therefore perfodratarting from any pro-
cessor by “jumping” among the processors instead of travg@esdistributed tree path from
the root to the target. Each forwarding step refines the sabtthat need to be searched.
The number of hops is logarithmic in the number of processegardless of tree depth.
Subscription insertion follows a similar procedure.

4.2 Routing Substrate

We now consider the question of establishing peers. To erssigtem scalability, we limit
the amount of state information managed by individual pseoes. Each processor only



maintaindog N peers and their partition boundaries in/srprocessor system. Therefore,
each node join and departure can be handled efficiently btacting onlylog N proces-
sors. A tree navigation can be done withig NV steps regardless of the shape of the tree.
We extend Skip Graphs/Nets [1, 11] to achieve such an effitbekup.

Conceptually, a processor in a Skip Graph maintdisV levels of peer pointers,
pointing to exponentially farther peers in the linear ondigiof IV processors. Figure 3 (b)
depicts the overlay structure of the Skip Graph among tha @igpcessors. Each processor
uses a random membership vector to decide its peers. Atietred peers are the nearest
processors on the left and right sides with membership vetibat match the processor’s
membership vectors for the firsbits.

Brushwood routing depends on a linear ordering of partitiom this sense, any linear
space DHT routing facility can be used. We choose Skip Graptiao reasons. First of all,
Skip Graphs do not impose constraints on the nature andsteusf keys. It can work with
complex keys, like the variable-length Tree IDs, as londghasd is a total ordering. Second,
even if one can encode tree nodes into key values, such wdhasid often skewed keys
can cause routing imbalances in some DHTS, as they use kegsva decide the peering
relation. Skip Graphs do not suffer from this problem beeaits peering is decided by
purely random membership vectors, even though the keysduashed.
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Fig. 5. Routing Imbalance under Skewed Key Distribution

We simulated Chord [18] and Skip Graphs with a skewed keyiligton to show the
imbalance in routing. Figure 5 (a) depicts the maximal pssoe degrees of Chord and
Skip Graphs with 1K-32K processors. The processor keys are derived from a naliszal
tribution with standard deviatiom 125 in the rangg0, 1]. With such unhashed keys, Chord
processors falling into the sparsely populated regionsméinage larger portions of the
keyspace, and are therefore likely to have a large numberibdund peers. Furthermore,
the imbalance in peer distribution also leads to imbalanceuting costs. We route 1000
messages between random pairs of nodes. Figure 5 (b) shewslthlance as the ratio of
maximal routing load to mean load. We observed similar rauitnbalances in Meghdoot,
which employs CAN for routing in (skewed) subscription camttspace. We present this
result in Section 6.

5 Maintaining the Partition Tree

In this section, we discuss the maintenance of the dynamictrimg tree in a peer-to-peer
setting. The major challenges are: 1) the frequent procgmss and departures, typically
referred to as churn, and 2) balancing the workload amonglyimamic processor set.
Our design leverages Skip Graphs to achieve efficient rgutinile maintaining only a



logarithmic number of peers. Therefore, the processosjaiml departures only result in
small maintenance overheads. Balancing the workload ededaowith publish/subscribe
events is important for the scalability of the system. Thalleimges that it presents in the
context of the distributed matching tree differ from whaeyous work in DHTs have

addressed. Therefore, we focus on this issue in this sed@ian solution is based on a
limited, loosely consistent knowledge about global loagtrdiution. What is interesting

about our scheme is that we use the distributed matchingdmggregate this information.

5.1 Gossip-based Aggregation

In most peer-to-peer systems, periodical polling of peatasds necessary for detecting
failures. We piggyback load information in the pair-wisehebeat traffic between peers.
Peer processors aggregate the global load information fh@se gossip messages. This
approach is inspired by previous work [21].

Each processor maintains load summaries for the nodes paital tree view. This
summary corresponds to the workload of the matching sulbtreted at the node and the
resources available on the processors that maintain thteesuln particular, it includes
the following information: 1) the total number of subscidpts in the subtree; 2) the total
rate of events visiting the subtree; 3) the total capacifyrotessors managing the subtree.
The first two items show the load associated with subscriforage and event matching.
The third summarizes the resource devoted for managingotud: Me define capacity
as the network bandwidth of the processor instead of storsigee this is the limiting
factor for matching and delivering events. This informatreflects the heterogeneity of
participating processors. The load-to-capacity ratichimsummary indicates whether the
subtree is overloaded or underloaded.

