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ABSTRACT
Data centers house some of the largest, fastest networks in the
world. In contrast to and as a result of their speed, these networks
operate on very small timescales—a 100Gbps port processes a sin-
gle packet in at most 500 ns with end-to-end network latencies
of under a millisecond. In this study, we explore the fine-grained
behaviors of a large production data center using extremely high-
resolution measurements (10s to 100s of microsecond) of rack-level
traffic. Our results show that characterizing network events like
congestion and synchronized behavior in data centers does indeed
require the use of such measurements. In fact, we observe that more
than 70% of bursts on the racks we measured are sustained for at
most tens of microseconds: a range that is orders of magnitude
higher-resolution than most deployed measurement frameworks.
Congestion events observed by less granular measurements are
likely collections of smaller µbursts. Thus, we find that traffic at
the edge is significantly less balanced than other metrics might
suggest. Beyond the implications for measurement granularity, we
hope these results will inform future data center load balancing
and congestion control protocols.
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1 INTRODUCTION
Data center networks are defined by their scale. The largest of
today’s data centers are massive facilities that house up to hun-
dreds of thousands of servers connected by thousands of network
switches. The switches in turn have high (and rapidly growing)
capacity, with state-of-the-art models able to process terabits of
traffic per second at 100Gbps per port.

In contrast to the massive aggregate bandwidth of these de-
ployments is the minuscule timescales on which they operate: a
100Gbps port processes packets in at most 500 ns, and a packet can
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traverse the entire network in tens to hundreds of microseconds.
Unfortunately, much of what we know about data center traffic
(and, in fact, most production monitoring systems) are either on
the scale of minutes [7] or are heavily sampled [16]. While such
measurements can inform us of long-term network behavior and
communication patterns, in modern data center networks, coarse-
grained measurements fail to provide insight into many important
behaviors.

One example: congestion. In most prior work, large cloud net-
work operators have observed that packet discards occur, but are
uncorrelated or weakly correlated with observed link utilization,
implying that most congestion events are too short-lived to be
characterized by existing data sets. Coarse-grained measurements
also make it difficult to answer questions about concurrent behav-
ior like how many ports are involved in each congestion event or
how effective the network is at load balancing. The design of data
center switches, networks, and protocols depend on this type of
fine-grained behavior.

Our primary contribution is to provide a high-resolution char-
acterization of a production data center network. To do so, we
developed a custom high-resolution counter collection framework
on top of the data center operator’s in-house switch platform. This
framework is able to poll switch statistics at a 10s to 100s of mi-
croseconds granularity with minimal impact on regular switch
operations.

With the framework, we proceed to perform a data-driven analy-
sis of various counters (including packet counters and buffer utiliza-
tion statistics) from Top-of-Rack (ToR) switches in multiple clusters
running multiple applications. While our measurements are lim-
ited to ToR switches, our measurements and prior work [6, 9, 18]
indicate that the majority of congestion occurs at that layer. More
generally, we do not claim that our results are representative of all
modern data center networks—they are merely a slice of one large
operator’s network, albeit at a heretofore unprecedented granular-
ity. Our main findings include:

• µbursts, periods of high utilization lasting less than 1ms, exist
in production data centers, and in fact, they encompass most
congestion events. The p90 burst duration is ≤200µs.

• Link utilization is multimodal; when bursts occur, they are gen-
erally intense.

• At small timescales, many multi-statistic features become pos-
sible to measure: load can be very unbalanced, packets tend to
be larger inside bursts than outside, and buffers are related to
simultaneous bursts in a nonlinear fashion.

2 BACKGROUND AND RELATEDWORK
Much effort has gone into measuring and understanding data center
network behavior for the purpose of designing better networks.

https://doi.org/10.1145/3131365.3131375
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Figure 1: Scatter plot of ToR-server links’ drop rates and utilization
across the data center. Drops only include congestion discards and
not packet corruptions. Measurements were taken at a granularity
of 4minutes, and samples were taken once per hour over the course
of 24 hours.

