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Abstract
SPDY is increasingly being used as an enhancement

to HTTP/1.1. To understand its impact on performance,
we conduct a systematic study of Web page load time
(PLT) under SPDY and compare it to HTTP. To identify
the factors that affect PLT, we proceed from simple, syn-
thetic pages to complete page loads based on the top 200
Alexa sites. We find that SPDY provides a significant im-
provement over HTTP when we ignore dependencies in
the page load process and the effects of browser compu-
tation. Most SPDY benefits stem from the use of a single
TCP connection, but the same feature is also detrimen-
tal under high packet loss. Unfortunately, the benefits
can be easily overwhelmed by dependencies and com-
putation, reducing the improvements with SPDY to 7%
for our lower bandwidth and higher RTT scenarios. We
also find that request prioritization is of little help, while
server push has good potential; we present a push pol-
icy based on dependencies that gives comparable perfor-
mance to mod spdy while sending much less data.

1 Introduction
HTTP/1.1 has been used to deliver Web pages using mul-
tiple, persistent TCP connections for at least the past
decade. Yet as the Web has evolved, it has been criti-
cized for opening too many connections in some settings
and too few connections in other settings, not providing
sufficient control over the transfer of Web objects, and
not supporting various types of compression.

To make the Web faster, Google proposed and de-
ployed a new transport for HTTP messages, called
SPDY, starting in 2009. SPDY adds a framing layer for
multiplexing concurrent application-level transfers over
a single TCP connection, support for prioritization and
unsolicited push of Web objects, and a number of other
features. SPDY is fast becoming one of the most im-
portant protocols for the Web; it is already deployed by
many popular websites such as Google, Facebook, and
Twitter, and supported by browsers including Chrome,
Firefox, and IE 11. Further, IETF is standardizing a
HTTP/2.0 proposal that is heavily based on SPDY [10].

Given the central role that SPDY is likely to play in
the Web, it is important to understand how SPDY per-
forms relative to HTTP. Unfortunately, the performance
of SPDY is not well understood. There have been sev-
eral studies, predominantly white papers, but the find-
ings often conflict. Some studies show that SPDY im-
proves performance [20, 14], while others show that it

provides only a modest improvement [13, 19]. In our
own study [25] of page load time (PLT) for the top 200
Web pages from Alexa [1], we found either SPDY or
HTTP could provide better performance by a significant
margin, with SPDY performing only slightly better than
HTTP in the median case.

As we have looked more deeply into the performance
of SPDY, we have come to appreciate why it is chal-
lenging to understand. Both SPDY and HTTP perfor-
mance depend on many factors external to the protocols
themselves, including network parameters, TCP settings,
and Web page characteristics. Any of these factors can
have a large impact on performance, and to understand
their interplay it is necessary to sweep a large portion of
the parameter space. A second challenge is that there
is much variability in page load time (PLT). The vari-
ability comes not only from random events like network
loss, but from browser computation (i.e., JavaScript eval-
uation and HTML parsing). A third challenge is that de-
pendencies between network activities and browser com-
putation can have a significant impact on PLT [25].

In this work, we present what we believe to be the
most in-depth study of page load time under SPDY to
date. To make it possible to reproduce experiments, we
develop a tool called Epload that controls the variabil-
ity by recording and replaying the process of a page load
at fine granularity, complete with browser dependencies
and deterministic computational delays; in addition we
use a controlled network environment. The other key to
our approach is to isolate the different factors that affect
PLT with reproducible experiments that progress from
simple but unrealistic transfers to full page loads. By
looking at results across this progression, we can sys-
tematically isolate the impact of the contributing factors
and identify when SPDY helps significantly and when it
performs poorly compared to HTTP.

Our experiments progress as follows. We first com-
pare SPDY and HTTP simply as a transport protocol
(with no browser dependencies or computation) that
transfers Web objects from both artificial and real pages
(from the top 200 Alexa sites). We use a decision tree
analysis to identify the situations in which SPDY out-
performs HTTP and vice versa. We find that SPDY im-
proves PLT significantly in a large number of scenarios
that track the benefits of using a single TCP connection.
Specifically, SPDY helps for small object sizes and un-
der low loss rates by: batching several small objects in a
TCP segment; reducing congestion-induced retransmis-
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sions; and reducing the time when the TCP pipe is idle.
Conversely, SPDY significantly hurts performance under
high packet loss for large objects. This is because a set
of TCP connections tends to perform better under high
packet loss; it is necessary to tune TCP behavior to boost
performance.

Next, we examine the complete Web page load pro-
cess by incorporating dependencies and computational
delays. With these factors, the benefits of SPDY are re-
duced, and can even be negated. This is because: i) there
are fewer outstanding objects at a given time; ii) traffic is
less bursty; and iii) the impact of the network is degraded
by computation. Overall, we find SPDY benefits to be
larger when there is less bandwidth and longer RTTs. For
these cases SPDY reduces the PLT for 70–80% of Web
pages, and for shorter, faster links it has little effect, but
it can also increase PLT: the worst 20% of pages see an
increase of at least 6% for long RTT networks.

In search of greater benefits, we explore SPDY mech-
anisms for prioritization and server push. Prioritiza-
tion helps little because it is limited by load dependen-
cies, but server push has the potential for significant im-
provements. How to obtain this benefit depends on the
server push policy, which is a non-trivial issue because of
caching. This leads us to develop a policy based on de-
pendency levels that performs comparably to mod spdy’s
policy [11] while pushing 80% less data.

