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Abstract
Recent work on brightness, color, and form has suggested that human visual percepts
represent the probable sources of retinal images rather than stimulus features as such. Here
we investigate the plausibility of this empirical concept of vision by allowing autonomous
agents to evolve in virtual environments based solely on the relative success of their behavior.
The responses of evolved agents to visual stimuli indicate that fitness improves as the neural
network control systems gradually incorporate the statistical relationship between projected
images and behavior appropriate to the sources of the inherently ambiguous images.
These results: (1) demonstrate the merits of a wholly empirical strategy of animal vision as a
means of contending with the inverse optics problem; (2) argue that the information
incorporated into biological visual processing circuitry is the relationship between images
and their probable sources; and (3) suggest why human percepts do not map neatly onto
physical reality.
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Introduction

It has long been recognized that the sources of visual stimuli are not uniquely
specified by the light energy that reaches photoreceptors: the same pattern of light
focused on a surface can arise from different combinations of illumination,
reflectance and transmittance, and from objects of different sizes, at different
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distances and in different orientations. Nevertheless, visual agents must respond to
real-world events. The inevitably uncertain sources of visual stimuli thus present a
quandary: although the physical properties of a stimulus cannot uniquely specify its
provenance, success depends on behavioral responses that are appropriate to the
stimulus source. This dilemma is referred to as the inverse optics problem.

For more than a century now, most investigators have surmised that the basis of
successful biological vision in the face of the inverse optics problem is the
incorporation of information about prior experience in visual processing,
presumably derived from both evolution and individual development. This
empirical influence on visual perception has variously been considered in terms of
‘‘unconscious inferences’’ (Helmholtz 1924), the ‘‘organizational principles’’
advocated by Gestalt psychology (Wertheimer 1923), or the framework of
‘‘ecological optics’’ (Gibson 1979). More recently, these broad interpretations
have been conceptualized in formal terms that reflect the real-world sources to
which an animal has always been exposed, either in Bayesian terms (Knill and
Richards 1996; Rao et al. 2002), or terms of an empirical ranking of stimulus-source
relationships (Howe and Purves 2005a; Howe et al. 2006). Indeed, many of the
anomalous percepts that humans see in response to simple visual stimuli can be
rationalized in this way (reviewed in Purves and Lotto 2003; Purves et al. 2004;
Howe and Purves 2005a).

If visual percepts are indeed determined empirically, then biological visual
systems must have instantiated a scheme of neural processing that links inevitably
ambiguous retinal images with their behavioral significance. To examine the
feasibility of vision on this basis, we have here turned to evolutionary robotics, an
emerging field that uses simulated evolution to generate neural network control
systems that link ‘‘sensory’’ input to motor output in both simulation and physically
realized robots (Pfeifer and Scheier 1999; Nolfi and Floreano 2000). In most such
work, the autonomous control systems have been evolved to perform simple tasks
such as obstacle avoidance (Floreano and Mondada 1994; Salomon 1996), wall
following (Dain 1998) or navigational homing (Floreano and Mondada 1996).
Although relatively little research has focused on vision as such, some work has
included rudimentary visual input to the relevant controllers (Cliff et al. 1997;
Smith 1997; Floreano 1998; Nolfi and Marocco 2000; Nolfi and Marocco 2002;
Forsyth 2003; see, however, Wyss et al. 2006; Fioreano and Mondada 1998). None
of these systems have addressed the inverse optics problem, and most include
infrared range finders (Floreano and Mondada 1994; Salomon 1996; Floreano and
Mondada 1996; Smith 1997; Nolfi and Marocco 2000; Nolfi and Marocco 2002),
thereby removing the input ambiguity that natural visual systems must deal with.

In the present work, we have asked whether agents using simple neural network
control systems could evolve successful behavior in response to inherently
ambiguous visual input based solely on interactions with their environment. The
results show that evolved agents contend with the inverse optics problem by
associating projected images with behavior appropriate to the probable underlying
sources experienced in their native environment. When confronted with unlikely
relationships between their sensory images and the sources of the images in either
novel or distorted environments, evolved agents behave in an anomalous way that

12 B. Boots et al.
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mimics the percepts and behavior of humans presented with improbable geometries.
These results support the idea that biological vision resolves the inverse problem
according to the probability distributions of the possible stimulus sources, providing
a new way of exploring why we see the world in the peculiar way we do, and
the neural basis for these anomalies.

Methods

The environments

A series of six virtual environments were created with OpenGL. Each comprised
a simple arena with a central obstacle, geometrically similar to arenas used
in evolutionary robotics experiments (e.g., Floreano and Mondada 1996;
Salomon 1996; Nolfi and Floreano 2000) (Figure 1). The illumination of each
environment was anisotropic, much as terrestrial environments are illuminated on
an overcast day. The intensity of the light represented by each of the RGB channels
in OpenGL was scaled such that a surface that reflected 100% of the incident
light was represented by an RGB value of 255 in the simulated environment.
The walls of the arena were assigned a reflectance value of 30%, and the floor
60%; the sky was assigned an RGB value of 230. As a result of these fixed
assignments, the uncertainty in images projected from the environment (i.e., the
inverse optics problem in the simulated environments) was restricted to a conflation
in the image plane of the size, distance and orientation of object surfaces
(Figure 2A).

