
A Hardware–Software
Blueprint for Flexible Deep
Learning Specialization

Thierry Moreau

University of Washington

Tianqi Chen

University of Washington

Luis Vega

University of Washington

Jared Roesch

University of Washington

Eddie Yan

University of Washington

Lianmin Zheng

Shanghai Jiao Tong University

Josh Fromm

University of Washington

Ziheng Jiang

University of Washington

Luis Ceze

University of Washington

Carlos Guestrin

University of Washington

Arvind Krishnamurthy

University of Washington

Abstract—This article describes the Versatile Tensor Accelerator (VTA), a programmable

DL architecture designed to be extensible in the face of evolving workloads. VTA achieves

“flexible specialization” via a parameterizable architecture, two-level Instruction Set

Architecture (ISA), and a Just in Time (JIT) compiler.

& HARDWARE SPECIALIZATION IS a powerful way

to accelerate a known set of applications and

workloads. Unfortunately, deep learning (DL) is

anything but a static field, i.e., the machine

learning (ML) community constantly changes the

software they use to write models, the architec-

ture of models themselves, the operators used by

said models, and the data types they operate

over.

Researchers have primarily focused on two

approaches for accelerator designs, fixed function

accelerators and programmable accelerators

(also known as domain-specialized accelerators).

Digital Object Identifier 10.1109/MM.2019.2928962

Date of publication 16 July 2019; date of current version 10

September 2019.

Theme Article: Machine Learning AccelerationTheme Article: Machine Learning Acceleration

8
0272-1732 � 2019 IEEE Published by the IEEE Computer Society IEEE Micro

Authorized licensed use limited to: University of Washington Libraries. Downloaded on November 13,2020 at 18:09:07 UTC from IEEE Xplore. Restrictions apply.

Current solutions offer compelling peak perfor-

mance, but they often fail to integrate into the

evolvingML landscape.

Fixed-model accelerators are commonly spa-

tially and statically laid out, offering attractive

performance for certain kinds of workloads.

Unfortunately, their static nature rules out the

reuse of hardware resources, limiting support for

larger or newermodels.

In contrast, programmable accelerators6

offer far more flexibility by leveraging Instruc-

tion Set Architecture (ISAs). Due to their pro-

grammable nature, achieving peak performance

requires a competent DL compiler that can

map many different workloads onto a fixed

set of hardware intrinsics. Consequently, cus-

tomizing the behavior of these accelerators,

even when open-sourced, greatly depends on

the availability of a transparent and modular

software stack.

A central challenge of prior work is how to

link innovations in specialization to rapidly

changing ML applications. This challenge is not

specific to computer architecture; it is present

at all levels of the stack. An end-to-end approach

requires integration of frameworks, systems,

compilers, and architecture in order to execute

state-of-the-art ML using hardware acceleration.

Peak floating point operations per second

(FLOPs) provide value only if a programmer can

access them.

We present versatile tensor accelerator (VTA),

an explicitly programmed accelerator paired with

a capable Just in Time (JIT) compiler and runtime

that can evolve in tandemwith DLmodels without

sacrificing the advantages of specialization. The

VTAmakes the following contributions.

� A programmable accelerator design that

exposes a two-level programming interface,

i.e., a high-level task ISA to allow explicit task

scheduling by the compiler stack, and a low-

level microcode ISA to provide software-

defined operational flexibility. In addition,

the VTA architecture is fully parameteriz-

able, i.e., the hardware intrinsics, memories,

and data types can be customized to adapt

the hardware backend requirements.

� An extensible runtime system for heteroge-

neous execution that performs JIT compilation

of microcoded kernels to provide operational

flexibility. For example, the VTA runtime ena-

bles us extend the functionality of VTA’s origi-

nal computer-vision-centric design to support

operators found in style transfer applications

without requiring any hardwaremodifications.

� A schedule autotuning platform that optimizes

data access and reuse in order to rapidly

adapt to the changes to underlying hardware

and to workload diversity.