Our contributions are as follows:
• A systematic measurement study using synthetic

pages and real pages from 200 popular sites that iden-
tifies the combinations of factors for which SPDY
improves (and sometimes reduces) PLT compared to
HTTP.

• A page load tool, Epload, that emulates the detailed
page load process of a target page, including its depen-
dencies, while eliminating variability due to browser
computation. With a controlled network environment,
Epload enables reproducible but authentic page load
experiments for the first time.

• A SPDY server push policy based on dependency
information that provides comparable benefits to
mod spdy while sending much less data over the net-
work.
In the rest of this paper, we first review SPDY back-

ground (§2) and then briefly describe our challenge and
approach (§3). Next, we extensively study TCP’s im-
pact on SPDY (§4) and extend to Web page’s impact on
SPDY (§5). We discuss in §6, review related work in §7,
and conclude in §8.

2 Background
In this section, we review issues with HTTP perfor-
mance and describe how the new SPDY protocol ad-
dresses them.

2.1 Limitations of HTTP/1.1

When HTTP/1.1, or simply HTTP, was designed in the
late 1990’s, Web applications were fairly simple and
rudimentary. Since then, Web pages have become more
complex and dynamic, making it difficult for HTTP to
meet the increasingly demanding user experience. Be-
low, we identify some of the limitations of HTTP:

i) Browsers open too many TCP connections to load
a page. HTTP improves performance by using parallel
TCP connections. But if the number of connections is
too large, the aggregate flow may cause network conges-
tion, high packet loss, and reduced performance [9]. Fur-
ther, services often deliver Web objects from multiple do-
mains, which results in even more TCP connections and
the possibility of high packet loss.

ii) Web transfers are strictly initiated from the client.
Consider the loading of embedded objects. Theoreti-
cally, the server can send embedded objects along with
the parent object when it receives a request for the par-
ent object. In HTTP, because an object can be sent only
in response to a client request, the server has to wait for
an explicit request which is sent only after the client has
received and processed the parent page.

iii) A TCP segment cannot carry more than one HTTP
request or response. HTTP, TCP and other headers could
account for a significant portion of a packet when HTTP
requests or responses are small. So if there are a large
number of small embedded objects in a page, the over-
head associated with these headers is substantial.

2.2 SPDY

SPDY addresses several of the issues described above.
We now review the key ideas in SPDY’s design and im-
plementation and its deployment status.

Design: There are four key SPDY features.
i) Single TCP connection. SPDY opens a single

TCP connection to a domain and multiplexes multiple
HTTP requests and responses (a.k.a., SPDY streams)
over the connection. The multiplexing here is similar to
HTTP/1.1 pipelining but is finer-grained. A single con-
nection also helps reduce SSL overhead. Besides client-
side benefits, using a single connection helps reduce the
number of TCP connections opened at servers.

ii) Request prioritization. Some Web objects, such as
JavaScript code modules, are more important than others
and thus should be loaded earlier. SPDY allows the client
to specify a priority level for each object, which is then
used by the server in scheduling the transfer of the object.

iii) Server push. SPDY allows the server to push em-
bedded objects before the client requests for them. This
improves latency but could also increase transmitted data
if the objects are already cached at the client.

iv) Header compression. SPDY supports HTTP
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header compression since experiments suggest that
HTTP headers for a single session contain duplicate
copies of the same information (e.g., User-Agent).

Implementation: SPDY is implemented by adding a
framing layer to the network stack between HTTP and
the transport layer. Unlike HTTP, SPDY splits HTTP
headers and data payloads into two kinds of frames.
SYN_STREAM frames carry request headers and SYN_
REPLY frames carry response headers. When a header
exceeds the frame size, one or more HEADERS frames
will follow. HTTP data payloads are sliced into DATA
frames. There is no standardized value for the frame size,
and we find that mod spdy caps frame size to 4KB [11].
Because frame size is the granularity of multiplexing, too
large a frame decreases the ability to multiplex while too
small a frame increases overhead. SPDY frames are en-
capsulated in one or more consecutive TCP segments. A
TCP segment can carry multiple SPDY frames, making it
possible to batch up small HTTP requests and responses.

Deployment: SPDY is deployed over SSL and TCP. On
the client side, SPDY is enabled in Chrome, Firefox,
and IE 11. On the server side, popular websites such
as Google, Facebook, and Twitter have deployed SPDY.
Another popular use of SPDY is between a proxy and a
client, such as the Amazon Silk browser [16] and An-
droid Chrome Beta [2]. SPDY version 3 is the most re-
cent specification and is widely deployed [21].

3 Pinning SPDY down
We would like to experimentally evaluate how SPDY
performs relative to HTTP because SPDY is likely to
play a key role in the Web. But, understanding SPDY
performance is hard. Below, we identify three challenges
in studying the performance of SPDY and then provide
an overview of our approach.

3.1 Challenges

We identify the challenges on the basis of previous stud-
ies and our own initial experimentation. As a first step,
we extensively load two Web pages for a thousand times
using a measurement node at the University of Washing-
ton. One page displays fifty world flags [12], which
is advertised by mod spdy [11] to demonstrate the per-
formance benefits of SPDY, and the other is the Twitter
home page. The results are depicted in Figure 1.