Based on their geometrical properties, the environments we used are described in
what follows as ‘‘standard’’ or ‘‘distorted’’. The two standard environments – the
square (Figure 1A) and the diamond (Figure 1B) – had a level floor and walls
4 units high. The four distorted environments – the symmetrically distorted square
(Figure 1C), the symmetrically distorted diamond (Figure 1D), the large
asymmetrically distorted square (Figure 1E), and the small asymmetrically distorted
square (Figure 1F) – had oblique floors and varying wall heights. The latter
distorted environments closely resemble the ‘‘Ames rooms’’ used in human
perceptual demonstrations (reviewed in Ittleson 1952). The best known of these are
oddly angled rooms that, when seen from a particular viewpoint, are nonetheless
perceived as rectangular (Figure 2B and C). Agents operating in such environments
are confronted with images similar to those encountered in the standard
environments, but these typically will have been generated by geometries different
from those experienced in the standard environments.

The agents

Each agent was modeled as a sphere whose position and orientation in the
environment were specified by a neural network control system (Figure 3A).
The radius of the agent was 2 units, which is roughly half the height of the walls in
the standard environments. A simulated 16! 16 sensor matrix modeled as a flat

Evolution of visually guided behavior in artificial agents 13
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Figure 1. Environmental geometries. Left: bird’s eye view showing the dimensions of the
inner and outer walls of the arenas (the units are arbitrary). For comparison, an agent (blue
circle) is 4 units in diameter. Right: Three-quarter view of the arenas showing the height of
the walls at junctures. (A) The standard square environment. (B) The standard diamond
environment. (C) The symmetrically distorted square environment, designed to project
images similar to images generated by the diamond environment. (D) The symmetrically
distorted diamond environment, designed to project images similar to those generated in the
square environment. (E) The large asymmetrically distorted square environment; this arena is
based on the standard square environment, but asymmetrically distorted so as to present
larger wall panels compared to the symmetrically distorted environments. (F) The small
asymmetrically distorted square environment is similarly distorted asymmetrically, but in
such a way as to present smaller wall panels than the symmetrically distorted environments.

14 B. Boots et al.
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surface was located 1 unit from the center of the sphere in the frontal plane, the
sphere itself being invisible. The agent’s visual field was 45" in both azimuth and
elevation, thus providing the agent with an angular resolution of #2.8" per pixel.
Images on the sensor matrix at any moment were simulated by a perspective
transformation of the projected (illumination! reflectance) values arising from the
agent’s position and orientation in the environment at that time (Figure 3B). The
resulting 256-element pattern of unprocessed light intensity values was the only
input to the agent’s neural network, and each behavioral response the agent made
produced a new set of projected values.

Figure 2. Problems arising in the process of projection. (A) In images projected from any
environment the size, distance and orientation of objects are conflated in the image plane,
as indicated in this diagram. This conflation illustrates the inverse optics problem. (B, C)
Examples of the distorted rooms created by Ames, showing the conceptual basis of the
distorted environments used in some of the experiments here. Although the room in
(A) consists of an oblique floor, ceiling and rear wall (black outlines), and in (B) a small floor
connected by sloping walls to a large ceiling (black outlines), an observer who views room
through a monocular port perceives a rectangular room that is normal in appearance
(red outlines), leading to anomalies of visually-guided behavior. (A is after Howe and Purves
2005a; B, C are after Ittleson 1952).

Evolution of visually guided behavior in artificial agents 15
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The neural control system for each agent was a single-layer, feed-forward
network with 256 inputs and two outputs (Figure 3C). Formally, the output of the
network ( y) is

y1:2 ¼ g wTxþ w0

! "

Figure 3. The artificial agents. (A) Each agent was modeled as a sphere with a radius of
2 units. The sensor array was located one unit from the center of the sphere. The images on
the array were simulated by a perspective transformation of the objects in the agent’s visual
field, which was 45" in both azimuth and elevation. (B) Examples of images confronting an
agent occupying two different positions in the standard arena (bird’s eye view). The image
outlined in blue is what the blue agent would have as a visual input when facing in the
direction of the arrow; the image outlined in red is what the red agent would see. (C) The
neural network control system. Each element of the projected visual input to an agent was fed
into a node in a fully connected single layer neural network; each input was in turn connected
to each of two output nodes. The two outputs were scaled to translation and rotation motor
responses that determined the new position and orientation of the agent. (D) Possible
movements of an agent (seen from above). Translational responses were limited to a distance
no greater than 4 units (one ‘‘body’’ length), and rotation to no more than &22.5". The blue
wedges indicate the possible new positions the center of the agent could occupy after a single
behavioral response; the arrows show several specific examples of possible forward or
backward movements from an initial position defined by the center of the agent.