We demonstrate VTA’s flexibility by adapting

different workloads for two edge class Field Pro-

grammable Gate Array (FPGAs). Figure 1 shows

how to map a workload to FPGAs using the VTA

accelerator and runtime. This process explores

VTA hardware variants and performs software

autotuning for each candidate design. The

resulting design and customized software bina-

ries can be easily integrated into a DL frame-

work. Finally, we evaluate the full system,

demonstrating VTA’s ability to outperform edge

Graphical Processing Unit (GPUs) using edge

FPGAs on inference workloads.

VTA HARDWARE–SOFTWARE STACK
OVERVIEW

Running an end-to-end workload on VTA

requires a complete software stack that can map

Figure 1. VTA provides flexibility with respect to hardware targets and DL models. This flow diagram shows the steps in

adapting a given model to a hardware backend by exploring VTA hardware configurations and performing operator

autotuning on the top hardware candidates. This process generates the binaries and hardware overlays necessary to

deploy VTA in any DL framework.

September/October 2019 9
Authorized licensed use limited to: University of Washington Libraries. Downloaded on November 13,2020 at 18:09:07 UTC from IEEE Xplore. Restrictions apply.

high-level models down to the programming inter-

face exposed by the VTA. We outline below and in

Figure 2 the layers of the VTA system stack, which

we built into the Apache Tensor Virtual Machine

(TVM)DL compiler stack (https://tvm.ai/).

1) Framework: Frameworks let programmers eas-

ily expressmodels in a declarative fashion and

perform training at scale on standard datasets.

Frameworks like TensorFlow, PyTorch, and

MxNet have gained widespread adoption,

allowing the community to easily share and

deploy models. TVM’s ability to ingest models

from these popular frameworks enables the

generic compilation from frameworks to VTA.

2) Relay graph optimizer: Relay7 is TVM’s high-

level program representation. Relay general-

izes the computation graphs used by prior

frameworks and DL compilers into a full pro-

gramming language. The Relay optimization

pipeline performs generic optimizations, such

as operator fusion and partial evaluation.

Relay’s design focuses on extensibility, a prop-

erty we use to extend Relay with optimizations

specific to VTA. To target VTA, we quantize

inputs to match its low-precision data types,

transform data layout, maximize data reuse,

and transform input and weight data layouts

to utilize VTA’s tensor intrinsics.

3) TVM operator optimizer: TVM3 automates the

tedious process of scheduling workloads

onto VTA accelerator variants. Scheduling is

important for multiple reasons. First, it tiles

the computation to maximize data reuse. Sec-

ond, it inserts thread parallelism that VTA’s

runtime can translate into task-level pipeline

parallelism. Third, it partitions operators

into subcomputations, which can be mapped

to high-level hardware intrinsics, such as

bulk Direct Memory Access (DMA) load or

General Matrix Multiply (GEMM). TVM incor-

porates AutoTVM,4 an automated schedule

optimizer, to guide our hardware candidate

exploration search for the best VTA candi-

dates given a workload.

4) JIT compiler and runtime: The runtime performs

JIT compilation of accelerator binaries and

manages heterogeneous execution between

the CPU and VTA. The JIT compiler abstracts

binary compatibility by introducing one level

of indirection. We describe the compiler and

runtime inmore detail in “JIT Runtime System.”

5) Hardware architecture: VTA is a parameteriz-

able accelerator that speeds up computation-

ally expensive portions of the DL compute

graph. It is explicitly programmed by the com-

piler stack using a two-level programming

interface. The architecture is parameterized

by the size of the GEMM core, the shared

memory (SRAM) shapes, anddata typewidths.

A parameterized hardware architecturemakes

it possible to retarget the same design to

devices with different hardware resources.We

describe VTA inmore details in the “Hardware

Architecture” section.

VTA ARCHITECTURE AND JIT
RUNTIME

A successful implementation of a flexible DL

accelerator requires the codesign of hardware and

software stacks. We next describe, at a high level,

two components that we codesigned to achieve

this goal: the VTA hardware accelerator architec-

ture and the VTA JIT compiler and runtime.

Hardware Architecture

Figure 3 presents a high-level overview of

the VTA hardware organization. VTA consists of

four modules: fetch, load, compute, and

store. Together, these modules define a task

pipeline, which enables both high compute

resource utilization on compute-bound work-

loads, and high memory bandwidth utilization on

Figure 2. Overview of the software stack built for VTA. We

leverage the Apache TVM compiler stack to target VTA.

