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we would like to learn a model of a dynamical system

today I will focus on  Spectral Learning Algorithms for 
Predictive State Representations
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S ∈ Rd×d

Mao → S−1MaoS

e → S�e

parameters are only determined up to a  similarity transform

x1 → S−1x1

the resulting PSR makes exactly the same predictions as the original one 

if we replace

P (o | xt, do(at)) = e�SS−1Mat,oSS
−1xte.g. 
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Reduced-Rank HMMs & 
Reduced Rank POMDPS

HMMs & POMDPS

Predictive State Representations

for fixed latent dimension d

PSRs Are Very Expressive
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can use fast,
 

statistically consistent, 

spectral methods 

to learn PSR parameters
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If bottleneck = rank constraint, then get a spectral method
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  learn
act Why Spectral Methods?

• Maximum Likelihood via Expectation Maximization, Gradient Descent, ...
• Bayesian inference via Gibbs, Metropolis Hastings, ...

There are many ways to learn a dynamical system

In contrast to these methods, spectral learning algorithms give

• No local optima:
‣ Huge gain in computational efficiency

• Slight loss in statistical efficiency
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ΣT ,AO,H “trivariance” tensor of features of the future, present, and past 

ΣT ,H covariance matrix of features of the future and past 

ΣAO,AO covariance matrix of features present

the other parameters can be found analogously 

S−1MaoS := ΣT ,AO,H ×1 U
� ×2 φ(ao)

�(ΣAO,AO)
−1 ×3 (Σ

�
T ,HU)†

moments of directly observable features

U left d singular vectors of ΣT ,H
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Spectral Learning Algorithm:
• Estimate               ,          , and               from data
• Find    by SVD
• Plug in to recover PSR parameters

�U

• Learning is Statistically Consistent
• Only requires Linear Algebra

ΣT ,AO,H ΣT ,H ΣAO,AO

B. Boots, S. M. Siddiqi, and G. Gordon.  Closing the learning-planning 
loop with predictive state representations. RSS, 2010.

For details, see:

http://www.cs.cmu.edu/%7Eggordon/boots-siddiqi-gordon-closing-loop-psrs.pdf
http://www.cs.cmu.edu/%7Eggordon/boots-siddiqi-gordon-closing-loop-psrs.pdf
http://www.cs.cmu.edu/%7Eggordon/boots-siddiqi-gordon-closing-loop-psrs.pdf
http://www.cs.cmu.edu/%7Eggordon/boots-siddiqi-gordon-closing-loop-psrs.pdf
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act Infinite Features

• Can extend the learning algorithm to infinite feature spaces   
‣ Kernels

• Learning algorithm that we have seen is linear algebra
‣ works just fine in an arbitrary RKHS
‣ Can rewrite all of the formulas in terms of Gram matrices
‣ Uses kernel SVD instead of SVD 

Result: Hilbert Space Embeddings of Dynamical Systems

• handles near arbitrary observation distributions
• good prediction performance

L. Song, B. Boots, S. M. Siddiqi, G. Gordon, and A. J. Smola.  Hilbert 
space embeddings of hidden Markov models.  ICML, 2010. 

For details, see:
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Hilbert Space Embeddings of Hidden Markov Models
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Figure 4. Slot car inertial measurement data. (A) The slot

car platform and the IMU (top) and the racetrack (bot-

tom). (B) Squared error for prediction with different esti-

mated models and baselines.

this data while the slot car circled the track controlled
by a constant policy. The goal of this experiment was
to learn a model of the noisy IMU data, and, after
filtering, to predict future IMU readings.

We trained a 20-dimensional embedded HMM using
Algorithm 1 with sequences of 150 consecutive obser-
vations (Section 3.8). The bandwidth parameter of
the Gaussian RBF kernels is set with ‘median trick’.
The regularization parameter λ is set of 10−4. For
comparison, a 20-dimensional RR-HMM with Parzen
windows is learned also with sequences of 150 observa-
tions; a 20-dimensional LDS is learned using Subspace
ID with Hankel matrices of 150 time steps; and finally,
a 20-state discrete HMM (with 400 level of discretiza-
tion for observations) is learned using EM algorithm
run until convergence.