16 B. Boots et al.



D
o
w

n
lo

a
d
e
d
 B

y
: 
[C

a
rn

e
g
ie

 M
e
llo

n
 U

n
iv

e
rs

it
y
] 
A

t:
 2

1
:2

5
 2

 F
e
b
ru

a
ry

 2
0
0
8
 

where x is the matrix of sensory inputs, w is the weight matrix, and w0 is the bias.
The activation function g(a) is the hyperbolic tangent function

gðaÞ ) ea * e*a

ea þ e*a

which produces a nonlinear output between &1 for any input.
The behavioral response of an agent was determined by scaling the two output

values. To make the agents’ movements biologically plausible (i.e., covering a
variable but limited distance in the arena), the distance that any agent could translate
in response to a given visual stimulus was scaled to &4 units, or one ‘‘body’’
diameter. Likewise, each agent’s rotation was scaled to&22.5", corresponding to half
of the agent’s field of view of 45" (Figure 3D). The scaled behavioral outputs were
executed sequentially, first rotation and then translation, thus moving the agent in
two dimensions. In the real world, friction, uneven surfaces, and other factors
confound precisely predictable movements. To simulate this uncertainty, we added
a small amount of noise to the rotation and translation components of the control
system; the noise was sampled from a Gaussian distribution centered at 0, with
a standard deviation equal to 5% of the total range of motion.

A collision was said to have occurred if the outer boundary of the agent’s spherical
body intersected the plane of a wall. To model collision with a wall, the agent was
stopped just outside of the point of contact, simulating the translation of an object
into a solid surface in the case where neither body has much elasticity.

The evolutionary algorithm

Chromosomes and network initialization. The real-valued weights of each neural
network control system were considered the agent’s ‘‘chromosome’’ (Holland
1975). Each chromosome was randomly initialized according to a Gaussian
distribution centered at 0 with standard deviation of 1/16 (the reciprocal of
the square root of the number of inputs to each output node; see Bishop 1995,
pp. 261–262). In this way, we created populations of agents in which each individual
was somewhat differently suited to the challenge of behaving successfully in the
environment.

Populations and lifetimes. Populations comprised 100 agents, each with a unique
chromosome. The agents occupied the environment one at a time (Nolfi and
Floreano 2000), and each agent’s lifetime was defined by 300 behavioral responses.
To make sure that success did not depend on a particular starting position, the
responses over an agent’s lifetime were divided into 10 epochs, each of which began
with the agent in a random position and orientation. The completed lifetime of all
the individuals in the population defined a single generation.

Fitness criteria. The relative success of an agent’s behavior (its fitness) was
determined by two criteria: (1) the ability to avoid obstacles, measured by the ratio
of the number of collisions (see above) to the number of behavioral responses in
each agent’s lifetime, a lower value indicating fewer collisions and greater fitness;
and (2) more complete exploration of the environment, measured by the dispersion

Evolution of visually guided behavior in artificial agents 17
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of the positions occupied by each agent during its lifetime. For this determination
we used the standard deviation of movements in the arena as an index, higher values
indicating more dispersion, and thus greater fitness. The fitness of an individual
agent for a single epoch was determined equally by both these measures according
to the expression

fitness ¼ 1* c

m

# $ sdðx1:30Þ
2

þ sdðz1:30Þ
2

% &

where c is the number of collisions, m the number of movements, and x1:30 and z1:30
the coordinates of the 30 positions occupied during each of the 10 epochs
in a lifetime. This fitness for each epoch was calculated and averaged to produce an
overall lifetime fitness value for the agent in question.

Selection, reproduction and evolution. Once each member of the population had
been assigned a fitness value, a selection mechanism identified the agents best suited
to produce the next generation. To identify the parents that could reproduce, the
population was evaluated by tournament selection (see Appendix A). The best agent
of each pair was then added to a parent pool and the process repeated until 100
parents had been chosen. This standard stochastic method identified a pool of
parents with many duplicates, but a higher average fitness than the population from
which they had been drawn, thus mimicking the greater reproductive success of
more fit biological parents (Eiben and Smith 2003). The chromosomes of pairs of
parents selected at random from the pool were then recombined using single-point
crossover (Holland 1975) and an uncorrelated mutation of a single step size (Bäck
1996; Eiben and Smith 2003; for details see Appendix B). The result of each such
mating was a pair of offspring that was added to the new population of 100 agents
that made up the next generation.

This sequence of evaluating each agent’s behavioral actions in the environment,
assigning a fitness value, selecting individuals for reproduction and applying genetic
operators to produce a new population was repeated until the average fitness of
subsequent generations reached a plateau.

Results

Evolution

Eight sets of evolutionary experiments, each consisting of five trials, were divided
into two categories: visually guided and ‘‘blind.’’ The visually guided experiments
consisted of evolutions in each of the six environments illustrated in Figure 2.
Control experiments included evolutions of ‘‘blind’’ agents in the two standard
environments (Figure 2A and B).

In each set of visually guided experiments, five populations of 100 agents were
placed in the relevant environment and allowed to evolve for 200 generations. In
each of the five trials, the fitness of the agents generated by the relative success of the
visually guided behavior improved as a function of the number of generations during
evolution (Figure 4A). The increased fitness of all the populations was rapid and

18 B. Boots et al.
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robust, with initial improvement that slowed and reached a plateau after #50
generations; only slight improvement occurred over the 150 (or more) additional
generations. The enhanced fitness was apparent by both measures of fitness; i.e., the
frequency of collisions decreased, and agents explored the environment more
extensively as evolution progressed.