Machine Learning Acceleration

10 IEEE Micro

Authorized licensed use limited to: University of Washington Libraries. Downloaded on November 13,2020 at 18:09:07 UTC from IEEE Xplore. Restrictions apply.

memory-bound workloads. These modules com-

municate over command queues and on-chip

SRAMs, which act as unidirectional data chan-

nels. Accesses to these memories are synchro-

nized via dependency queues to prevent data

hazards, such as READ after WRITE and WRITE after

READ. Finally, the multistage architecture (load-

compute-store) can be used to build task pipe-

lines of arbitrary depth as long as dependencies

are properlymanaged.

Parameterizability: The VTA architecture is

fully parameterizable, i.e., the shape of the

GEMM tensor intrinsic can be modified to influ-

ence the utilization of hardware resources. Modi-

fying the shape of the input, weight, and

accumulator tensors that feed the GEMM unit

directly affects how many arithmetic units to

instantiate and how many SRAMs READ banks

need to be exposed. In addition, each data type

can be customized to a different integer preci-

sion, i.e., weight and input types can be 8 bits or

fewer, whereas the accumulation type can be

32 bits or fewer. Control of integer precision ena-

bles us scale arithmetic density on the chip

when resources are constrained.

Exposing task-level pipeline parallelism:Task-

level pipeline parallelism (TLPP) is a vital VTA

feature because it enables simultaneous use of

compute and memory resources to maximize

their utilization. TLPP is based on the paradigm

of access-execute decoupling.8 To extract TLPP,

we partition tasks into two mutually exclusive

execution contexts, so that concurrent load,

compute, and store operations do not interfere

with one another. Virtual threads3 make this par-

titioning intuitive in TVM. To guarantee timely

and correct execution of decoupled access-exe-

cute instruction streams, we encode dependency

information into task instructions. This results in

memory latency hiding for compute-bound work-

loads (e.g., 2-D convolutions).

Task level ISA: VTA supports a high-level task

ISA that encodes multicycle compute and mem-

ory operations, including LOAD, GEMM, ALU, and

STORE instructions. LOAD and STORE describe

how data from Dynamic Random Access Mem-

ory (DRAM) is loaded and stored into on-chip

SRAMs. Strided memory access is supported to

load tensor tiles without modifying memory lay-

out. GEMM and ALU instructions invoke micro-

coded kernels based on micro-op instructions,

which describe the data-access patterns over

inputs, weights, and biases tensors that define a

given DL operator.

A simple execution pipeline in VTA follows.

� The fetch module loads task instructions

from DRAM and dispatches them according

to their type to the corresponding command

queues connected to load, compute, and

storemodules.

� The loadmodule loads input, weight, and bias

tensor tiles fromDRAM into on-chipmemories.

� The compute module loads a microcoded

kernel from DRAM into on-chip memory.

� The computemodule executes themicrocoded

kernel to perform either a dense linear algebra

computation via the GEMM core or a pairwise

arithmetic operation via the Tensor ALU.

� The store module READs results processed by

the computemodule and WRITEs them to DRAM.

Compute module: Two functional units perform

operations on the register file, i.e., the tensor ALU

and the GEMM core. The tensor ALU performs

element-wise tensor operations, such as addition,

activation, normalization, and pooling tasks. The

GEMM core performs high-arithmetic-intensity

matrixmultiplicationover input andweight tensors

to implement common DL operators including 2-D

convolutions or fully connected layers.

The GEMM core performs matrix multiply

operations at a pipelined rate of one input-

weight matrix multiplication per cycle. Its logic

is implemented as parallel vector dot-product

Figure 3. VTA hardware organization. VTA consists of four

modules that communicate via queues and shared memories

(SRAMs). This defines a task pipeline, which helps maximize

compute resource utilization.

September/October 2019 11
Authorized licensed use limited to: University of Washington Libraries. Downloaded on November 13,2020 at 18:09:07 UTC from IEEE Xplore. Restrictions apply.

using reduction trees, but it can be substituted

with other implementations, such as systolic

arrays. The GEMM core defines a low-level ten-

sor hardware intrinsic that is exposed to the TVM

compiler stack. The TVM uses tensorization,3 an

automated approach to mapping DL operators,

such as 2-D convolutions, down to fixed tensor

hardware intrinsics.