First, we observe that SPDY helps the flag page but
not the Twitter page, and it is not immediately apparent
as to why that is the case. Further experimentation in em-
ulated settings also revealed that both the magnitude and
the direction of the performance differences vary signif-
icantly with network conditions. Taken together, this in-
dicates that SPDY’s performance depends on many fac-
tors such as Web page characteristics, network parame-
ters, and TCP settings, and that measurement studies will
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Figure 1: Distributions of PLTs of SPDY and HTTP. Per-
formed a thousand runs for each curve without caching.

likely yield different, even conflicting, results, if they use
different experimental settings. Therefore, a comprehen-
sive sweep of the parameter space is necessary to eval-
uate under what conditions SPDY helps, what kinds of
Web pages benefit most from SPDY, and what parame-
ters best support SPDY.

Second, we observed in our experiments that the mea-
sured page load times have high variances, and this often
overwhelms the differences between SPDY and HTTP.
For example, in Figure 1(b), the variance of the PLT for
the Twitter page is 0.5 second but the PLT difference be-
tween HTTP and SPDY is only 0.02 second. We observe
high variance even when we load the two pages in a fully
controlled network. This indicates that the variability
likely stems from browser computation (i.e., JavaScript
evaluation and HTML parsing). Controlling this vari-
ability is key to reproducing experiments so as to obtain
meaningful comparisons.

Third, prior work has shown that the dependencies be-
tween network operations and computation has a signif-
icant impact on PLT [25]. Interestingly, page dependen-
cies also influence the scheduling of network traffic and
affects how much SPDY helps or hurts performance (§4
and §5). Thus, on one hand, ignoring browser computa-
tions can reduce PLT variability, but on the other hand,
dependencies need to be preserved in order to obtain ac-
curate measurements under realistic offered loads.

3.2 Approach

Our approach is to separate the various factors that affect
SPDY and study them in isolation. This allows us to con-
trol and identify the extent to which these factors affect
SPDY.

First, we extensively sweep the parameter space of all
the factors that affect SPDY including RTT, bandwidth,
loss rate, TCP initial window, number of objects on a
page, and object sizes. We initially ignore page load
dependencies and computation in order to simplify our
analysis. This systematic study allows us to identify
when SPDY helps or hurts and characterize the impor-
tance of the contributing factors. Based on further anal-
ysis of why SPDY sometimes hurts, we propose some
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simple modifications to TCP.
Second, before we perform experiments with page

load dependencies, we address the variability caused by
computation. We develop a tool called Epload that em-
ulates the process of a page load. Instead of performing
real browser computation, Epload records the process
of a sample page load, identifies when computations hap-
pen, and replays the page load by introducing the appro-
priate delays associated with the recorded computations.
After emulating a computation activity, Epload per-
forms real network requests to dependent Web objects.
This allows us to control the variability of computation
while also modeling page load dependencies. In con-
trast to the methodology that statistically reduces vari-
ability by obtaining a large amount of data (usually from
production), our methodology mitigates the root cause
of variability and thus largely reduces the amount of re-
quired experiments.

Third, we study the effects of dependencies and com-
putation by performing page loads with Epload. We are
then able to identify how much dependencies and com-
putation affect SPDY, and to identify the relative impor-
tance of other contributing factors. To mitigate the neg-
ative impact of dependencies and computation, we ex-
plore the use of prioritization and server push that enable
the client and the server to coordinate the transfers. Here,
we are able to evaluate the extent to which these mech-
anisms can improve performance when used appropri-
ately.

4 TCP and SPDY
In this section, we extensively study the performance of
SPDY as a transfer protocol on both synthetic and real
pages by ignoring page load dependencies and computa-
tion. This allows us to measure SPDY performance with-
out other confounding factors such as browser computa-
tion and page load dependencies. Here, SPDY is only
different from HTTP in the use of a single TCP connec-
tion, header compression, and a framing layer.

4.1 Experimental setup

We conduct the experiments by setting up a client and a
server that can communicate over both HTTP and SPDY.
Both the server and the client are connected to the cam-
pus LAN at the University of Washington. We use Dum-
mynet [6] to vary network parameters. Below details the
experimental setup.

Server: Our server is a 64-bit machine with 2.4GHz 16
core CPU and 16GB memory. It runs Ubuntu 12.04 with
Linux kernel 3.7.5 using the default TCP variant Cubic.
We use a TCP initial window size of ten as the default
setting, as suggested by SPDY best practices [18]. HTTP
and SPDY are enabled on Apache 2.2.2 with the SPDY
module, mod spdy 0.9.3.3-386, installed. We use SPDY

Categ Factor Range High

Net
rtt 20ms, 100ms, 200ms ≥100ms
bw 1Mbps, 10Mbps ≥10Mbps
pkt loss 0, 0.005, 0.01, 0.02 ≥ 0.01

TCP iw 3, 10, 21, 32 ≥ 21

Page
obj size 100B, 1K, 10K, 100K, 1M ≥ 1K
# of obj 2, 8, 16, 32, 64, 128, 512 ≥ 64

Table 1: Contributing factors to SPDY performance. We
define a threshold for each factor, so that we can classify
a setting as being high or low in our analysis.

3 without SSL which allows us to decode the SPDY
frames in TCP payloads. To control the exact size of
Web objects, we turn off gzip encoding.