To insure that non-visual factors played little or no role in the evolution of
successful behavior, in the ‘‘blind’’ control experiments populations were evolved in
the standard environments with luminance values sampled from a random uniform
distribution between 0 and 1 as their only input. Little or no improvement in fitness
was observed under these conditions (Figure 4B), indicating that structured visual
input is essential to the evolution of increasingly fit behavior.

Figure 4. Fitness of agents over evolutionary time. Red points indicate the mean fitness of the
most successful agent in each of the populations generated in the five trials of evolution
carried out in each arena, plotted against generation number; blue points indicate the mean
fitness of the evolved population. Bars show the SE. (A) Trials with visual agents. (B) Trials
with ‘‘blind’’ agents placed in the standard square or diamond environment.

Evolution of visually guided behavior in artificial agents 19
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Dependence of behavior on the full input pattern

We next asked how the information accumulated during evolution is captured in
agent’s neural network control systems by examining the weight matrices of agents
evolved in all six environments. There were no apparent patterns in the weights at
the two output nodes of agents evolved in any of the environments, whether
analyzed as individuals or in terms of the mean weights of all the evolved agents
in five trials (i.e., 500 agents) (Figure 5A). Weight matrices were also evaluated in

Figure 5. Analysis of neural network weights in evolved agents. (A) Neural network weights
from a single evolved agent and the mean weights for all five populations of agents evolved in
the standard square environment. The weights at the two output nodes (i.e., rotation and
translation) are represented in a 16! 16 grid corresponding to the agents’ visual sensor
arrays. No pattern is apparent in either the individual or mean distribution of network
weights. (B) Analysis of network weight changes in response to the presentation of individual
images. The test images used (top row) were multiplied by the rotation and translation weight
matrices (left column) from an evolved agent; the resulting effect on the weight matrix is
shown underneath each test image. The sum (!) of the weighted inputs and the response
(rotation [R], or translation [T]) indicated underneath each matrix show that the input
changes the neural network weights in a manner that leads to well adapted behavior, despite
the lack of apparent overall patterns in the matrices.

20 B. Boots et al.
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response to specific images generated by the virtual environments (Figure 5B). It is
clear that the luminance values projected onto the sensor arrays modulated the
values network weights, thus changing the summed activity at the output nodes and
the agents’ behavioral responses. However, the lack of patterns in Figure 5
indicates that no simple heuristic can explain the improved performance of the
agents over the course of evolution. Agents appear to use the full range of
information on their sensor arrays to link structured images to well-adapted
behavioral responses.

Dependence of improved fitness on behaviorally relevant sources

It is reasonable to suppose that the dependence of improved fitness on the full range
of information in images is because the agent associates the image presented at any
given moment with a response that is appropriate to the environmental geometry
underlying that image. To evaluate this supposition, identical copies of 10 evolved
agents were placed at two different random locations in the various environments at
the beginning of each of the 10 epochs that defined a lifetime (Figure 6A). One
agent received a stream of visual input appropriate to its positions and orientations
in the arena, as before. The second agent, starting from a different random location,
received visual input from its twin that was thus not appropriate to its situation in
the environment. The fitness of the two copies of the agent was then compared after
a single lifetime (300 behavioral responses).

The fittest 10% of agents in each evolved population was evaluated in this way,
i.e., 50 agents from each of the eight evolutionary experiments (see Figure 4; the
‘‘blind’’ experiments were included as controls) (Figure 6B). The results indicate
that agents with appropriate visual input were far more successful than the yoked
twins whose visual input was randomly related to their local circumstances. Thus,
successful agent behavior in response to sensory stimuli depends not on structured
stimuli per se, but on its relation to the geometry of the underlying source.

Understanding the strategy being used

These results indicate that the evolution of improved visually guided behavior is a
consequence of associations between images on an agent’s sensor array and
relatively successful behavior. This conclusion, however, does not indicate how the
agents make this link, i.e., the strategy that instantiates this association.

The nature of the problem for the agents. To understand the basis on which the agents
associate images and source-appropriate behavior, 20 000 randomly sampled agent
positions and orientations (called poses in computer vision and robotics) were
co-registered with the images encountered by an agent at that pose in each of the six
environments in Figure 1 (by co-registered we mean that the image and pose are
matched together as a pair). A given image typically corresponded to a number of
poses in each environment, and only a small subset of images was uniquely
associated with a particular pose. Thus multiple poses (#3 on average;
range¼ 2.76–3.41) provided agents with the same image.

Evolution of visually guided behavior in artificial agents 21
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Figure 6. Behavior of evolved agents with and without visual input appropriate to the source
of the images confronting them. (A) Copies of the same evolved agent were placed at two
random locations (1, 2) in the standard arena (bird’s eye view); red circles indicate collisions
and blue circles the sequential positions of the agents in response to a stream of 30 visual
images appropriate to the generative sources in the environment during one of the 10 epochs
comprising a single lifetime. The gray circles illustrate the behavior of the same agents in
receipt of inappropriate visual information (see text). (B) The fitness of the agents, including
‘‘blind agents,’’ tested over a complete lifetime. The blue bars illustrate mean fitness of
evolved agents exposed to images derived from the source confronting them; the grey bars
show the mean fitness of agents exposed to images that were inappropriate to the actual image
source (mean fitness of 50 agents, 30 responses each; bars show SE).