For each model, we performed filtering for different
extents t1 = 100, 101, . . . , 250, then predicted an im-
age which was a further t2 steps in the future, for
t2 = 1, 2..., 100. The squared error of this prediction
in the IMU’s measurement space was recorded, and
averaged over all the different filtering extents t1 to
obtain means which are plotted in Figure 4(B). Again
the embedded HMM learned by the kernel spectral al-
gorithm yields lower prediction error compared to each
of the alternatives consistently for the duration of the
prediction horizon.

4.3. Audio Event Classification
Our final experiment concerns an audio classification
task. The data, recently presented in (Ramos et al.,
2010), consisted of sequences of 13-dimensional Mel-
Frequency Cepstral Coefficients (MFCC) obtained
from short clips of raw audio data recorded using
a portable sensor device. Six classes of labeled au-
dio clips were present in the data, one being Human
Speech. For this experiment we grouped the latter five
classes into a single class of Non-human sounds to for-
mulate a binary Human vs. Non-human classification
task. Since the original data had a disproportionately
large amount of Human Speech samples, this grouping
resulted in a more balanced dataset with 40 minutes
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Figure 5. Accuracies and 95% confidence intervals for Hu-

man vs. Non-human audio event classification, comparing

embedded HMMs to other common sequential models at

different latent state space sizes.

11 seconds of Human and 28 minutes 43 seconds of
Non-human audio data. To reduce noise and training
time we averaged the data every 100 timesteps (corre-
sponding to 1 second) and downsampled.

For each of the two classes, we trained embedded
HMMs with 10, 20, . . . , 50 latent dimensions using
spectral learning and Gaussian RBF kernels with
bandwidth set with the ‘median trick’. The regulariza-
tion parameter λ is set at 10−1. For efficiency we used
random features for approximating the kernel (Rahimi
& Recht, 2008). For comparison, regular HMMs with
axis-aligned Gaussian observation models, LDSs and
RR-HMMs were trained using multi-restart EM (to
avoid local minima), stable Subspace ID and the spec-
tral algorithm of (Siddiqi et al., 2009) respectively, also
with 10, . . . , 50 latent dimensions or states.

For RR-HMMs, regular HMMs and LDSs, the class-
conditional data sequence likelihood is the scoring
function for classification. For embedded HMMs, the
scoring function for a test sequence x1:t is the log of
the product of the compatibility scores for each obser-
vation, i.e.

�t
τ=1 log

��
ϕ(xτ ), µ̂Xτ |x1:τ−1

�
F

�
.

For each model size, we performed 50 random 2:1
partitions of data from each class and used the re-
sulting datasets for training and testing respectively.
The mean accuracy and 95% confidence intervals over
these 50 randomizations are reported in Figure 5. The
graph indicates that embedded HMMs have higher ac-
curacy and lower variance than other standard alter-
natives at every model size. Though other learning
algorithms for HMMs and LDSs exist, our experiment
shows this to be a non-trivial sequence classification
problem where embedded HMMs significantly outper-
form commonly used sequential models trained using
typical learning and model selection methods.

5. Conclusion

We proposed a Hilbert space embedding of HMMs
that extends traditional HMMs to structured and non-
Gaussian continuous observation distributions. The
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this data while the slot car circled the track controlled
by a constant policy. The goal of this experiment was
to learn a model of the noisy IMU data, and, after
filtering, to predict future IMU readings.

We trained a 20-dimensional embedded HMM using
Algorithm 1 with sequences of 150 consecutive obser-
vations (Section 3.8). The bandwidth parameter of
the Gaussian RBF kernels is set with ‘median trick’.
The regularization parameter λ is set of 10−4. For
comparison, a 20-dimensional RR-HMM with Parzen
windows is learned also with sequences of 150 observa-
tions; a 20-dimensional LDS is learned using Subspace
ID with Hankel matrices of 150 time steps; and finally,
a 20-state discrete HMM (with 400 level of discretiza-
tion for observations) is learned using EM algorithm
run until convergence.

For each model, we performed filtering for different
extents t1 = 100, 101, . . . , 250, then predicted an im-
age which was a further t2 steps in the future, for
t2 = 1, 2..., 100. The squared error of this prediction
in the IMU’s measurement space was recorded, and
averaged over all the different filtering extents t1 to
obtain means which are plotted in Figure 4(B). Again
the embedded HMM learned by the kernel spectral al-
gorithm yields lower prediction error compared to each
of the alternatives consistently for the duration of the
prediction horizon.