Client: Because we issue requests at the granularity
of Web objects and not pages, we do not work with
browsers, and instead develop our own SPDY client by
following the SPDY/3 specification [21]. Unlike other
wget-like SPDY clients such as spdylay [22] that open
a TCP connection per request, our SPDY client allows us
to reuse TCP connections. Similarly, we also develop an
HTTP client for comparison. We set the maximum num-
ber of parallel TCP connections for HTTP to six, as used
by all major browsers. As the receive window is auto-
tuned, it is not a bottleneck in our experiments.

Web pages: To experiment with synthetic pages, we cre-
ate objects with pre-specified sizes and numbers. To
experiment with real pages, we download the home
pages of the Alexa top 200 websites to our own server.
To avoid the negative impact of domain sharding on
SPDY [18], we serve all embedded objects from the same
server including those that are dynamically generated by
JavaScript.

We run the experiments presented in the entire paper
from June to September, 2013. We repeat our experi-
ments five times and present the median to exclude the
effects of random loss. We collect network traces at both
the client and the server. We define page load time (PLT)
as the elapsed time between when the first object is re-
quested and when the last object is received. Because we
do not experiment within a browser, we do not use the
W3C load event [24].

4.2 Experimenting with synthetic pages

In experimenting with synthetic pages, we consider a
broad range of parameter settings for the various factors
that affect performance. Table 1 summarizes the param-
eter space used in our experiments. The RTT values in-
clude 20ms (intra-coast), 100ms (inter-coast), and 200ms
(3G link or cross-continent). The bandwidths emulate
a broadband link with 10Mbps [4] and a 3G link with
1Mbps [3]. We inject random packet loss rates from zero
to 2% since studies suggest that Google servers experi-
ence a loss rate between 1% and 2% [5]. At the server,
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Figure 2: The decision tree that tells when SPDY or
HTTP helps. A leaf pointing to SPDY (HTTP) means
SPDY (HTTP) helps; a leaf pointing to EQUAL means
SPDY and HTTP are comparable. Table 1 shows how we
define a factor being high or low.

we vary TCP initial window size from 3 (used by earlier
Linux kernel versions) to 32 (used by Google servers).
We also consider a wide range of Web object sizes (100B
to 1M) and object numbers (2 to 512). For simplicity, we
choose one value for each factor which means that there
is no cross traffic.

When we sweep this large parameter space, we find
that SPDY improves performance under certain condi-
tions, but degrades performance under other conditions.

4.2.1 When does SPDY help or hurt

There have been many hypotheses as to whether SPDY
helps or hurts based on analytical inference about par-
allel versus single TCP connections. For example, one
hypothesis is that SPDY hurts because a single TCP con-
nection increases congestion window slower than multi-
ple connections; another hypothesis is that SPDY helps
stragglers because HTTP has to balance its commu-
nications across parallel TCP. However, it is unclear
how much hypotheses contribute to SPDY performance.
Here, we sort out the most important findings, meaning
that hypotheses that are shown here contribute more to
SPDY performance than those that are not shown.

Methodology: To understand the conditions under
which SPDY helps or hurts, we build a predictive model
based on decision tree analysis. In the analysis, each con-
figuration is a combination of values for all factors listed
in Table 1. For each configuration, we add an additional
variable s, which is the PLT of SPDY divided by that of
HTTP. We run the decision tree to predict the configura-
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Figure 3: Performance trends for three factors with a
default setting: rtt=200ms, bw=10Mbps, loss=0, iw=10,
obj size=10K, obj number=64.

tions under which SPDY outperforms HTTP (s < 0.9)
and under which HTTP outperforms SPDY (s > 1.1).
The decision tree analysis generates the likelihood that
a configuration works better under SPDY (or HTTP). If
this likelihood is over 0.75, we mark the branch as SPDY
(or HTTP); otherwise, we say that SPDY and HTTP per-
form equally.

We obtain the decision tree in Figure 2 as follows.
First, we produce a decision tree based on all the factors.
To populate the branches, we also generate supplemental
decision trees based on subsets of factors. Each supple-
mental decision tree has a prediction accuracy of 84% or
higher. Last, we merge the branches from supplemental
decision trees into the original decision tree.

Results: The decision tree shows that SPDY hurts when
packet loss is high. However, SPDY helps under a num-
ber of conditions, for example, when there are:
• Many small objects, or small objects under low loss.
• Many large objects under low loss.
• Few objects under good network conditions and a

large TCP initial window.
The decision tree also depicts the relative importance

of contributing factors. Intuitively, factors close to the
root of the decision tree affect SPDY performance more
than those near the leaves. This is because the decision
tree places the important factors near the root to reduce
the number of branches. We find that object size and loss
rate are the most important factors in predicting SPDY
performance. However, RTT, bandwidth, and TCP initial
window play a less important role.
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Figure 4: SPDY reduces the number of retransmissions.

How much SPDY helps or hurts: We present three
trending graphs in Figure 3. Figure 3(a) shows that
HTTP outperforms SPDY by half when loss rate in-
creases to 2%, Figure 3(b) shows the trend that SPDY
performs better as the number of objects increases, and
Figure 3(c) shows the trend that SPDY performs worse
as the object size increases. We publish the results,
trends, and network traces at http://wprof.cs.
washington.edu/spdy/.

4.2.2 Why does SPDY help or hurt

While the decision tree informs the conditions under
which SPDY helps or hurts, it does not explain why. To
this end, we analyze the network traces we collected to
explain SPDY performance. We discuss below our find-
ings.