22 B. Boots et al.
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To evaluate how the agents might be dealing with these challenges, each of the
several poses associated with an image was translated into a depth map (Figure 7).
The mean distance to the surfaces in the depth map was then used as an overall
measure of the local geometry for a particular pose. Given this information we could
quantify the distribution of source distances associated with the images generated
in any one of the environments in Figure 1.

The uniform construction of the two standard environments ensured that the
distribution of sources associated with an image had a small standard deviation,
signifying similar average surface distances, and thus relatively similar underlying
geometrical sources (Figure 8A and Table I). In the distorted environments,
however, the standard deviation was 4–5 times higher, indicating statistical
dispersion of the sources underlying an image; as a result, the same images
mapped onto a range of geometrically different configurations (Figure 8B and C).
Thus agents in distorted environments clearly contend with an inverse mapping
problem that has no logical solution.

Evidence from agent behavior in novel environments. If agent behavior is indeed
determined by the relationship between images and generative sources in the
environment in which they evolved, then their behavior in a novel environment
should deviate predictably in accord with the relationships between images and their
sources in the new environment. Of the 20 000 images randomly sampled in each
environment, an image exactly matched one or more images sampled from one of
the other environments #75% of the time, showing that the environments generate
broadly similar images. Because of the different geometrical configurations of the
environments, however, stimuli encountered by the agents could be generated by
very different sources in one environment compared to another (Figure 8). To
understand how the distribution of stimuli and sources changes from environment
to environment, each distinct image sampled from the standard square environment
was assigned a label ! defined as

! ¼ 1

n

Xn

i¼1

jxij* jzijð Þ
'' '',

Figure 7. Example of a depth map. The image on the left is a typical luminance pattern
projected on an agent’s sensor array. The corresponding depth map on the right shows the
distance of the generative sources of the image; the lighter elements are closer, as indicated by
the calibration bar (arbitrary units); the sky is shown in blue since its direction and distance
are undefined, and not considered. The mean distance to surfaces described in the text is the
mean value of all the defined distances in each depth map.

Evolution of visually guided behavior in artificial agents 23



D
o
w

n
lo

a
d
e
d
 B

y
: 
[C

a
rn

e
g
ie

 M
e
llo

n
 U

n
iv

e
rs

it
y
] 
A

t:
 2

1
:2

5
 2

 F
e
b
ru

a
ry

 2
0
0
8
 

Figure 8. The distribution of poses co-registered with a particular image in each of the
simulated environments (arrows are a random subset of this distribution; agent location is
specified by the arrow tail, and orientation by the arrow direction). The corresponding image
is outlined in blue; inset graphs show the frequency distribution of poses as a function of
mean distance to surfaces underlying the image. (A) The two standard environments. The
poses co-registered with the image for both the square and diamond arenas form symmetrical,
peaked distributions; the most frequently sampled mean distance from surfaces is #9 units.
(B) The symmetrically distorted environments. The several poses co-registered with the same
image in the symmetrically distorted square and diamond environments form wider
distributions, indicating a larger range of possible geometrical configurations underlying
the image. The most frequently sampled mean distance is again #9 units. (C) The
asymmetrically distorted environments. The poses co-registered in these environments
generate wide, asymmetric distributions. The most frequently sampled mean distance from
surfaces is #12.5 units for large asymmetrically distorted square environment, and #5.5 units
for the small asymmetrically distorted square environment.
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where n is the number of poses associated with the particular image, and x1:n and
z1:n are the coordinates that specify the 2-dimensional location of each pose. Thus,
! is a measure of where the mean of a distribution of the poses associated with
a particular image is positioned in the eight symmetrically identical sectors in the
standard square environment, as illustrated in Figure 9A. Each pose was assigned
the same label as its corresponding image, and the average values of the labels at
each position plotted. The same procedure was carried out for the 20 000 poses
sampled from each of the other five environments, each pose being assigned the
label appropriate to the corresponding image as it appeared in the square
environment (Figure 9B–F). In this way, the average change in projected images
as a function of agent position could be evaluated across environments.

Figure 9 shows that the distribution of images changes predictably in these simple
and largely symmetrical environments as a function of distortion: similar images
were further from tall walls and closer to short walls in the distorted environments
compared to their distances in the standard square environment (cf. Figure 9E
and F to Figure 9A). If the behavioral success of the evolved agents is based on the
relationships between images and the sources of those images in the environment
experienced during evolution, then behavior in their native environment should
reflect the distributions of sources underlying images (see Figure 8 and Table I).
Moreover, behavior in a novel environment should be predicted by the relationship
of the native environment to the novel one determined by the analyses in Figure 9.
To evaluate these suppositions, the fittest 10% of agents in each population were
placed in each of the six different environments in Figure 1 for a single lifetime and
their behavior analyzed.