Microcode ISA: The compute core READs

instructions from the micro-op cache, which

describes how to perform computation over

data. These micro-ops provide no control flow.

Therefore, instructions must be unrolled to

express repeatable data access stencils. The two

types of compute micro-ops are ALU and GEMM

operations. To minimize the footprint of micro-

op kernels in the on-chip SRAMs and avoid the

need for control-flow instructions, the compute

core executes micro-op sequences inside a two-

level nested loop that computes the location of

each tensor register via an affine function.

JIT Runtime System

VTA’s JIT runtime enables the cooperative

execution of DL workloads between a CPU host

and the accelerator. Its design adheres to five

objectives:

1) enable heterogeneous execution;

2) lower compiler design complexity;

3) overcome physical limitations;

4) reduce binary bloat;

5) enable future proofing.

Heterogeneous execution: One challenge of

fixed-function accelerators is model evolution

because they are generally built for specific mod-

els. The heterogeneous execution schedules

operators into appropriate targets (e.g., CPUs or

VTA) depending on their affinity for different

types of computation; for instance, it is well

known that the first convolutional layer in most

CNNs have low arithmetic intensity, and there-

fore, execute efficiently on CPUs. Heterogeneous

execution also provides a fallback mechanism

for supporting emerging operators that are not

yet supported by VTA.

Compiler design: By adding a level of indirec-

tion, JIT compilation eliminates the need to WRITE

compiler code-generation backends, which can be

tedious to maintain for different programmable

accelerators. The JIT compiler exposes a high-

level Application Programming Interface (API) to

TVM to lower schedules onto abstracting away

VTA variant-specific architectural details. This

enables us extend the TVM compiler support we

built for VTA to cover future variants of different

shapes and sizes.

Physical limitations: The JIT runtime gener-

ates and manages microkernels on the fly. It con-

trols when to load kernels from DRAM into the

accelerator-limited micro-op cache. This elimi-

nates micro-op memory physical limitations and

enables us support large models, even if all

microkernels for all layers do not fit in SRAM at

once. It also lets us trade area used by the

micro-op cache for other resources, such as

data storage or compute units.

Binary bloat: Delaying microkernel generation

to the JIT compilation stage minimizes binary

bloat. Since VTA’s architecture has limited sup-

port for control flow, microkernels must be

unrolled, which can produce fairly large bina-

ries. In addition, microkernel JIT compilation

expresses binaries for heterogeneous execution

in a single ISA, i.e., instead of shipping a hybrid

binary, we ship only one CPU binary to perform

accelerator binary JIT compilation at runtime.

Future proofing: Advancements in DL have

described the prevalence of dynamic neural net-

work workloads that incorporate control flow.

Additionally, advances in systems show trends

toward heterogeneous multiaccelerator systems

and scale-out acceleration. Having a runtime that

handles dynamic decisions across heterogeneous

platforms will simplify the design of hardware

accelerators like VTA, andmake futuremodel sup-

portmainly a software-related endeavor.

VTA HIERARCHICAL OPTIMIZATION

Hardware Exploration for Varying FPGA Sizes

One way to showcase VTA’s architectural

flexibility is to target different FPGA platforms.

FPGAs are becoming increasingly accessible,

with sub-$100 development boards, and accessi-

ble FPGA cloud computing instances.

Our VTA design offers multiple architectural

customization parameters, as shown in Figure 1.

Architectural knobs include GEMM hardware

intrinsic shape, data types, the number of parallel

arithmetic units in the tensor ALU, ALU opera-

tions, and Block Random Access Memory (BRAM)

distribution between on-chip memories. Circuit

Machine Learning Acceleration

12 IEEE Micro

Authorized licensed use limited to: University of Washington Libraries. Downloaded on November 13,2020 at 18:09:07 UTC from IEEE Xplore. Restrictions apply.

knobs include PLL frequency and the degree of

hardware pipelining to close timing at higher fre-

quencies. These customization knobs define a

hardware design space with hundreds to thou-

sands of individual designs. This design space can

be exhaustively explored to find the best candi-

date for a particular workload. We perform this

exploration in a sequence of stratified steps. First,

we use a simple FPGA resource model to prune

infeasible VTA parameterizations. After pruning,

each candidate hardware design is compiled,

placed, and routed. We pick the best feasible

design for each ffpga� dtype� batchg combina-

tion, but our exploration typically returns a hand-

ful of promising candidates; the rest of the designs

either yield low peak performance or fail place-

ment, routing, or timing closure. For this final set

of designs, we generate optimized schedules using

operator autotuning,4 and we use these schedules

to obtain theworkload’s performance profile.