[ ] Leaf nodes managed by A Summary sent by peer B Summary sent by peer

e
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Fig. 6. Gossiping and aggregation of load information
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Periodically, a processor sends to peers its load summebims nodes along its Tree
ID path (Section 4.1). Recall that this path stretches frbenrbot to the first node (under
pre-order) belonging to the processor. Figure 6 illusg#te Tree ID paths of peé? and
D, and the gossip messages they send.to

A maintains the storage and event processing load for theesutttmanages locally.
After receiving load summaries from its peerscan aggregate the load for the internal
nodes in its partial tree. The summary about the root nodesdhe global load information.
This information is loosely consistent. It is easy to se¢tti@aggregation converges within
O(log N) steps in aV-processor system, because information about one pracesshes
all other processors withift (log V) forwarding steps, the diameter of a Skip Graph. With a



typical heart-beat interval of 30 seconds, the aggregatiomerges within several minutes,
during which time the overall load is unlikely to change byuastantial amount.

5.2 Processor Join

When a new processor joins the system, it contacts a knowaepsorP that is currently
in the systemP uses the load summary in its partial tree view to direct the jequest.

It navigates the tree, locally, to find a subtree with a higiditevel, as determined by the
ratio of total load to capacity associated with the subifekis subtree is remote or obscure
(defined in Section 4.1), the join request is forwarded tolwdhat subtree, and eventually
reaches a peé&p with high load level. This forwarding process is similar e tdistributed
tree navigation for inserting subscriptions and matchirenés.

After receiving the join request) divides the set of leaf nodes it manages and hands
over one half to the joining processor. If there is only orsf leode, or if one leaf node has
significantly higher load than others, this leaf is partigd using algorithms described in
Section 3.5. The joining processor receives fr@nthe leaf nodes, which also determines
the new Tree ID of the joining processor. The processor thers jthe Skip Graph and
establishes its partial tree view by contacting the peers.

Section 3.5 describes two strategies of leaf node parititgprsplit or replicate. If the
high load is caused by larger than average number of suliscispwe choose one of the
various options to partition the set of subscriptions amthiegnew branches. If the load is
caused by high event rate to the subscriptions, we may edplibie subscriptions in the
new branches to spread out the event processing load.

5.3 Processor Departure and Failures

Processors in the system may leave gracefully or fail/di@ib8y without warning. In the
former case, it notifies its peers of the intention to leawklzands over the set of leaf nodes
and subscriptions to its left-hand side peer, and the Skapkswill route corresponding
messages to this peer after the processor’s departure.

Failures and non-cooperative departures are detectedrindjmeheart-beat messages.
If a processorP does not hear from a peer for several consecutive heartifiteatals,
this peer is marked as failed and is excluded from the partal view. If the peer is the
immediate right-hand side peé?,takes over the responsibility of managing the leaf nodes
of the failed peer. In order to avoid data loss, we can refisabscriptions to left hand
side peers during normal operation. This replication sgyais used in many peer-to-peer
systems [16,18, 15].

5.4 Reactive Load Balancing

Besides the load-balanced join process, reactive loadhbialg of heavily loaded proces-
sors is also desirable. Such imbalance may be caused byiamsef new subscription,
transfer of data after peer departure, or change of evelfictpattern. Processors in the
system detect load imbalance from the global load inforomatif a processor sustains
significantly higher load than global average, it can stdoiaal balancing process by nav-
igating the distributed tree to find an underloaded proaedduos processor is forced to
quit its current position, offload its work to its neighbagiprocessor, and rejoin the sys-
tem as the overloaded processors’ neighbor in order to tedehalf of the load from the
overloaded processor.



6 Experimental Results

In this section, we present our experimental results. Wetwsevery different real world
datasets for publish/subscribe workload. We also evalsypgem scalability with larger
synthetic workloads. We start by describing the exampldieatjons and the datasets be-
fore presenting the experimental results.