Behavior of agents evolved in the standard square environment. The agents evolved in
the square environment tended to circle the arena either clockwise or counter-
clockwise, maximizing fitness by staying as close to the outer walls as possible while
minimizing collisions (Figure 10A, first column; see also Figure 4A). These agents
followed the same strategy when placed in the diamond environment (Figure 10A,
second column), occasionally colliding with the walls in the acute corners of
the diamond, presumably because this geometry had not been encountered in the
square environment. In the symmetrically distorted square environment
(Figure 10A, third column), the agents followed patterns of movements more

Table I. Characteristics of the distributions of mean distances to surfaces underlying images in different

environments.

Environment Mean SD Mean skewness

Square 0.06 0.01

Diamond 0.06 0.00

Symmetrically distorted square 0.22 *0.02

Symmetrically distorted diamond 0.21 *0.01
Large asymmetrically distorted square 0.30 *0.06

Small asymmetrically distorted square 0.33 0.04

Table shows statistical dispersion and asymmetry of the frequency distributions of the mean distance to
surfaces underlying the images generated in each environment.
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appropriate to the diamond environment, in agreement with the shifted distribution
of stimuli with respect to their native square environment (Figure 9C). Thus they
overestimated the distance from the walls when these surfaces were taller and the
floor sloped downwards, and underestimated the distance to the walls when the

Figure 9. The relationships between images and their sources in different environments.
(A) For this analysis the standard square environment was divided into eight symmetrically
identical sectors (dotted lines). Colored pixels represent the mean ! value of all poses for each
1! 1 unit location in the environment, thus tracking the distribution of visual stimuli (see text).
(B) The diamond environment is similar to the square environment in the uniformity of its
construction. As a result, many of the same images are presented to agents in comparable
positions throughout the environment. (C) The symmetrically distorted square environment.
The sloping walls and floors change the distribution of images such that images generated by
the shorter walls are associated with surfaces that are closer to the agent than the sources of
same stimuli in the square environment. Likewise, the images falling on the agents’ sensors
from larger walls are farther from the underlying surfaces than in the square environment.
(D) The symmetrically distorted diamond environment. As with the symmetrically distorted
square, the unusual geometry changes the relationship of stimuli and their generative sources
compared to the same images in the square environment. (E, F) The large and small
asymmetrically distorted square environments. In these cases, the distribution of stimuli is
skewed, the mean distance to the generative source for majority of images being either closer or
farther compared to images and their sources in the square environment.
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floor sloped upwards and the walls were shorter (Figure 1C). In the symmetrically
distorted diamond environment (Figure 10A, fourth column), the agents again
moved closer to the walls when the walls were shorter and the floor sloped upwards,
and stayed farther away when these surfaces were taller and the floor sloped
downwards (Figure 1D). This behavior can also be understood in terms of the
change in relationships between images and their sources of the symmetrically
distorted diamond environment relative to the relationships the agents experienced
in their native square environment. The behavior was much the same in the
asymmetrically distorted environments (Figure 10A, fifth and sixth columns;

Figure 10. Density of positions occupied by 10 agents tested over a single lifetime in each of
the six environments. Blue pixels represent the frequency that the center of an agent occupied
for each 1! 1 unit location in the environment (darker blue represents higher density,
defined by the number of positions in corresponding grid squares overlain on each
environment; red indicates collisions). Agents evolved in the square environment (A),
the diamond environment (B), the symmetrically distorted square environment (C), the
symmetrically distorted diamond environment (D), the large asymmetrically distorted square
environment (E), and the small asymmetrically distorted square environment (F) were tested
in each of the novel environments.
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see Figure 1E and F), the differences in the agent’s positions again being predicted
by the changes in image–source relationships.

Behavior of agents evolved in the standard diamond environment. The results for
agents evolved in the diamond environment were similar to those for agents evolved
in the square environment (Figure 10B; see also Figure 4A), as expected from the
fact that the relationships between images and their sources in the square and
diamond environments are typically similar (see Table I and Figures 8 and 9).
However, the maximum density of positions occupied by the evolved agents moved
slightly inward from the walls in every environment tested, indicating that although
the majority of image–source relationships are identical in these tests, the behavior is
not quite the same as that of the agents that had evolved in the square environment.
A reasonable explanation of this difference would be that optimizing fitness in the
diamond environment requires that agents evolve to keep farther away from the
potentially dangerous acute angles in the environment. In any event, the behavior of
agents evolved in the two standard environments (Figure 10A and B) indicates that
the control systems link stimuli to behavior appropriate to the generative sources of
stimuli in their native environments. This result is not surprising, since images in the
standard environments typically correspond to a particular source with a high
probability (see Figure 8A and Table I).

Behavior of agents evolved in symmetrically distorted environments. It was therefore of
particular interest to examine in the same way the behavior of agents that had
evolved in distorted environments (Figure 1C–F). Surprisingly, the density of
positions occupied and the locations of collisions for agents evolved in both the
symmetrically distorted square and diamond environments were similar to the
behavior of agents evolved in the standard square environment (Figure 10C and D;
cf. Figure 10A and B). The positions occupied by these agents were not optimally
distributed; that is, rather than circling the arena while staying close to the outer
walls, the agents moved away from the tall walls and sometimes collided with the
shorter walls. Recall, however, that each image in the symmetrically distorted
environments could have been generated by multiple sources with different
underlying geometries (Table I). For many images in these environments, the
distribution of possible sources underlying a given image formed a symmetrical
distribution with the most frequently encountered underlying source being identical
to the underlying sources typically found in the two standard environments (see
Figure 1C and D for geometries, Figure 8B for an example of the distribution of
poses underlying an image, and Table I for the statistical of distribution of sources
underlying images in the symmetrically distorted environments). Evidently, these
agents also evolved control systems that linked images to behavior appropriate to the
most probable geometries underlying the images that confronted them.