SPDY helps on small objects. Our traces suggest that
TCP implements congestion control by counting out-
standing packets not bytes. Thus, sending a few small
objects with HTTP will promptly use up the conges-
tion window, though outstanding bytes are far below the
window limit. In contrast, SPDY batches small objects
and thus eliminates this problem. This explains why the
flag page [12], which mod spdy advertised, benefits from
SPDY.

SPDY benefits from having a single connection. We
find several reasons as to why SPDY benefits from a sin-
gle TCP connection. First, a single connection results in
fewer retransmissions. Figure 4 shows the retransmis-
sions in SPDY and HTTP across all configurations ex-
cept those with zero injected loss. SPDY helps because
packet loss occurs more often when concurrent TCP con-
nections are competing with each other. There are addi-
tional explanations for why SPDY benefits from using a
single connection. In our previous study [25], our exper-
iments showed that SPDY significantly reduced the con-
tribution of the TCP connection setup time to the critical
path of a page download. Further, our experiments in §5
will show that a single pipe reduces the amount of time
the pipe is idle due to delayed client requests.

SPDY degrades under high loss due to the use of a
single pipe. We discussed above that a single TCP con-
nection helps under several conditions. However, a sin-
gle connection hurts under high packet loss because it
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Figure 5: Characteristics of top 200 Alexa Web pages.

aggressively reduces the congestion window compared
to HTTP which reduces the congestion window on only
one of its parallel connections.

4.3 Experimenting with real pages

In this section, we study the effects of varying object
sizes and number of objects based on the distributions
observed in real Web pages. We continue to vary other
factors such as network conditions and TCP settings
based on the parameter space described in Table 1. Due
to space limit, we only show results under a 10Mbps
bandwidth.

First, we examine the page characteristics of real
pages because they can explain why SPDY helps or hurts
when we relate them to the decision tree. Figure 5 shows
the characteristics of the top 200 Alexa Web pages [1].
The median number of objects is 30 and the median page
size is 750KB. We find high variability in the size of ob-
jects within a page. The standard deviation of the object
size within a page is 31KB (median), even more than the
average object size 17KB (median).

Figure 6 shows PLT of SPDY divided by that of HTTP
across the 200 Web pages. It suggests that SPDY helps
on 70% of the pages consistently across network con-
ditions. Interestingly, SPDY shows a 2x speedup over
half of the pages, likely due to the following reasons.
First, SPDY almost eliminates retransmissions (as indi-
cated in Figure 7). Compared to a similar analysis for ar-
tificial pages (see Figure 4), SPDY’s retransmission rate
is even lower. Second, we find in Figure 5(b) that 80% of
the pages have small objects, and that half of the pages
have more than ten small objects. Since SPDY helps
with small objects (based on the decision tree analysis),
it is not surprising that SPDY has lower PLT for this set
of experiments. In addition, we hypothesize that SPDY
could help with stragglers since it multiplexes all objects
on to a single connection and thus reduces the dynam-
ics of congestion windows. To check this hypothesis, we
ran a set of experiments with overall page size and the
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Figure 7: SPDY helps reduce retransmissions.

number of objects drawn from the real pages, but with
equal object sizes embedded inside the pages. When we
perform this experiment, HTTP’s performance improves
only marginally indicating that there is very little strag-
gler effect.

4.4 TCP modifications

Previously, we found that SPDY hurts mainly under high
packet loss because a single TCP connection reduces the
congestion window more aggressively than HTTP’s par-
allel connections. Here, we demonstrate that the negative
impact can be mitigated by simple TCP modifications.

Our modification (a.k.a., TCP+) mimics behaviors of
concurrent connections with a single connection. Let the
number of parallel TCP connections be n. First, we pro-
pose to multiply the initial window by n to reduce the ef-
fect of slow start. Second, we suggest scaling the receive
window by n to ensure that the SPDY connection has the
same amount of receive buffer as HTTP’s parallel con-
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nections. Third, when packet loss occurs, the congestion
window (cwnd) backs off with a rate β′ = 1− (1−β)/n
where β is the original backoff rate. In practice, the num-
ber of concurrent connections changes over time. Be-
cause we are unable to pass this value to the Linux kernel
in real time, we assume that HTTP uses six connections
and set n = 6. We use six here because it is found opti-
mal and used by major browsers [17].

We perform the same set of SPDY experiments with
both synthetic and real pages using TCP+. Figure 8
shows that SPDY performs better with TCP+, and the de-
cision tree analysis for TCP+ suggests that loss rate is no
longer a key factor that determines SPDY performance.

To evaluate the potential side effects of TCP+, we look
at the number of retransmissions produced by TCP+.
Figure 9 shows that SPDY still produces much fewer
retransmissions with TCP+ than with HTTP, meaning
that TCP+ does not abuse the congestion window un-
der the conditions that we experimented with. Here, we
aim to demonstrate that SPDY’s negative impact under
high random loss can be mitigated by tuning the conges-
tion window. Because the loss patterns in real networks
are likely more complex, a solution for real networks
requires further consideration and extensive evaluations
and is out of the scope of this paper.

5 Web pages and SPDY
This section examines how SPDY performs for real Web
pages. Real page loads incur dependencies and compu-
tation that may affect SPDY’s performance. To incor-
porate dependencies and computation while controlling
variability, we develop a page load emulator Epload
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Figure 10: A dependency graph obtained from WProf.

that hides the complexity and variations in browser com-
putation while performing authentic network requests
(§5.1). We use Epload to identify the effect of page
load dependencies and computation on SPDY’s perfor-
mance (§5.2). We further study SPDY’s potential by ex-
amining prioritization and server push (§5.3).