For large-scale measurements, the existing studies along these lines
have taken one of two approaches:
Packet sampling. One method of measuring networks is to exam-

ine packets directly. tcpdump provides this functionality, but raw
dumps are not tractable for medium- to long-term measurement
without substantial dedicated hardware/overhead [17]. Instead,
some studies sample packets using sFlow in the network [16] or
iptables collection on end hosts [18]. Sampling is typically done
such that only one packet in thousands or tens of thousands
are recorded. Facebook, for instance, typically samples packets
with a probability of 1 in 30,000. Packet sampling can provide
insight into traffic patterns, as was the case in [18], which found
that patterns were mostly stable over time, but very different for
different applications.

Coarse-grained counters. An alternative to sampling packets is
to look at coarse-grained network counters like those provided
by SNMP [7]. Prior studies have relied heavily on such counters.
SNMP counters give up some information compared to packet
samples (e.g., source and destination), but provide a view into
the interaction of packets within the network. [6] and [9], for
example, analyze utilization/drops in networks, and found in-
dications of bursty behavior. Many data centers collect these
statistics by default as they provide useful aggregate statistics
and can be used to detect major problems in the network. Typical
granularities for SNMP collection in data centers are on the order
of minutes [6, 18].
In addition to the above, researchers have proposed switch hard-

ware modifications to provide more scalable, accurate measure-
ments [10, 12, 14, 20]; however, these are not deployed widely
enough to perform large-scale production measurements.

3 THE CASE FOR HIGH RESOLUTION
The granularity of coarse-grained counters and packet sampling
makes it difficult to answer many important questions about the
underlying behavior of the network. As an example of how gran-
ularity can hinder our view of network behavior, Fig. 1 shows a
scatter plot of utilization and packet discard counters of ToR-server
links across a data center. For every ToR-server in the data center
we studied and every hour in a day, we sub-sample by randomly
picking a 4-minute interval for the hour and take measurements

(a) Low-utilization Port

(b) High-utilization Port

Figure 2: Time series of drops on two different ports. (a) has rela-
tively low utilization, and (b) has relatively high utilization. Sam-
ples were taken at a granularity of 1min over a 12hr time span.

during that period. The utilization and drop rates are computed over
a 4-minute interval (the SNMP polling interval used in production).
Despite a wide range of observed average utilization, utilization
does not have a strong effect on drop rates (correlation coefficient
of 0.098).

Part of the issue is that, at this granularity, only severe or sus-
tained congestion would result in high drop rates. The time series of
switch behavior shown in Fig. 2 provides some further insight into
why utilization and drop rate do not match. We chose two switch
ports that were experiencing congestion drops and plotted their
drops at a granularity of 1 minute over time over the course of 12
hours. One switch port had relatively low utilization (∼9%) as it was
on the critical path for web requests. The other had high utilization
(∼43%) and ran offline data processing. In both cases, drops occur
in bursts, often lasting less than the measurement granularity (1
minute in this case). Succeeding intervals often have no drops.

We therefore pose the following questions:
• What do bursts look like and how often do they occur?
• What role do µbursts (high utilization lasting <1ms) play?
• Does network behavior differ significantly inside a burst?
• Is there synchronized behavior during bursts?

4 DATASETS AND METHODOLOGY
To answer the above questions, we built a measurement framework
that is able to collect extremely fine-grained samples of various
switch statistics. The goal of our framework is to be able to observe
network changes that occur on the order of a few RTTs. In this sec-
tion, we describe the framework we built for collecting fine-grained
switch measurements, the associated collection methodology, and
the resulting data sets.
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4.1 High-resolution counter collection
Our sampling framework was built on top of the data center’s in-
house switch platform, and it allows operators to poll a subset of
switch counters at microsecond-level granularity.

Our framework takes advantage of the fact that modern switches
include relatively powerful general-purpose multi-core CPUs in
addition to their switching ASICs (Application-Specific Integrated
Circuits). The ASICs are responsible for packet processing, and as
part of their functionality, they maintain many useful counters. The
CPUs, on the other hand, are traditionally responsible for handling
control plane logic. By modifying the switch platform, we can enlist
the CPU to also poll its local counters at extremely low latency.
The CPU batches the samples before sending them to a distributed
collector service that is both fine-grained and scalable.