Behavior of agents evolved in asymmetrically distorted environments. The two
asymmetrically distorted environments (Figure 1E and F) are similar to the
symmetrically distorted square, except that the large asymmetrically distorted
square has a higher frequency of tall walls, and the small asymmetrically distorted
square has a higher frequency of short walls. These environments thus change the
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distribution of possible sources of images such that the more frequently encountered
geometries are skewed towards taller or shorter walls, respectively (see Figure 8C
and Table I).

Agents evolved in the large asymmetrically distorted environment exhibited
behavior different from that of the other evolved agents (Figure 10E). Although
most of the positions in the large asymmetrical distorted square environment were
well dispersed and avoided walls, the remaining positions were more peripheral in
the arena, leading to a higher frequency of collisions. Thus these agents appeared to
have associated images with behaviors appropriate to the most frequently occurring
and thus probable geometries underlying images in their native environment.
Agents evolved in the small asymmetrically distorted square environment behaved
in a similar way (Figure 10F). In this case, agents again followed well-dispersed
paths most of the time, but tended to keep away from the outer wall.

In summary, evolution in the two asymmetrical environments can also be
understood in terms of a strategy in which agents contend with the inverse optics
problem by associating images with their probable underlying sources.

Discussion

The purpose of these experiments was to assess the idea that biological agents have
evolved successful visually guided behavior solely on the basis of feedback that
promotes neural associations between images and behavior. The reason this
approach must be considered as a basis for the emergence of animal vision is the
fundamental challenge presented by the inverse problem, i.e. the inability of retinal
images to unambiguously specify their generative sources in the environment. Since
this problem has no analytical solution, and since the success of visual animals
depends on dealing effectively with image sources, an empirical solution seems
inevitable. The results here demonstrate that evolving autonomous agents –
simulated in this case – can indeed improve their fitness by instantiating the
relationship between images and behavior appropriate to the most probable
underlying geometry.

Relevance to human perception

The strategy evolved agents use to respond successfully to inherently ambiguous
images is especially pertinent to explaining the anomalous way that humans (and
presumably other visual animals) perceive the geometry of their environment. Image
analysis and estimation techniques applied to natural image databases have already
shown that many otherwise puzzling aspects of animal vision can be explained by the
empirical relationship between images and their real-world sources. For example,
the grouping of visual contours (Geisler et al. 2001), the perception of line length as
a function of orientation (Howe and Purves 2002), the anomalous perception of
visual space (Yang and Purves 2003), size contrast effects (Howe and Purves 2004,
2005b), brightness (Yang and Purves 2004) and color contrast and constancy
phenomena (Lotto and Purves 2000; Long and Purves 2003; Long et al. 2006)
can all be rationalized on the basis of past experience with natural sources.
Taken together, these observations suggest that the generation of visual percepts,
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and thus visual processing, is fundamentally empirical. By showing that evolved
agent behaviors are appropriate to the probable source of the image rather than the
particular characteristics of the image on an agent’s sensor array, the present results
indicate how, in principle, animal vision could have come about on an empirical
basis, how it resolves the inverse problem, and why human vision is so often at odds
with the metrics of the real world. Evidently the strategy used to generate successful
behavior in these experiments is predicated on accumulated statistics about
what images have turned out to signify in the environment rather than image
features as such.

The evolutionary model of visual behavior in the paradigm we used is particularly
relevant to two well-known anomalies in human vision: the specific distance
tendency and the perceptions elicited by the Ames room. Studies of perceived
distance, perhaps the simplest aspect of visual space, show that the apparent
distance of objects bears no simple relation to their physical distances from the
observer (Yang and Purves 2003). Thus, when subjects are asked to make
judgments with little or no contextual information, objects, whatever their actual
distance, are typically perceived to be 2–4m from the observer, which is the most
probable distance of surfaces in natural visual environments. The present
results show that agents evolving behavior solely in response to visual inputs are
similarly biased toward behavior that reflects the probable distance of the surfaces
underlying images.

A probabilistic strategy for visually guided behavior evolved empirically would
also explain the anomalous way that human observers experience an Ames room
(Figures 2B and C). Ames noted that ‘‘If an observer is given a pointer and asked to
touch various parts of the room, he cannot do so accurately and quickly but behaves
quite awkwardly, unexpectedly hitting walls, floor or ceiling’’ (Ittleson 1952,
p. 184). Because agents in the present experiments evolved behavior that
corresponds to the likely source of stimuli in their native environment, when
placed in an arena similar to an Ames room they also produced inappropriate
behavior, evidenced by increased collisions with surfaces and inefficient exploration
of the arena.