4.3. Audio Event Classification
Our final experiment concerns an audio classification
task. The data, recently presented in (Ramos et al.,
2010), consisted of sequences of 13-dimensional Mel-
Frequency Cepstral Coefficients (MFCC) obtained
from short clips of raw audio data recorded using
a portable sensor device. Six classes of labeled au-
dio clips were present in the data, one being Human
Speech. For this experiment we grouped the latter five
classes into a single class of Non-human sounds to for-
mulate a binary Human vs. Non-human classification
task. Since the original data had a disproportionately
large amount of Human Speech samples, this grouping
resulted in a more balanced dataset with 40 minutes
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11 seconds of Human and 28 minutes 43 seconds of
Non-human audio data. To reduce noise and training
time we averaged the data every 100 timesteps (corre-
sponding to 1 second) and downsampled.

For each of the two classes, we trained embedded
HMMs with 10, 20, . . . , 50 latent dimensions using
spectral learning and Gaussian RBF kernels with
bandwidth set with the ‘median trick’. The regulariza-
tion parameter λ is set at 10−1. For efficiency we used
random features for approximating the kernel (Rahimi
& Recht, 2008). For comparison, regular HMMs with
axis-aligned Gaussian observation models, LDSs and
RR-HMMs were trained using multi-restart EM (to
avoid local minima), stable Subspace ID and the spec-
tral algorithm of (Siddiqi et al., 2009) respectively, also
with 10, . . . , 50 latent dimensions or states.

For RR-HMMs, regular HMMs and LDSs, the class-
conditional data sequence likelihood is the scoring
function for classification. For embedded HMMs, the
scoring function for a test sequence x1:t is the log of
the product of the compatibility scores for each obser-
vation, i.e.
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τ=1 log
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ϕ(xτ ), µ̂Xτ |x1:τ−1
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�
.

For each model size, we performed 50 random 2:1
partitions of data from each class and used the re-
sulting datasets for training and testing respectively.
The mean accuracy and 95% confidence intervals over
these 50 randomizations are reported in Figure 5. The
graph indicates that embedded HMMs have higher ac-
curacy and lower variance than other standard alter-
natives at every model size. Though other learning
algorithms for HMMs and LDSs exist, our experiment
shows this to be a non-trivial sequence classification
problem where embedded HMMs significantly outper-
form commonly used sequential models trained using
typical learning and model selection methods.

5. Conclusion

We proposed a Hilbert space embedding of HMMs
that extends traditional HMMs to structured and non-
Gaussian continuous observation distributions. The

thanks to Dieter Fox’s lab
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this data while the slot car circled the track controlled
by a constant policy. The goal of this experiment was
to learn a model of the noisy IMU data, and, after
filtering, to predict future IMU readings.

We trained a 20-dimensional embedded HMM using
Algorithm 1 with sequences of 150 consecutive obser-
vations (Section 3.8). The bandwidth parameter of
the Gaussian RBF kernels is set with ‘median trick’.
The regularization parameter λ is set of 10−4. For
comparison, a 20-dimensional RR-HMM with Parzen
windows is learned also with sequences of 150 observa-
tions; a 20-dimensional LDS is learned using Subspace
ID with Hankel matrices of 150 time steps; and finally,
a 20-state discrete HMM (with 400 level of discretiza-
tion for observations) is learned using EM algorithm
run until convergence.

For each model, we performed filtering for different
extents t1 = 100, 101, . . . , 250, then predicted an im-
age which was a further t2 steps in the future, for
t2 = 1, 2..., 100. The squared error of this prediction
in the IMU’s measurement space was recorded, and
averaged over all the different filtering extents t1 to
obtain means which are plotted in Figure 4(B). Again
the embedded HMM learned by the kernel spectral al-
gorithm yields lower prediction error compared to each
of the alternatives consistently for the duration of the
prediction horizon.