Polling intervals are best-effort as kernel interrupts and compet-
ing resource requests can cause the sampler to miss intervals. To
obtain precise timing, the framework requires a dedicated core, but
can trade away precision to decrease utilization to ≤ 20% in most
cases. The maximum polling rate depends on the target counter as
well as the target switch ASIC. Differences arise due to hardware
limitations: some counters are implemented in registers versus
memory, others may involve multiple registers or memory blocks.
For the counters we measure, we manually determine the minimum
sampling interval possible while maintaining ∼ 1% sampling loss.
For instance, one of the counters we measure (a byte counter) ex-
hibited the following sampling loss behavior, leading us to choose
a 25µs interval:

Sampling interval Missed intervals

1µs 100%
10µs ∼10%
25µs ∼1%

Table 1: The effect of sampling interval on miss rate for a byte
counter. When the sampler misses an interval, we still capture the
total number of bytes and correct timestamp.

Multiple counters can be polled together with a sublinear in-
crease in sampling rate depending on the specific combination of
counters. As with single counters, collection of groups of counters
are tuned manually. With the exception of Sec. 5.3, measurements
in Sec. 5 were all taken using single-counter measurement cam-
paigns in order to achieve the highest resolution possible. Sec. 5.3
and Sec. 6 included multiple counters per measurement campaign,
but one campaign per set of experimental results.

In this paper, we mainly focus on three sets of counters. We
briefly describe them and list their single-instance sampling rate
here.

Byte count. The primary set we use measures the cumulative
number of bytes sent/received per switch port. We use these byte
counts to calculate throughput. Asmentioned above, our framework
can poll a single instance of these counters every 25µs with low
sampling loss. When a sample miss does occur, we can still calculate
throughput accurately using the sample’s timestamp and byte count.
At these timescales, we can measure the network at a granularity
much smaller than even a single RTT.

Packet size. Similar to byte count, we also collect a histogram
of the packet sizes sent/received at each switch port. The ASIC

Figure 3: CDF of µburst durations at a 25µs granularity.

bins packets into several buckets that we list in Sec. 5.3. These can
typically be polled at the same granularity as byte counters.

Peak buffer utilization. The third set measures the buffer utiliza-
tion of the switch. For this counter, we take the peak utilization of
the buffer since the last measurement so that we do not miss any
congestion events, and we reset the counter after reading it. Thus,
even when the sampling loop misses a sampling period, our results
will still reflect bursts. This counter takes much longer to poll than
byte or packet size counters (50µs).

4.2 Data set

Network architecture. The data center we study uses a conven-
tional 3-tier Clos network and is described in [4]. Machines are
organized into racks and connected to a Top-of-Rack (ToR) switch
via 10Gbps Ethernet links. Each ToR is, in turn, connected by ei-
ther 40Gbps or 100Gbps links to an aggregation layer of “fabric”
switches. The fabric switches are then connected to a third layer of
switches, called “spines”. The entire structure forms a multi-rooted
tree, with the spine switches as the roots of the tree, and the ToRs
as the leaves.

Due to current deployment restrictions, we concentrate on ToR
switches for this study and leave the study of other network tiers
to future work. Prior work and our own measurements show that
the majority of loss occurs at ToR switches and that they tend
to be more bursty (lower utilization and higher loss) than higher-
layer switches [19]. Most of these drops occur in the ToR-server
direction (∼90% in the data center we measured). In that sense, ToR
measurements most likely represent a worst case over all switches
in the data center.

Workload. Our data set spans a few applications, but a distinctive
aspect of the data center we measured is that servers typically have
a single role. In particular, we focus on three applications that show
a diverse set of behaviors and are among the most prevalent types
of machines in the data center.
• Web: These servers receive web requests and assemble a dynamic
web page using data from many remote sources.