6.1 Example Applications

Stock quote alert is a popular publish/subscribe servigeréJsubscribe to events about
stock price changes and transaction volume fluctuationsh Sarvices are usually im-
plemented with DBMS triggers in a centralized server. Siamdubscriptions that specify
numerical data ranges may be found in other systems liketorarg and sensor networks.
Therefore, we use stock quote alert as one of our represenagiplications.

We use the stock quote dataset collected by Gapéh to evaluate Meghdoot [9]. It
was obtained from Yahoo! Finance [23] by downloading thdydaiiotes of 100 stocks
from 2/Jan/1998 to 31/Dec/2002. This event set containg3bB5events. The schema
and value range of the events are summarized in Table 2. Thed@aribution is highly
skewed. Most stock prices/volumes are within a relativelyrow range, except for a few
high price/volume stocks quotes.

Attribute Date Symbol| Open| High| Low| Close \olume
Type String String| Floaty Float Floaf Float Integer
Minimal 2/Jan/98 aaa 0 0 0 0 0
Maximal| 31/Dec/02 zzzzz 500 500 500 500 | 31000000
Table 2. Schema of Stock Quote Events

Subscription Prob|Description

{Symbol = P1 A P, < Open < P3}|20% |Notify when stockP; opens with price betweeR, and Ps.
{Symbol = P, A Low < P»} 35% |Notify when the price of stocl; is at mostP..

{Symbol = P, A High > P»} 35% |Notify when the price of stocl; is at leastP..

{Symbol = Py A Volume > P>} 5% |Notify when stockp; is traded at leasP.

{Volume > P1} 5% |Notify when any stock is traded more th#h.

Table 3. Templates of Stock Quote Subscriptions

We follow the method used in [9] to generate stock subsaorigti Subscriptions ran-
domly select one of five templates designed to model commerinigrests in stock events.
Table 3 lists the subscription templates and their proliggsl The parameters are generated
using random draws from uniform distributions over the datages of the corresponding
fields, while maintaining the constraints. The fifth temeligta “rare” case of a broad sub-
scription that matches any stock with trading volume abog&an parameter. In the real
world, users are usually interested in events specific tar@wayroup of stocks. Therefore,
this template is assigned a relatively low probability.

While stock quote events exhibit a well-formed schema witimarical attributes, a
number of applications use semi-structured data repragsens. \We use the CiteSeer sci-
entific literature digital library [6] as a representativata source for such applications.
CiteSeer uses the Open Archives Initiative [14] protocgtiblish the metadata of its lit-
erature collection. This metadata is encoded in XML, whicboenodates semi-structured
data and allows for efficient data manipulation. We parsexiiie. records published by
CiteSeer to generate events one per publication, with thewfimg extracted attributes:



Date, Title, Authors, Subject, andReferences. We further extracKeywordsfrom the subject
line by removing stop words and obtaining the stems of theaieimg words. Theuthors,
Keywords, andReferences fields are represented with tis2¢ type defined in Section 3.1.
Note that some fields, likReferences, might be missing in some cases due to incomplete
records. A total of 574,128 events are extracted.

We generate three types of subscriptions for our experisnent

— {Authors > P}: notify when the author list of a newly published paper inidsP.
We select parametéd? from the list of authors appearing in the data set, with pbiba
ity proportional to the occurrence frequency.

— {Keywords 2 P}: notify when a newly published paper includes the keywastd.
P is a set of one to three keywords selected randomly from thef s&ywords in the
data set, with probability proportional to keyword occuce frequencies.

— {References > P}: notify when a newly published paper cites another docurffent
Again, P is randomly chosen according to data distribution.

Besides the above two publish/subscribe data sets, we aésa gynthetic workload
to test system scalability, similar to that used in [4]. Tiisrkload uses events and sub-
scriptions that specify one of more of 1000 numerical aftel. This synthetic workload
models a general purpose publish/subscribe system thataddimit the users to a small
set of pre-defined schemas. Each subscription specifies poetlicates. Each predicate
randomly selects an attribute, a comparison operatet,of, <, < or >, and a value be-
tween 0 to 999. We use either an uniform or a zipf distribufan= 0.8) to select the
attributes. The operator and value fields are chosen unifjoandomly. Published events
randomly specify between 1 to 20 attributes and their valueder the same distribution
as for subscriptions.