An analytical model of peak performance is

used to initially filter hardware designs based on

theoretical throughput and frequency assuming

compute resources are 100% utilized. However,

assuming 100% utilization of compute resources

by a particular operator is often inaccurate. For

example, depending on the workload mix, opera-

tors like conv2d with large window sizes may

exhibit high arithmetic intensity (measured in

Op/Byte). Such operations translate to high utili-

zation and are, therefore, close to peak perfor-

mance. Operators with low arithmetic intensity

(e.g., conv2d with a window size of 1) are gener-

ally memory bandwidth constrained. For such

operators, we use task-level pipeline parallelism

to mitigate performance loss resulting from wait-

ing on memory.

Schedule Exploration for Operator Autotuning

Schedule autotuning is the process by which an

automated search algorithm attempts to optimize

a given program or workload toward peak hard-

ware performance. We perform autotuning by

applying different memory tiling, loop transforma-

tions (e.g., splitting, reordering, and unrolling),

vectorization/tensorization, and parallelization

strategies.4 We then use the TVM compiler to

express schedule templates for each operator (e.g.,

conv2d, conv2d_transpose, group_conv2d,

fc) we support in hardware. We use TVM’s auto-

mated scheduling library to obtain schedules

that maximize performance for a given

combination of operator, tensor shape, and hard-

ware parameterization.

We used the XGBoost1 search algorithm to

find the best schedules for each hardware variant

in a limited number of trials. Each workload’s

layers were then tuned for each hardware candi-

date. Aggregate inference time was used to select

the best VTA hardware variant for a given model.

It takes several hours to exhaustively tune a

network on a single hardware variant. Given the

large number of VTA hardware designs to test and

model architectures to support, autotuning

search quickly becomes intractable without care-

ful design. Minimizing full-network autotuning

time across multiple hardware candidates intro-

duces a hierarchical prioritization problem. We

approach this challenge by applying a hyperpara-

meter optimization technique that is based on

SuccessiveHalving.5 Instead of choosing from

hyperparameters that define a network architec-

ture, we apply this technique to choose from VTA

design candidates. We simultaneously inspect

how the relative performance of each hardware

design evolves for a givenworkload over each iter-

ation of the optimization algorithm. Throughout

optimization we use a round-robin policy to

update latency estimates across all operators for

each hardware design.

Full Network Optimization Case Study

Figure 4 shows an example of hierarchical

optimization for the ResNet-18 workload based

on hardware exploration and schedule explora-

tion techniques described previously. We per-

form these optimizations over a set of VTA

candidates generated using W8A8 (8-bit weights,

8-bit activations) data representations. We select

eight promising hardware candidates and apply

SuccessiveHalving to prune designs that do

not appear promising. Similar to hyperparameter

optimization for neural network training, this task

is difficult since the relative performance differen-

ces between hardware designs may initially be

small. After a moderate number of iterations,

SuccessiveHalving is able to converge to the

best candidate hardware design.

This case study showcases VTA’s ability to

quickly navigate a nontrivial space of accelerator

configurations for a given workload. As accelerator

configurations change, so does the software that

programs them. This joint-optimization problem

can be solved only with a flexible stack.

September/October 2019 13
Authorized licensed use limited to: University of Washington Libraries. Downloaded on November 13,2020 at 18:09:07 UTC from IEEE Xplore. Restrictions apply.

EVALUATION
s the landscape of DL continues to evolve, it

is important to support emerging models. We

evaluate VTA’s ability to support two recent

model architectures beyond standard deep con-

volution nets. First, we evaluate MobileNetG, a

variant of MobileNet that groups convolution

channels by the vector factor of the VTA’s

GEMM core. Second, we evaluate DCGAN, a gener-

ative adversarial network model that is used for

image-to-image translation and generation.