• Cache: These servers serve as an in-memory cache of data used
by the web servers. Some of these servers are leaders, which
handle cache coherency, and some are followers, which serve
most read requests [15].

• Hadoop: Unlike the previous two categories, these servers are
not part of the interactive path. Instead, Hadoop servers are used
for offline analysis and data mining.
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See [4] for amore detailed description of each application’s traffic
patterns.

As entire racks are typically dedicated to each of these roles, even
when measuring at a ToR level, our results can isolate the behavior
of different classes of applications. Our measurements span a total
of 30 racks, consisting of 10 racks for each application type over
the course of 24 hours. Due to data retention limitations, storing all
samples of all counters over 24 hours was not feasible, so for each
rack, we pick a random port, and pick a random 2-minute interval
for every hour throughout the day. Diurnal patterns are therefore
captured within our data set. In total, we sampled 720 two-minute
intervals, each with around 5 million data points, totaling 250GB.
The full data would have taken hundreds of terabytes.

5 PORT-LEVEL BEHAVIOR
We begin our analysis by studying the fine-grained behavior of
individual ports before proceeding in Sec. 6 to consider the interac-
tions between ports in a switch. From fine-grained behavior, our
goal is to observe and characterize the bursty nature of data center
networks.

5.1 Existence of µbursts
In Sec. 3, we noted that coarse-grained measurements of data center
networks suggest bursty behavior on very small timescales. To
test this hypothesis, we measure the duration of bursts at 25µs
granularity. As in [8], we say that a switch’s egress link is hot
if, for the measurement period, its utilization exceeds 50%. An
unbroken sequence of hot samples indicates a burst.1 We can see a
few interesting results from the measurements shown in Fig. 3.

High utilization is indeed short-lived. A significant fraction
of these bursts are only one sampling period long. The 90th per-
centile duration is less than 200µs for all three rack types, with
Web racks having the lowest 90th percentile burst duration at 50µs
(two sampling periods). Hadoop racks have the longest tail of the
three, but even then, almost all bursts concluded within 0.5ms. The
results indicate that bursts not only exist, almost all high utilization
at the edge of the data center network is part of a µburst. Con-
gestion events observed by less granular measurements are likely
collections of smaller µbursts.

Bursts are correlated.While a significant portion of bursts last for
less than a sampling period, these high-utilization intervals do tend
to be correlated. We can demonstrate this using a simple likelihood
ratio test. First, we create a two-state first-order Markov model. We
classify each 25µs interval as ‘hot’ (xt = 1) or not (xt = 0) based
on its utilization level. Then, we count consecutive occurrences of
same-state intervals or flipped intervals. This allows to compute
the MLE (Maximum Likelihood Estimates) of its transition matrix,
p(xt = a |xt−1 = b) =

count (xt=a,xt−1=b)
count (xt−1=b)

, shown in Tab. 2.
Given this Markov model, we can then compute the likelihood

ratio of r = p(xt=1 |xt−1=1)
p(xt=1 |xt−1=0) . If burst intervals are independently

arriving, we would expect r ≈ 1 because it would imply the prob-
ability of seeing the next burst is the same whether the previous

1We choose to define a burst by throughput rather than buffer utilization as buffers
in our switches are shared and dynamically carved, making pure byte counts a more
deterministic measure of burstiness.

Web Cache Hadoop

p(xt |xt−1) xt = 0 xt = 1 xt = 0 xt = 1 xt = 0 xt = 1

xt−1 = 0 0.997 0.003 0.984 0.016 0.958 0.042
xt−1 = 1 0.641 0.359 0.279 0.721 0.345 0.655

Table 2: Transition Matrix for Burst Markov Model

Figure 4: CDF of the time between bursts at a 25µs granularity.

time period saw a burst or not. The actual ratios are much higher,
indicating that high utilization samples are correlated:

rweb = 0.359/0.003 = 119.7 (1)
rcache = 0.721/0.016 = 45.1 (2)

rhadoop = 0.655/0.042 = 15.6 (3)

Fine-grained measurements are needed to capture certain
behaviors. Our results also confirm our intuition that fine-grained
measurements are needed to accurately measure bursty behavior.
They also offer a potential explanation for the skewed behavior
found in Sec. 3 and prior studies. In fact, it is possible that our 25µs
measurement granularity is itself too coarse as over 60% of Web
and Cache bursts terminated within that period. Faster networks
will likely increase the necessary granularity. Unfortunately, the
sampling rate is fundamentally limited by latency between the CPU
and the ASIC, suggesting that additional hardware support may be
necessary for fine-grained measurements in the future.