5.1 Epload: emulating page loads

Web objects in a page are usually not loaded at the same
time, because loading an object can depend on loading
or evaluating other objects. Therefore, not only network
conditions, but also page load dependencies and browser
computation, affect page load times. To study how much
SPDY helps the overall page load time, we need to evalu-
ate SPDY’s performance by preserving dependencies and
computation of real page loads.

Dependencies and computation are naturally pre-
served by loading pages in real browsers. However, this
procedure incurs high variances in page load times that
stem from both network conditions and browser com-
putation. We have conducted controlled experiments to
control the variability of network, and here introduce the
Epload emulator to control the variability of computa-
tion.

Design: The key idea of Epload is to decouple network
operations and computation in page loads. This allows
Epload to simplify computation while scheduling net-
work requests at the appropriate points during the page
load.
Epload records the process of a page load by cap-

turing the dependency graph using our previous work,
WProf [25]. WProf captures the dependency and timing
information of a page load. Figure 10 shows an example
of a dependency graph obtained from WProf where ac-
tivities depend on each other. This Web page embeds a
CSS, a JavaScript, an image, and another JavaScript. A
bar represents an activity (i.e., loading objects, evaluat-
ing CSS and JavaScript, parsing HTML) while an arrow
represents that one activity depends on another. For ex-
ample, evaluating JS1 depends on both loading JS1 and
evaluating CSS. Therefore, evaluating JS1 can only start
after the other two activities complete. There are other
dependencies such as layout and painting. Because they
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Figure 11: Page loads using Chrome v.s. Epload.

do not occur deterministically and significantly, we ex-
clude them here.

Using the recorded dependency graph, Epload re-
plays the page load process as follows. First, Epload
starts the activity that loads the root HTML. When the
activity is finished, Epload checks whether it should
trigger a dependent activity based on whether all activi-
ties that the dependent activity depends on are finished.
For example in Figure 10, the dependent activity is pars-
ing the HTML, and it should be triggered. Next, it starts
the activity that parses the HTML. Instead of performing
HTML parsing, it waits for the same amount of time that
parsing takes (based on the recorded information) and
checks dependent activities upon completion. This pro-
ceeds until all activities are finished. The actual replay
process is more complex because a dependent activity
can start before an activity is fully completed. For exam-
ple, parsing an HTML starts after the first chunk of the
HTTP response is received; and loading the CSS starts
after the first chunk of HTML is fully parsed. Epload
models all of these aspects of a page load.

Implementation: Epload recorder is implemented
based on WProf to generate a dependency graph that
specifies activities and their dependencies. Epload
records the computational delays while performing the
page load in the browser, whereas the network delays are
realized independently for each replay run. We imple-
ment Epload replayer using node.js. The output from
Epload replayer is a series of throttled HTTP or SPDY
requests to perform a page load. The Epload code
is available at http://wprof.cs.washington.
edu/spdy/.

Evaluation: We validate that Epload controls the vari-
ability of computation. We compare the differences of
two runs across 200 pages loaded by Epload and by
Chrome. The network is tuned to a 20ms RTT, a 10Mbps
bandwidth, and zero loss. Figure 11 shows that Epload
produces at most 5% differences for over 80% of pages
which is a 90% reduction compared to Chrome.

5.2 Effects of dependencies and computation

We use Epload to measure the impact of dependencies
and computation. We set up experiments as follows. The
Epload recorder uses a WProf-instrumented Chrome to
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Figure 12: SPDY performance using emulated page loads. Compared to Figure 6, it suggests that dependencies and
computation reduce the impact of SPDY and that RTT and bandwidth become more important.

obtain the dependency graphs of the top 200 Alexa Web
pages [1]. Epload runs on a Mac with 2GHz dual core
CPU and 4GB memory. We vary other factors based on
the parameter space described in Table 1. Due to space
limit, we only show figures under a 10Mbps bandwidth.

Figure 12 shows the performance of SPDY versus
HTTP after incorporating dependencies and computa-
tion. Compared to Figure 6, dependencies and com-
putation largely reduce the amount that SPDY helps or
hurts. We make the following observations along with
supporting evidence. First, computation and dependen-
cies increase PLTs of both HTTP and SPDY, reducing
the network load. Second, SPDY reduces the amount of
time a connection is idle, lowering the possibility of slow
start (see Figure 13). Third, dependencies help HTTP by
making traffic less bursty, resulting in fewer retransmis-
sions (see Figure 14). Fourth, having fewer outstanding
objects diminishes SPDY’s gains, because SPDY helps
more when there are a large number of outstanding ob-
jects (as suggested by the decision tree in Figure 2).
Here, we see that dependencies and computation reduce
and can easily nullify the benefits of SPDY, implying
that speeding up computation or breaking dependencies
might be necessary to improve the PLT using SPDY.

Interestingly, we find that RTT and bandwidth now
play a more important role in the performance of SPDY.
For example, Figure 12 shows that SPDY helps up to
80% of the pages under low bandwidths, but only 55%
of the pages under high bandwidths. This is because RTT
and bandwidth determine the amount of time page loads
spend in network relative to computation, and further the
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amount of impact that computation has on SPDY. This
explains why SPDY provides minimal improvements un-
der good network conditions (see Figure 12(c)).