4.3. Audio Event Classification
Our final experiment concerns an audio classification
task. The data, recently presented in (Ramos et al.,
2010), consisted of sequences of 13-dimensional Mel-
Frequency Cepstral Coefficients (MFCC) obtained
from short clips of raw audio data recorded using
a portable sensor device. Six classes of labeled au-
dio clips were present in the data, one being Human
Speech. For this experiment we grouped the latter five
classes into a single class of Non-human sounds to for-
mulate a binary Human vs. Non-human classification
task. Since the original data had a disproportionately
large amount of Human Speech samples, this grouping
resulted in a more balanced dataset with 40 minutes
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11 seconds of Human and 28 minutes 43 seconds of
Non-human audio data. To reduce noise and training
time we averaged the data every 100 timesteps (corre-
sponding to 1 second) and downsampled.

For each of the two classes, we trained embedded
HMMs with 10, 20, . . . , 50 latent dimensions using
spectral learning and Gaussian RBF kernels with
bandwidth set with the ‘median trick’. The regulariza-
tion parameter λ is set at 10−1. For efficiency we used
random features for approximating the kernel (Rahimi
& Recht, 2008). For comparison, regular HMMs with
axis-aligned Gaussian observation models, LDSs and
RR-HMMs were trained using multi-restart EM (to
avoid local minima), stable Subspace ID and the spec-
tral algorithm of (Siddiqi et al., 2009) respectively, also
with 10, . . . , 50 latent dimensions or states.

For RR-HMMs, regular HMMs and LDSs, the class-
conditional data sequence likelihood is the scoring
function for classification. For embedded HMMs, the
scoring function for a test sequence x1:t is the log of
the product of the compatibility scores for each obser-
vation, i.e.

�t
τ=1 log

��
ϕ(xτ ), µ̂Xτ |x1:τ−1

�
F

�
.

For each model size, we performed 50 random 2:1
partitions of data from each class and used the re-
sulting datasets for training and testing respectively.
The mean accuracy and 95% confidence intervals over
these 50 randomizations are reported in Figure 5. The
graph indicates that embedded HMMs have higher ac-
curacy and lower variance than other standard alter-
natives at every model size. Though other learning
algorithms for HMMs and LDSs exist, our experiment
shows this to be a non-trivial sequence classification
problem where embedded HMMs significantly outper-
form commonly used sequential models trained using
typical learning and model selection methods.

5. Conclusion

We proposed a Hilbert space embedding of HMMs
that extends traditional HMMs to structured and non-
Gaussian continuous observation distributions. The
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L. Song, B. Boots, S. M. Siddiqi, G. Gordon, and A. J. Smola.  Hilbert space embeddings 
of hidden Markov models.  ICML, 2010. 
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• Bottleneck: SVD of Gram or Covariance matrix

‣ G: (# time steps)2

‣ C: (# features × window length) × (# time steps)

• E.g., 1 hr video, 24 fps, 300×300, features of past and 
future are all pixels in 2 s windows

‣ G: (3600 × 24) × (3600 × 24) ≈ 1010

Batch Methods
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• Two techniques

‣ online learning

‣ random projections

• Neither one new, but combination with spectral learning 
for PSRs is, and makes huge difference in practice

Making it Fast
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S−1MaoS := ΣT ,AO,H ×1 U
� ×2 φ(ao)

�(ΣAO,AO)
−1 ×3 (Σ

�
T ,HU)†

U left d singular vectors of ΣT ,H

• With each new observation, rank-1 update of:

‣ SVD (Brand)

‣ inverse (Sherman-Morrison)

• n features;  latent dimension d;  T steps

‣ space = O(nd): may fit in cache!

‣ time = O(nd2T): bounded time per example

• Problem: no rank-1 update of kernel SVD!

‣ can use random projections [Rahimi & Recht, 2007]
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� ×2 φ(ao)

�(ΣAO,AO)
−1 ×3 (Σ

�
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‣ SVD (Brand)

‣ inverse (Sherman-Morrison)

• n features;  latent dimension d;  T steps

‣ space = O(nd): may fit in cache!

‣ time = O(nd2T): bounded time per example

• Problem: no rank-1 update of kernel SVD!

‣ can use random projections [Rahimi & Recht, 2007]
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this data while the slot car circled the track controlled
by a constant policy. The goal of this experiment was
to learn a model of the noisy IMU data, and, after
filtering, to predict future IMU readings.