5.2 Time between µbursts
The time between µbursts is just as interesting as the bursts them-
selves. Fig. 4 shows a CDF of the duration of these inter-burst
periods. Unlike our measurements of µbursts and their duration,
inter-burst periods have a much longer tail. It is still the case that
most inter-burst periods are small, particularly for Cache and Web
racks where 40% of inter-burst periods last less than 100µs, but
when idle periods are persistent, they tend to be measured on the
order of hundreds of milliseconds—several orders of magnitude
larger than burst durations. From this data, we can also see that the
arrival rate of µbursts is not a homogeneous/constant-rate Poisson
process. We tested that using a Kolmogorov-Smirnov goodness of
fit test on the inter-arrival time with exponential distribution, and
got a p-value close to 0, allowing us to reject the null hypothesis
that the burst arrivals are Poisson.
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(a) Inside Burst

(b) Outside Burst

Figure 5: Normalized histogram of packet size distribution over a
100µs periods inside/outside a period of high utilization.

5.3 Packet size distribution
The overall packet size distribution of our traffic conforms to prior
work: Hadoop sees mostly full-MTU packets, while Web and Cache
sees a wider range of packet sizes [6, 18].

Interestingly, however, burst and non-burst periods can some-
times differ substantially in their makeup. This effect varies from
application to application, but generally speaking, bursty periods
tend to include more large packets than non-bursty periods. Fig. 5
compares the two cases using packet size histograms for the three
rack types we measured. Packets were binned by their size into sev-
eral ranges and polled alongside the total byte count of the interface
in order to classify the samples.

The increase in large packets during bursts exists, but is not
very pronounced in Hadoop, where the vast majority of packets are
always large. Cache servers see a relative large-packet increase of
about 20%, but smaller packets still dominate measurements. Web
servers see a large relative increase of about 60% coming from all
other packet sizes. The material packet-level difference between
packets inside and outside bursts suggests that bursts at the ToR
layer, even in the Hadoop case, are often a result of application-
behavior changes, rather than random collisions.

5.4 High-resolution network utilization
Taking the links as a whole (both burst and non-burst periods),
we find that different applications have different utilization pat-
terns, but that all of them are extremely long tailed (Fig. 6). As
such, our choice of 50% as a high-utilization threshold generates
similar results compared to other possible thresholds—when bursts
occur, they are generally intense, particularly for Hadoop, which
spends 10% of sampling periods at close to 100% utilization. Further
demonstrating the burstiness of network traffic, we find that Cache

Figure 6: CDF of link utilization at a 25µs granularity.

and Hadoop have multimodal utilization at this granularity. Of the
three types, Hadoop ports spend the most time in bursts at ∼15%.

6 CROSS-PORT BEHAVIOR
Given observations of the bursty behavior of individual links in
data center networks, we now delve into the synchronized behavior
of those ports. Conceptually, each switch’s ports can be split into
two classes: uplinks and downlinks. The uplinks connect the rack
to the rest of the data center, and modulo network failures, they are
symmetric in both capacity and reachability. Downlinks connect to
individual servers, which in our data set all serve similar functions.
The granularity of our measurements allows us to explore the rela-
tionships between these ports at the scale of individual congestion
events.

6.1 Efficacy of network load balancing
ToR switches use Equal-Cost MultiPath (ECMP) to spread load over
each of their four uplinks. In principle, a per-packet, round-robin
protocol would perfectly balance outgoing traffic. In practice, how-
ever, typical ECMP configurations introduce at least two sources
of potential imbalance in order to avoid TCP reordering: (1) ECMP
operates on the level of flows, rather than packets, and (2) it uses
consistent hashing, which cannot guarantee optimal balance.