These models require nontrivial extensions to

support new operators. MobileNetG requires

support for grouped convolutions that exhibit

block sparse patterns on channel groups. DCGAN
requires support for 2-D convolution transpose,

which has a spatial sparsity pattern. Accelerators

must support these access patterns to avoid

unnecessary computations and achieve maximum

performance. The runtime can readily make use

of schedules to generate microkernels that sup-

port these access patterns without changing the

hardware.

We integrated VTA into Apache TVM and eval-

uate five DLmodels on two FPGA devices with dif-

ferent resource budgets. We import all models

from MxNet2 a DL framework used by Amazon. It

is worth noting that Relay’s model importers pro-

vide access to a wide variety of other front-ends,

and VTA is not limited toMxNet.

Figure 5 compares performance across these

models, showing VTA-accelerated execution

versus highly optimized ARM CPU and GPU plat-

forms that rely on industry-strength DL libraries,

i.e., ARM ComputeLib (ARM CL) and TVM. The

ARM Cortex-A9, ARM Cortex-A53, and Mali-T860

GPU are taken from the Pynq-Z1 ($65), Ultra-96

($250), and the Firefly-RK3399 ($200) development

boards. For VTA hardware variants, we use an

automated 8-bit integer scaling and translation

pass from 32-bit floating-point (FP32) with negligi-

ble accuracy degradation. For our CPU baselines,

we use the TVMautotuner to obtain FP32 CPU ker-

nels that take advantage of NEON vectorization,

multithreading and state-of-the-art scheduling

tricks (spatial tiling, Winograd transform, etc.).

For our GPU baseline, we use the ARM CL v18.03

and exploit 16-bit floating-point (FP16) library sup-

port. At the time of the evaluation, ARM CL lacked

support for conv2d transpose for DCGANs. This

motivates our flexible specialization approach to

stay ahead of the curve while targeting unconven-

tional workloads.

Figure 5 shows end-to-end results that can be

discussed in two groups of comparable devices

in terms of cost: first, VTA on the Pynq versus

Cortex-A9 (sub-$100) and second, VTA on Ultra96

versus Cortex-A53 and Mali-T860 GPU ($200–

$250). First, VTA on the Pynq-Z1 outperforms the

Cortex-A9 CPU by 3:0�, 4:4�, 5:3�, and 2:1� on

MobileNetG, ResNet-18, ResNet-34, and

DCGAN, respectively. Second, VTA on the Ultra-96

outperforms the Cortex-A53 by 2:5�, 4:7�, 6:0�,

3:8�, and 11:5� on MobileNetG, ResNet-18,
ResNet-34, ResNet-50, and DCGAN,

Figure 4. Example of hardware design exploration and schedule

autotuning on a complete ResNet-18 inference workload run on

Ultra96 FPGA. The exploration begins with promising VTA

hardware variants and converges to the optimal hardware design

while using a fraction of the optimization time required to

exhaustively evaluate each hardware design.

Figure 5. End to end performance evaluation over multiple CPU,

GPU, and FPGA-equipped edge systems. For comparable

systems, VTA provides a significant performance edge over

conventional CPU and GPU-based inference.

Machine Learning Acceleration

14 IEEE Micro

Authorized licensed use limited to: University of Washington Libraries. Downloaded on November 13,2020 at 18:09:07 UTC from IEEE Xplore. Restrictions apply.

respectively. In addition, VTA on the Ultra-96 out-

performs the mobile-class Mali-T860 GPU by

2:1�, 2:5�, 3:2�, and 2:1� on MobileNetG,

ResNet-18, ResNet-34, and ResNet-50,

respectively.

Overall, VTA demonstrates its software-

defined architectural flexibility, offering high

performance while forming an evolutionary path

forward for accelerating diverse workloads on

various devices.