To identify the impact of computation, we scale the
time spent in each computation activity by factors of 0,
0.5, and 2. Figure 15 shows the performance of SPDY
versus HTTP, both with scaled computation and under
high bandwidths, suggesting that speeding up computa-
tion increases the impact of SPDY. Surprisingly, speed-
ing up computation to the extreme is sometimes no better
than a x2 speedup. This is because computation delays
the requesting of dependent objects which allows for pre-
viously requested objects to be loaded faster, and there-
fore possibly lowers the PLT.

5.3 Advancing SPDY

SPDY provides two mechanisms, i) prioritization and ii)
server push, to mitigate the negative effects of dependen-
cies and computation of real page loads. However, little
is known about how to better use the mechanisms. In this
section, we explore advanced policies to speed up page
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loads using these mechanisms.

5.3.1 Basis of advancing

To better schedule objects, both prioritization and server
push provide mechanisms to specify the importance for
each object. Thus, the key issue is to identify the im-
portance of objects in an automatic manner. To highlight
the benefits, we leverage the dependency information ob-
tained from a previous load of the same page. This infor-
mation gives us ground truth as to which objects are crit-
ical for reducing PLT. For example, in Figure 10, all the
activities depend on loading the HTML, making HTML
the most important object; but no activity depends on
loading the image, suggesting that the image is not an
important object.

To quantify the importance of an object, we first look
at the time required to finish the page load starting from
the load of this object. We denote this as time to finish
(TTF). In Figure 10, TTF of the image is simply the time
to load the image alone, while TTF of JS2 is the time
to both load and evaluate it. Because TTF of the image
is longer than TTF of JS2, this image is more important
than JS2. Unfortunately in practice, it is not clear as to
how long it would take to load an object, before we make
the decision to prioritize or push it.

Therefore, we simplify the definition of importance.
First, we convert the activity-based dependency graph to
an object-based graph by eliminating computation while
preserving dependencies (Figure 16). Second, we calcu-
late the longest path from each object to the leaf objects;
this process is equivalent to calculating node depths of a
directed acyclic graph. Figure 16 (right) shows an exam-
ple of assigned depths. Note that the depth here equals

Network activity Computation activity 
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Figure 16: Converting WProf dependency graph to an
object-based graph. Calculating a depth to each object in
the object-based graph.
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Figure 17: Results of priority (zero packet loss) when
bw=10Mbps. bw=1Mbps results are similar to (b).

TTF if we ignore computation and suppose that the load
of each object takes the same amount of time.

We use this depth information to prioritize and push
objects. This implies that the browser or the server
should know this beforehand. We provide a tool to let
Web developers measure the depth information for ob-
jects transported by their pages.

5.3.2 Prioritization

SPDY/3 allows eight priority levels for clients to
use when requesting objects. SPDY best practices
website [18] recommends prioritizing HTML over
CSS/JavaScript and CSS/JS over the rest (chrome-
priority). Our priority levels are obtained by lin-
early mapping the depth information computed above
(dependency-priority).

We compare the two prioritization policies to baseline
SPDY in Figure 17. Interestingly, we find that there is
almost no benefit by using chrome-priority while
dependency-policymarginally helps under a 20ms
RTT. The impact of explicit prioritization is minimal be-
cause the dependency graph has already implicitly priori-
tized objects. Implicit prioritization results from browser
policies, independent of Web pages themselves. For ex-
ample in Figure 10, all other objects cannot be loaded
before HTML; Image and JS2 cannot be loaded before
CSS and JS1. As dependencies limit the impact of SPDY,
prioritization cannot break dependencies, and thus is un-
likely to improve SPDY’s PLT.

10



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

C
D

F

% of pushed bytes

Push all

By embedding

By dependency

(a) Pushed bytes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

C
D

F

PLT w/ server push divided by SPDY PLT

By dependency

By embedding

Push all

(b) rtt=20ms, bw=10Mbps

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

C
D

F

PLT w/ server push divided by SPDY PLT

By dependency

By embedding

Push all

(c) rtt=200ms, bw=10Mbps

Figure 18: Results of server push when bw=10Mbps.

5.3.3 Server push

SPDY allows servers to push objects to save round trips.
However, server push is non-trivial because there is a ten-
sion between making page loads faster and wasting band-
width. Particularly, one should not overuse server push
if pushed objects are already cached. Thus, the key goal
is to speed up page loads while keeping the cost low.

We find no standard or best practices guidance from
Google on how to do server push. Mod spdy can be con-
figured to push up to an embedding level, which is de-
fined as follows: the root HTML page is at embedding
level 0; objects at embedding level i are those whose
URLs are embedded in objects at embedding level i− 1.
An alternative policy is to push based on the depth infor-
mation.

Figure 18 shows server push performance (i.e., push
all objects, one embedding level, and one dependency
level) compared to baseline SPDY. We find that server
push helps, especially under high RTT. We also find that
pushing by dependency incurs comparable speedups to
pushing by embedding, while benefiting from a 80% re-
duction in pushed bytes (Figure 18(a)). Note that server
push does not always help because pushed objects share
bandwidth with more important objects. In contrast to
prioritization, server push can help because it breaks de-
pendencies which limits the performance gains of SPDY.

5.4 Putting it all together

We now pool together the various enhancements (i.e.,
TCP+ and server push by one dependency level). Fig-
ure 19 shows that this improves SPDY by 30% under
high RTTs. But this improvement largely diminishes un-
der low RTTs where computation dominates page load
times.