Uplinks are unbalanced at small timescales. High-resolution
measurements allow us to more accurately quantify how much
these differ from optimal. The instantaneous efficacy of load bal-
ancing has implications for drop- and latency-sensitive protocols
like RDMA and TIMELY [13]. Fig. 7a shows the mean absolute de-
viation (MAD) of the four uplinks within a sampling period (40µs
or 1 s). Unsurprisingly, Hadoop, with its longer flows, is less bal-
anced than the other two racks. This imbalance can sometimes be
large at small timescales, with the Hadoop racks’ 90th percentile
showing an average deviation of 100%. Even in the median case,
all three types of racks had a MAD of over 25%, indicating that
flow-level load balancing can often be inefficient in the short term.
Any slow-reacting load balancing approach (e.g., WCMP) would
not resolve the issue as, at the moderately longer timescale of 1 s,
the links appear to be balanced.

The interconnect does not add significant variance.After travers-
ing the interconnect, traffic entering the ToR switch exhibits a sim-
ilar pattern. We can observe the MAD of ingress traffic in Fig. 7b.
While there are changes in dispersion, they are relatively small
indicating that the network, with its current structure and load
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(a) Egress (b) Ingress

Figure 7: CDF of the mean absolute deviation (MAD) of uplink utilization within a given sampling period. A deviation of 0 means that the
uplinks are perfectly balanced. We show both egress and ingress directions, as well as 1 s and 40µs granularities.

(a) Web Rack (b) Cache Rack (c) Hadoop Rack

Figure 8: Heatmap of Pearson correlation coefficients for servers in the same rack. We measured the ToR-to-server utilization of three repre-
sentative racks at a granularity of 250µs.

Figure 9: Uplink/downlink share of hot ports given 300µs sampling.

levels, is not adding additional variance between flows. Prior work
has indicated that imbalance becomes significantly worse in the
presence of asymmetry caused by failures [1, 11], but we were not
able to intercept such cases for the racks we measured.

6.2 Correlation between servers
One might also expect, with ideal application and Layer-4 load bal-
ancing, that downlink utilization is balanced. As above, the reality
is a bit more nuanced and is heavily dependent on the type of the
rack in question. To factor out differences in the absolute amount of
traffic going to each server, we show in Fig. 8 Pearson correlation
coefficients, which track the linear correlation between pairs of
servers. Ingress and egress trends were almost identical, so we only
show the ToR-to-server direction.

For Web racks, there is almost no correlation. Diurnal patterns
and flash crowds have been shown to cause correlation at longer
timescales, but at small timescales, the effect of those factors are
not easily discernible. Instead, because Web servers run stateless
services that are entirely driven by user requests, correlation is
close to zero. For Hadoop, there is some amount of correlation,
but it is modest at these timescales. The Cache rack exhibits very
different behavior from the other two types of racks. Subsets of the
Cache servers show very strong correlation with one another. This
is due to the fact that their requests are initiated in groups from
web servers. As such, those subsets are potentially involved in the
same scatter-gather requests.

6.3 Directionality of bursts
Having examined both uplinks and downlinks separately, we now
look at their relative behavior. Fig. 9 shows for each rack type the
relative frequency of hot uplinks/downlinks.

We find that, for Web and Hadoop racks, there is a significant
bias toward servers as opposed to toward uplinks. Only 18% of hot
Hadoop samples were for uplinks, with Web uplinks responsible
for an even lower share. For these racks, bursts tend to be a result
of high fan-in where many servers send to a single destination.

Cache servers show the opposite trend, with most bursts occur-
ring on the uplinks. This can be attributed to two properties of
Cache servers: (1) that they exhibit a simple response-to-request
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(a) Web (b) Cache (c) Hadoop

Figure 10: Normalized peak shared buffer occupancy versus number of hot ports for web/cache/hadoop racks at a 300µs granularity.

communication pattern, and (2) that cache responses are typically
much larger than the requests. Thus, Cache servers will almost
always send more traffic than they receive. Combined with modest
oversubscription at the ToR layer (at a ratio of 1:4), the communi-
cation bottleneck for these racks lies in their ToRs’ uplinks.