CONCLUSION
This article presented a hardware–software

blueprint for “flexible specialization,” i.e., the idea

that efficiency gains from hardware specialization

are not mutually exclusive with workload flexibil-

ity. We introduced VTA, a parameterizable DL

architecture that is explicitly programmed via a

two-level ISA. We codesigned the accelerator with

a runtime system that JIT compiles microkernels

to provide operational flexibility. Using this

approach, we can support less conventional opera-

tors, such as convolution transpose and grouped

convolutions without needing to make hardware

changes. Our evaluation showed that the VTA

effectively maps multiple workloads onto different

FPGAs by leveraging off-the-shelf deep learning

compilers to quickly integrate optimized software

with specialized hardware. Finally, we demon-

strated that a well-integrated hardware and soft-

ware stack helps us perform full-stack optimization

and exploration to automatemodel-to-gates compi-

lation on FPGAs.

ACKNOWLEDGMENTS
The authors would like to thank members of

Sampa and SAMPL groups at the Allen School for

their feedback on the work and manuscript. This

work was supported in part by the Google Ph.D.

Fellowship for Tianqi Chen; in part by the National

Science Foundation under Grants CCF-1518703,

CNS-1614717, and CCF-1723352; in part by the Cen-

ter for Resilient Infrastructures, Systems, and Pro-

cesses, and Applications Driving Architectures

(ADA), two of six centers in Joint University Micro-

electronics Program (JUMP); in part by a Semicon-

ductor Research Corporation program sponsored

by Defense Advanced Research Projects Agency

(DARPA); and by the gifts from Xilinx, Intel (under

the Computer Assisted Programming for

Heterogeneous Architectures (CAPA) program),

Oracle, Amazon, Qualcomm, NVIDIA Corporation,

and other anonymous sources.

& REFERENCES

1. T. Chen and C. Guestrin, “XGBoost: A scalable tree

boosting system,” in Proc. 22nd ACM Int. Conf. Knowl.

Discovery Data Mining, 2016, pp. 785–794.

2. T. Chen et al., “MXNet: A flexible and efficient

machine learning library for heterogeneous distributed

systems,” in Proc. Neural Inf. Process. Syst.,

Workshop Mach. Learn. Syst., 2015.

3. T. Chen et al., “TVM: An automated end-to-end

optimizing compiler for deep learning,” in Proc. 13th

USENIX Symp. Oper. Syst. Des. Implementation,

2018, pp. 578–594.

4. T. Chen et al., “Learning to optimize tensor programs,”

in Proc. 32nd Int. Conf. Neural Inf. Process. Syst.,

pp. 3389–3400, 2018.

5. K. Jamieson and A. Talwalkar, “Non-stochastic best arm

identification and hyperparameter optimization,” inProc.

Int. Conf. Artif. Intell. Statist., 2016, pp. 240–248.

6. N. P. Jouppi et al., “In-datacenter performance

analysis of a tensor processing unit,” in Proc. 44th ACM

Annu. Int. Symp. Comput. Archit., 2017, pp. 1–12.

7. J. Roesch et al., “Relay: A new ir for machine learning

frameworks,” in Proc. 2nd ACM Int. Workshop Mach.

Learn. Program. Lang., 2018, pp. 58–68.

8. J. E. Smith, “Decoupled access/execute computer

architectures,” in Proc. 9th Annu. Symp. Comput.

Archit., 1982, pp. 112–119.

Thierry Moreau is a postdoctoral researcher at the

University of Washington. He helps run the multidisci-

plinary Systems, Architectures and Programming

Languages for Machine Learning Laboratory group

on systems, architectures, machine learning, and

programming languages for machine learning. His

research interest focuses on building platforms and

abstractions that make hardware accelerators easier

to adapt and deploy as application trends evolve. He

leads the VTA open source DL accelerator effort and

serves as an Apache TVM PMC member. He has a

BASc in computer engineering from the University of

Toronto, and an MS and a PhD in computer science

and engineering from the University of Washington.

Contact him at: moreau@cs.washington.edu.

Tianqi Chen is working toward a PhD at the Paul

G. Allen School of Computer Science and

September/October 2019 15
Authorized licensed use limited to: University of Washington Libraries. Downloaded on November 13,2020 at 18:09:07 UTC from IEEE Xplore. Restrictions apply.

Engineering Department, University of Washington,

working on the intersection of machine learning

and systems. He has led the creation of many

important machine learning systems, including

XGBoost, Apache MXNet, and Apache TVM. He is

a recipient of Google PhD fellowship. Contact him

at: tqchen@cs.washington.edu.