We compare Brushwood matching tree against Meghdoot fostthiek quote alert ex-
periments. Meghdoot uses CAN to partition the multi-dimienal content-space to peer
nodes. Meghdoot does not support the CiteSeer data setddine presence of set predi-
cates) or the synthetic workload (due to the large numbettidbates and the flexible event
schema). So for these datasets, the experiments only &valuasystem under different
parameters.

6.2 System Scalability

We first use the synthetic workload to evaluate system sitifallVe simulate from 1024
to 16384 peer processors. The number of subscriptions i@ éik& million. The number
of event messages is 110000. We start with a single procassbadd the remaining at
random intervals, in order to simulate a peer join procesthé mean time, we insert the
subscriptions into the system. We count the number of messtgwarded for inserting
subscriptions and publishing events as a measure of the oaiation cost. Some of the
messages require further processing at the recipientsséstia subscription or to match an
event to local subscriptions. We measure this cost as théeuai processors processing
the request. We refer to this number as the textitspan of pleeation, and the processors
asvisited by the operation. For subscriptions, it is the number ofditee subscription is
replicated to. For events, it is the number of nodes that teepdrform predicate evaluation
or matching.

Figure 7 depicts the average number of processors visitedhenaverage number of
messages forwarded for a subscription/event. Even witl8468des, a typical publishing
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Fig. 7. Synthetic workload: cost vs. system scale

event spans less thdr¥ of the processors, showing good scalability. The maximahsp
we observed is about 250.

When attributes are selected using the Zipf distributibe,gpan of publishing events
increases much faster than under uniform distribution. fBason is that a skewed distri-
bution generates many similar subscriptions and eventwder to balance the load, these
closely related subscriptions are partitioned acrosgmifft processors. Events matching
such subscriptions have to visit more partitions.

An interesting trend in Figure 7 is that the event span dee®when the number of
processors increase from 12288 to 16384 (for Zipf distetwtttributes). Meanwhile, the
degree of subscription replication (indicated by the nundfgrocessors visited for sub-
scription insertion) increases from 2 to 4. This is becatsg¢ &s more processors join,
while the total number of subscriptions remains the sametree partitioning algorithm
devotes the newly joined processors to store replicatescsigitions, thereby decreasing
the number of processors that an event has to visit.

6.3 Stock Quote Alert

Next we evaluate the performance of our system and Meghdsing uhe stock quote
dataset. We scale the system from 128 processors to 819X (tlaeameters in the graphs).
We also scale the number of subscriptions proportionallyht number of processors
(100N).

Figure 8 shows the number of messages forwarded by subsaripsertion and event
matching as we increase the number of peer processors. Cedntza Meghdoot, our
scheme shows a substantially lower cost for processingt®ve&his is first because we
partition the subscription set based on data distribufidgghdoot uses CAN'’s partition-
ing method that splits a zone into halves of equal sizes (€asan for this regular split
is to avoid interleaving of the zone spaces that can signifigancrease the number of
peering zones.) Therefore it suffers load imbalance untdehighly skewed dataset. In
order to alleviate this imbalance, Meghdoot replicatesotrerloaded nodes, resulting in a
higher number of subscription messages. Another reasdw ifexible value partitioning
method used in the matching tree (Section 3.4). Meghdoditipas the subscriptions by
Min/Max range specified for the attributes. This approaditssiihe subscriptions into non-
overlapping sets, but an event may need to visit both zories the split. We use value



range partitioning method that allows events to visit onie dranch after the partition.
Our approach also replicate some subscriptions, but onlitdd to broad ones. So the
subscription cost is still lower than that of Meghdoot.
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Figure 9 shows the histogram of event spans (the number oEpsors visited by the
event). Under all three settings of system scale, our sclismmnstrates relatively small
and stable span, due to reasons discussed above.