Implications for the mechanics of vision

Historically, approaches to understanding the mechanisms of vision in either
biological or artificial systems fall into two broad categories: (1) physiological and
anatomical studies of animal vision, typically in the framework of exploring how
neuronal receptive field properties are related to reporting various image features;
and (2) algorithmic approaches in machine vision. Exploring visual processing in
terms of detecting and extracting features in retinal images has been the dominant
theme over much of the last century; more recently, however, this perspective has
undergone considerable revision in the face of evidence that neither receptive field
properties nor visual percepts can be explained in any simple way using a scheme of
feature detection (Knill and Richards 1996; Barlow 2001; Rao et al. 2002; Purves
and Lotto 2003; Howe and Purves 2005b).

As a result, the conceptual framework of feature detection has begun to give way
to the idea that visual processing must be intimately related to the statistics of
natural images. For example, enhanced responses to contrast boundaries
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(Hubel and Wiesel 1962) as well as color-opponency responses (Hubel and Wiesel
1968) are now known to be correlated with the basis functions of efficient statistical
representations of natural images (Olshausen and Field 1996; Bell and Sejnowski
1997; Caywood et al. 2001; Lee et al. 2002). Moreover, some anatomical
characteristics of the primary visual cortex, e.g., preferential horizontal connections
between neurons tuned to similar orientations (Bosking et al. 1997), are also
consistent with an incorporation in visual processing of natural image statistics
(Geisler et al. 2001; Girmin et al. 1999). The present results, however, argue that
the behavioral output of visual processing systems are not based on the statistical
structure of images per se, but on the relationship between images and their possible
sources. The statistical structure of images per se seems more likely to drive the
efficiency of stimulus encoding rather its behavioral or perceptual consequences.

By the same token, most approaches to machine vision have been based on
algorithms that detect, segment, localize, recognize and/or track objects in the image
plane. Attempts to recover 3D structure from images have typically employed on
two technical strategies: deriving structure from motion and stereopsis (Forsyth and
Ponce 2003). Both of these approaches rely on a comparison of features in multiple
images. The only well-known method of inferring depth from a single image is
Horn’s ‘‘shape from shading’’ algorithm (Horn 1975), a technique that creates
models of image formation and then inverts them, thus solving for depth. As a result
of the inverse problem, however, such models are highly under constrained and
require simplifying assumptions (e.g., Lambertian surface reflectance) that are not
characteristic of images generated by natural environments (Potetz and Lee 2003).
It is generally agreed that the efficacy of machine vision to date falls far short of
animal vision. The present results suggest why this is the case, namely that
accumulated empirical information is necessary for successful vision.

If the visual brain has indeed evolved in more or less the same way as the neural
controllers in the simulations we describe, then a deeper understanding of animal
vision and improved machine vision will require understanding the empirical
relationship between images and sources. The present highly simplified demonstra-
tion of the feasibility of vision on a wholly empirical basis should thus encourage
more sophisticated simulations, and further exploration of both biological and
machine vision in these terms.
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Appendix A: Tournament selection

In typical evolutionary algorithms, competition is used to determine which
chromosomes will contribute to the creation of the individuals that comprise the
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next generation. One such approach – the one we used in this work – is tournament
selection, an efficient selection method that stochastically samples parents from a
population without any global knowledge of the population’s fitness distribution. To
select each parent, k individuals are randomly picked from the population to form a
‘‘tournament.’’ By comparing fitness values, the best of these k individuals is
selected and the process is repeated until there are enough parents to sire the next
generation (100 in our case). The tournament size, k, can be set to vary the selection
pressure in the algorithm; thus the larger the value of k, the higher the probability
that highly fit individuals will be selected. In the work reported here we chose k¼ 5,
which is considered to be a relatively large value that produces a moderately high
selection pressure. For more information on tournament and other selection
methods see Eiben and Smith (2003).

Appendix B: Uncorrelated mutation with a single step size

After offspring were produced through single-point crossover, an uncorrelated
Gaussian mutation with a single step size was used to introduce variation into
the offspring. For each weight wi in the chromosome, a small value drawn from
a Gaussian distribution centered at 0 was added to form a new weight w 0

i .
The standard deviation of the distribution used to mutate each weight is called the
mutation parameter ". This parameter is an additional variable in each chromosome
that is also allowed to evolve, thereby changing the sampling distribution for
mutation values. In the present work, the mutation parameter " is itself mutated
each time an individual reproduces through multiplication by a variable e". " is
a random variable drawn from a Gaussian distribution with mean 0 and standard
deviation equal to 1/ sqrt(n), where n is the number of elements in the chromosome.
This parameter can be interpreted as a learning rate in evolutionary paradigms of the
sort we used (Eiben and Smith 2003; for more information about learning rates in
neural networks see Bishop 1995).

The co-evolution of mutation parameters is a biologically plausible way to vary
the relative amount that mutation can change a chromosome, and different
mutation parameters are more or less well suited to different circumstances.
For example, large mutations early in evolution can speed the process by making
large changes to a chromosome, while smaller mutations late in evolution can refine
a solution without risking a substantial loss of fitness. Empirically, we found that
adding a co-evolving mutation parameter increased the speed of evolution in our
problem space by a factor of about 10. Thus, maximizing fitness required only #200
generations compared to #2000 generations required when we used a fixed
mutation parameter.
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