Luis Vega is working toward a PhD at the Paul G.

Allen School of Computer Science and Engineering

Department, University of Washington. His research

interests include computer architecture, hardware

accelerators for machine learning, and domain-spe-

cific hardware languages. He has an MS in electrical

and computer engineering from the University of Kai-

serslautern, Germany. Contact him at: vegaluis@cs.

washington.edu.

Jared Roesch is working toward a PhD at the Uni-

versity of Washington, where he works on a variety of

topics, including machine learning, programming

languages, computer architecture, formal methods,

and more. He has a BS in computer science from the

University of California, Santa Barbara and an MS

from the University of Washington. Contact him at:

jroesch@cs.washington.edu.

Eddie Yan is working toward a PhD at the Paul G.

Allen School of Computer Science and Engineering

Department, University of Washington. His current

research interest includes deep learning optimization

with an eye toward automatic optimization techni-

ques. He has a BS in electrical engineering from the

University of California, Los Angeles. Contact him at:

eqy@cs.washington.edu.

Lianmin Zheng is currently an undergraduate

student at Shanghai Jiao Tong University. His

research interest includes the intersection of

machine learning and computer systems. He par-

ticipated in TVM project during his internship at the

University of Washington. Contact him at: lianminz-

heng@gmail.com.

Josh Fromm is working toward a PhD at the Uni-

versity of Washington, where he specializes in

enabling deep learning on resource-constrained

platforms through the development of novel architec-

tures, approximating algorithms, and hardware

aware scheduling. He has a BS in electrical engi-

neering and computer science from the California

Institute of Technology. Contact him at: jwfrom-

m@uw.edu.

Ziheng Jiang is working toward a PhD at the Uni-

versity of Washington. His research interests include

theories and practices of large-scale computer sys-

tem and its intersection with machine learning, in par-

ticular deep-learning. He has a BS from Fudan

University, where he was a member of Fudan NLP

Lab. Contact him at: ziheng@cs.washington.edu.

Luis Ceze is currently a professor with the Paul G.

Allen School of Computer Science and Engineering

Department, University of Washington. His research

interests focus on the intersection between computer

architecture, programming languages, machine learn-

ing, and biology, currently focusing on end-to-end sys-

tem optimizations for efficient machine learning and

DNA-based data storage and computing. He codirects

the Molecular Information Systems Laboratory, and the

Systems, Architectures and Programming Languages

for Machine Learning Laboratory. He has a BEng and

an MEng from the University of S~ao Paulo, Brazil, and a

PhD in computer science from the University of Illinois at

Urbana-Champaign. He is a Senior Member of IEEE

and ACM. Contact him at: luisceze@cs.washington.edu.

Carlos Guestrin is currently the Amazon Professor

with Machine Learning in Computer Science and

Engineering Department, University of Washington.

He codirects the Systems, Architectures and Program-

ming Languages for Machine Learning Laboratory, an

interdisciplinary ML research group addressing prob-

lems in the intersection between ML, systems, com-

puter architecture, and programming languages. He

also codirects the MODE Laboratory. He is also the

Senior Director of Machine Learning and AI at Apple,

where he runs the central ML team for the company,

after the acquisition of Turi, Inc. (formerly GraphLab

and Dato), a company he cofounded, which devel-

oped a platform for developers and data scientists to

build and deploy intelligent applications. Contact him

at: guestrin@cs.washington.edu.

Arvind Krishnamurthy is currently a professor

with the Computer Science and Engineering Depart-

ment, University of Washington. His research interests

include all aspects of building practical and robust

computer systems, currently focusing on to develop

ways to dramatically improve the performance of appli-

cations deployed inside datacenters by integrating

hardware innovations, rearchitecting across all layers

of the software stack, and developing new algorithms

for effective use of computing resources. He has a

BTech from Indian Institute of Technology, Madras

and a PhD in computer science from the University of

California Berkeley. Contact him at: arvind@cs.wash-

ington.edu.

Machine Learning Acceleration

16 IEEE Micro

Authorized licensed use limited to: University of Washington Libraries. Downloaded on November 13,2020 at 18:09:07 UTC from IEEE Xplore. Restrictions apply.