6.4 Effect of µbursts on shared buffers
Finally, we examine the effect of synchronized bursts on ToRs’
shared buffer utilization. Fig. 10 depicts a boxplot of the peak buffer
occupancy during a 50ms interval versus the number of hot ports
during that same span. Granularity of these measurements was
lower than others because of a relatively inefficient interface to
poll the shared buffer utilization. As mentioned, buffer carving
is dynamic so, for simplicity, we normalize the occupancy to the
maximum value we observed in any of our data sets. We note that
drops can occur at much lower buffer utilization because of these
effects.

As expected, Hadoop racks put significantly more stress on ToR
buffers than either Web or Cache racks. This manifests in a few
different ways. First, we observed that Hadoop sometimes drove
100% of its ports to > 50% utilization. Web and Cache only drove
a maximum of 71% and 64% of their ports to simultaneous high
utilization within the observation period. Further, Hadoop expe-
riences high standing buffer occupancy compared to Web/Cache,
and the buffer occupancy scales with the number of hot ports more
drastically than in Web/Cache.

In all cases, average occupancy levels off for high numbers of
hot ports, possibly due to self selection of communication patterns
or the effect where buffer requirements scale sublinearly with the
number of TCP connections [5].

7 DATA CENTER DESIGN IMPLICATIONS
Our measurements of a production data center point to the need
for fine-grained measurement in order to truly understand network
behavior. This has implications not only for network measurement,
but also the evaluation of new protocols and architectures.

It also has implications for the design of those protocols and
architectures. While domain knowledge suggests that application-
level demand and traffic patterns are a significant contributor to
bursts, the data does not explicitly point to a cause2. Regardless,

2Doing so would require correlating and synchronizing switch and end hosts measure-
ments at a microsecond level, which was not feasible in our current deployment.

the fact remains that µbursts both exist and are responsible for the
majority of congestion in the measured production data center. We
discuss some of the implications of that observation below.

Implications for load balancing. Many recent proposals sug-
gest load balancing on microflows rather than 5-tuples—essentially
splitting a flow as soon as the inter-packet gap is long enough to
guarantee no reordering. While our framework does not measure
inter-packet gaps directly, we note that most observed inter-burst
periods exceed typical end-to-end latencies (Sec. 5.2) and that non-
burst utilization is low (Sec. 5.4). The caveat is that different applica-
tions can have significantly different behavior, and faster networks
may decrease the gaps relative to the reordering constraints.

Implications for congestion control.Traditional congestion con-
trol algorithms either react to packet drops, RTT variation [13] or
ECN [2] as a congestion signal. All of these signals require at least
RTT/2 to arrive at the sender, and the protocols can potentially take
many RTTs to adapt. Unfortunately, our measurements show that
a large number of µbursts are shorter than a single RTT. Buffering
can handle momentary congestion, but if buffers become compar-
atively smaller or initial sending rates become more aggressive,
lower-latency congestion signals may be required.

Implications for pacing. TCP pacing was one of the original
mechanisms that prevented bursty traffic. Over time, however, it
has been rendered ineffective through features like segmentation
offload and interrupt coalescing. The results presented in this paper
give some insight into the degree of the problem in practice. They
may point to the importance of recent pacing proposals at either the
hardware [3] and software [13] levels. Even so, existing protocols
mostly deal with single-flow or single-machine pacing.

8 CONCLUSION
As network bandwidth continues to rise in data centers, the timescale
of network events will decrease accordingly. Thus, it is essential to
understand the behavior of these networks at high-resolution. This
is particularly true as we find that most bursts of traffic are µbursts,
i.e., that they occur at a microsecond-level granularity. Our results
show that at these small timescales, traffic is extremely bursty, load
is relatively unbalanced, and that different applications have signif-
icantly different behavior. We hope that these findings will inform
future data center network measurement and design.
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