6 Discussions

SPDY in the wild: To evaluate SPDY in the wild,
we place clients at Virginia (US-East), North Califor-
nia (US-West), and Ireland (Europe) using Amazon EC2
micro-instances. We add explanatory power by period-
ically probing network parameters between clients and
the server, and find that RTTs are consistent: 22ms
(US-East), 71ms (US-West), and 168ms (Europe). For
all vantage points, bandwidths are high (10Mbps to
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143Mbps) and loss rates are extremely low. These net-
work parameters well explain our SPDY evaluations in
the wild (not shown due to space limit) that are simi-
lar to synthetic ones under high bandwidths and low loss
rates. The evaluations here are preliminary and covering
a complete set of scenarios would be future work.

Domain sharding: As suggested by SPDY best prac-
tices [18], we used a single connection to fetch all the
objects of a page to eliminate the negative impact of do-
main sharing. In practice, migrating objects to one do-
main suffers from deployment issues given popular uses
of third parties (e.g., CDNs, Ads, and Analytics). To this
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end, we evaluate situations when objects are distributed
to multiple servers that cooperatively use SPDY. We dis-
tribute objects by full domain to represent the state-of-
the-art of domain sharding. We also distribute objects by
top-level domain (TLD). This demonstrates the situation
when websites have eliminated domain sharding but still
use third-party services. Figure 20 compares SPDY per-
formance under these object distributions. We find that
domain sharding hurts as expected but hosting objects by
TLD is comparable to using one connection, suggesting
that SPDY’s performance does not degrade much when
some portions of the page are provided by third-party ser-
vices.

SSL: SSL adds overhead to page loads which can de-
grade the impact of SPDY, but it keeps the handshake
overhead low by using a single connection. We conduct
our experiments using SSL and find that the overhead of
SSL is too small to affect SPDY’s performance.

Mobile: We perform a small set of SPDY measurements
under mobile environments. We assume large RTTs, low
bandwidths, high losses, and large computational delays,
as suggested by related literature [3, 26]. Results with
simulated slow networks suggest that SPDY helps more
but also hurts more. It also shows that prioritization and
server push by dependency help less (not shown due to
space limit). However, large computational delays on
mobile devices reduce the benefits provided by SPDY.
This means that the benefits of SPDY under mobile sce-
narios depends on the relative changes in performance
of the network and computation. Further studies on real
mobile devices and networks would advance the under-
standing in this space.

Limitations: Our work does not consider a number of
aspects. First, we did not evaluate the effects of header
compression because it is not expected to provide sig-
nificant benefits. Second, we did not evaluate dynamic
pages which take more time in server processing. Simi-
lar to browser computation, server processing will likely
reduce the impact of SPDY. Last, we are unable to eval-
uate SPDY under production servers where network is
heavily used.

7 Related Work

SPDY studies: Erman et al. [7] studied SPDY in the
wild on 20 Web pages by using cellular connections and
SPDY proxies. They found that SPDY performed poorly
while interacting with radios due to a large body of un-
necessary retransmissions. We used more reliable con-
nections, enabled SPDY on servers, and swept a more
complete parameter space. Other SPDY studies include
the SPDY white paper [20] and measurements by Mi-
crosoft [14], Akamai [13], and Cable Labs [19]. The
SPDY white paper shows a 27% to 60% speedup for

SPDY, but the other studies show that SPDY helps only
marginally. While providing invaluable measurements,
these studies look at a limited parameter space. Studies
by Microsoft [14] and Cable Labs [19] only measured
single Web pages and the other studies consider only a
limited set of network conditions. Our study extensively
swept the parameter space including network parame-
ters, TCP settings, and Web page characteristics. We are
the first to isolate the effect of dependencies, which are
found to limit the impact of SPDY.

TCP enhancements for the Web: Google have pro-
posed and deployed several TCP enhancements to make
the Web faster. TCP fast open eliminates the TCP con-
nection setup time by sending application data in the
SYN packet [15]. Proportional rate reduction smoothly
backs off congestion window to transmit more data un-
der packet loss [5]. Tail loss probe [23] and other
measurement-driven enhancements described in [8] miti-
gated or eliminated loss recovery by retransmission time-
out. Our TCP modifications are specific to SPDY and are
orthogonal to Google’s proposals.

Advanced SPDY mechanisms: There are no recom-
mended policies on how to use the server push mech-
anism. We find that mod spdy [11] implements server
push by embedding levels. However, we find that this
push policy wastes bandwidths. We provide a server
push policy based on dependency levels that performs
comparably to mod spdy’s while pushing 80% less data.

8 Conclusion
Our experiments and prior work show that SPDY can ei-
ther help or sometimes hurt the load times of real Web
pages by browsers compared to using HTTP. To learn
which factors lead to performance improvements, we
start with simple, synthetic page loads and progressively
add key features of the real page load process. We find
that most of the performance impact of SPDY comes
from its use of a single TCP connection: when there is
little network loss a single connection tends to perform
well, but when there is high loss a set of connections tend
to perform better. However, the benefits from a single
TCP connection can be easily overwhelmed by depen-
dencies in real Web pages and browser computation. We
conclude that further benefits in PLT will require changes
to restructure the page load process, such as the server
push feature of SPDY, as well as careful configuration at
the TCP level to ensure good network performance.
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