Next, we compare the load balance of the two systems. We demseveral aspects
of load balance: subscription storage, event matching ranting state. Routing state is
represented by the number of peers that processors maintain
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Fig. 10. Stock: load distribution

Figure 10 (a) presents the cumulative distribution (CDRhefnumber of subscriptions
managed by the processors. Our system exhibits evenlydsadatorage loads, while most
of the subscriptions in Meghdoot are managed by a small nuofeodes. The imbal-
ance in Meghdoot is due to the fact that only some of the zaihesportion of the CAN
space above the diagonal plane) are used to store subsesigtioreover, the constraint of
equal-space partitioning also limits its ability to aclédyalanced load under skewed data
distribution.

Figure 10 (b) depicts the CDF of the percentage of eventspeckby the processors.
Note that each event may be examined by multiple processmtie total is higher than the
number of events submitted to the system. Our system shottes bead balance in event



processing, because the subscriptions are more evenitiqreetl among the peers. Some
of the subscriptions match very broad range of events (hiksd only specifyingyolume

in Table 3), Both Brushwood and Meghdoot replicate somegigi®ns to share the event
matching load. Therefore, there is not a significant difieeebetween the two schemes in
balancing the loads associated with event processing.

We discussed the routing state balance problem in SectoirdSkip Graphs, the peer-
ing relationship is decided by random membership vectord,leence is not affected by
skewed key distributions. Meghdoot uses CAN for overlaytirmy which decides peering
by zone neighborhood. Therefore, larger zones may have peaes if the zones are par-
titioned into different sizes under a skewed data distiiutin a high dimensional space,
this imbalance is more significant since zones can make coalang more dimensions.
Figure 11 confirms this intuition.
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6.4 Literature Reference Notification

Now we present the results of the CiteSeer experiments. Weinsulation settings sim-
ilar to the above tests, except that the subscriptions eéhpasameter values based on a
real distribution derived from the data set, instead of gisiniform random distributions.
Figure 12 shows the CDF of the subscription storage and enatthing load on the pro-
cessors. Although the contents of subscriptions and evevis skewed distributions, the
load balancing mechanisms in Brushwood ensure good loathdal

Figure 13 (a) (b) shows the cost of inserting subscriptiondsthe cost of processing
events. Both the number of messages and the number of naitesi\dre small. Since the
attributesAuthors, Keywords, andReferences are ofSet type, the span of subscription and
event messages is mainly decided by the number of itemsfiggkdn this real-world data
set, the number of authors, keywords and references artyuswall. Therefore the Brush-
wood approach performs well. However, we do observe a sharpase in publishing cost
as the number of processors is increased from 4096 to 81@2isTdue to the dynamic load
balancing mechanism discussed in Section 5.4. As the pgeiqt®mn increases, popular
subscriptions can receive a significant number of subswibderefore, peers maintaining
them get overloaded and split their load to more procesgars result, events involving
such subscriptions have to flood more peers, while each titenaintains a reasonable
share of load (Figure 13). We did not observe such a trencewviguis experiments because
their subscription values are drawn from a uniform distiifiu Though there is an in-
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crease in publishing cost, we do note that the reactive latahlbing mechanism manages
to balance load even in the face of skewed subscriptionrpatte

7 Conclusions

In this paper, we propose a content-based publish/suleseridbdleware built by distribut-
ing a matching tree over a peer-to-peer system. The mainibotion is in the decentralized
navigation and management algorithms for the distributetching tree in peer-to-peer
settings. Our system achieves efficient event matchingawhguiring only small amounts
of state to be maintained by the peers. Processors in thensystild partial views of the
global tree based on information about only a logarithmimhar of peers. Therefore, the
system provides high scalability. Compared to other peqreer approaches, it imposes
no restrictions over the schemas associated with subiseripaind events. The use of a
matching tree provides more generality and extensibititye types of data and predicates
that can be supported. The peer-to-peer tree also provigesgated load information that
assists reactive load balancing. Experiments demondtratehe proposed design effec-
tively supports real world subscription scenarios. Besjlgblish/subscribe, we have used
the Brushwood framework to build other applications, iéhg high dimensional index
and distributed file systems. We believe that the combinadiotechniques brought to-



gether in Brushwood (such as the ability to support seamd diata structures, efficient

decentralized navigation using partially consistent @elwad-balance using aggregated
information) shows promise as a powerful toolkit for builgiscalable distributed applica-

tions.
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