We trained a 20-dimensional embedded HMM using
Algorithm 1 with sequences of 150 consecutive obser-
vations (Section 3.8). The bandwidth parameter of
the Gaussian RBF kernels is set with ‘median trick’.
The regularization parameter λ is set of 10−4. For
comparison, a 20-dimensional RR-HMM with Parzen
windows is learned also with sequences of 150 observa-
tions; a 20-dimensional LDS is learned using Subspace
ID with Hankel matrices of 150 time steps; and finally,
a 20-state discrete HMM (with 400 level of discretiza-
tion for observations) is learned using EM algorithm
run until convergence.

For each model, we performed filtering for different
extents t1 = 100, 101, . . . , 250, then predicted an im-
age which was a further t2 steps in the future, for
t2 = 1, 2..., 100. The squared error of this prediction
in the IMU’s measurement space was recorded, and
averaged over all the different filtering extents t1 to
obtain means which are plotted in Figure 4(B). Again
the embedded HMM learned by the kernel spectral al-
gorithm yields lower prediction error compared to each
of the alternatives consistently for the duration of the
prediction horizon.

4.3. Audio Event Classification
Our final experiment concerns an audio classification
task. The data, recently presented in (Ramos et al.,
2010), consisted of sequences of 13-dimensional Mel-
Frequency Cepstral Coefficients (MFCC) obtained
from short clips of raw audio data recorded using
a portable sensor device. Six classes of labeled au-
dio clips were present in the data, one being Human
Speech. For this experiment we grouped the latter five
classes into a single class of Non-human sounds to for-
mulate a binary Human vs. Non-human classification
task. Since the original data had a disproportionately
large amount of Human Speech samples, this grouping
resulted in a more balanced dataset with 40 minutes
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11 seconds of Human and 28 minutes 43 seconds of
Non-human audio data. To reduce noise and training
time we averaged the data every 100 timesteps (corre-
sponding to 1 second) and downsampled.

For each of the two classes, we trained embedded
HMMs with 10, 20, . . . , 50 latent dimensions using
spectral learning and Gaussian RBF kernels with
bandwidth set with the ‘median trick’. The regulariza-
tion parameter λ is set at 10−1. For efficiency we used
random features for approximating the kernel (Rahimi
& Recht, 2008). For comparison, regular HMMs with
axis-aligned Gaussian observation models, LDSs and
RR-HMMs were trained using multi-restart EM (to
avoid local minima), stable Subspace ID and the spec-
tral algorithm of (Siddiqi et al., 2009) respectively, also
with 10, . . . , 50 latent dimensions or states.

For RR-HMMs, regular HMMs and LDSs, the class-
conditional data sequence likelihood is the scoring
function for classification. For embedded HMMs, the
scoring function for a test sequence x1:t is the log of
the product of the compatibility scores for each obser-
vation, i.e.
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For each model size, we performed 50 random 2:1
partitions of data from each class and used the re-
sulting datasets for training and testing respectively.
The mean accuracy and 95% confidence intervals over
these 50 randomizations are reported in Figure 5. The
graph indicates that embedded HMMs have higher ac-
curacy and lower variance than other standard alter-
natives at every model size. Though other learning
algorithms for HMMs and LDSs exist, our experiment
shows this to be a non-trivial sequence classification
problem where embedded HMMs significantly outper-
form commonly used sequential models trained using
typical learning and model selection methods.

5. Conclusion

We proposed a Hilbert space embedding of HMMs
that extends traditional HMMs to structured and non-
Gaussian continuous observation distributions. The
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this data while the slot car circled the track controlled
by a constant policy. The goal of this experiment was
to learn a model of the noisy IMU data, and, after
filtering, to predict future IMU readings.

We trained a 20-dimensional embedded HMM using
Algorithm 1 with sequences of 150 consecutive obser-
vations (Section 3.8). The bandwidth parameter of
the Gaussian RBF kernels is set with ‘median trick’.
The regularization parameter λ is set of 10−4. For
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Speech. For this experiment we grouped the latter five
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11 seconds of Human and 28 minutes 43 seconds of
Non-human audio data. To reduce noise and training
time we averaged the data every 100 timesteps (corre-
sponding to 1 second) and downsampled.
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bandwidth set with the ‘median trick’. The regulariza-
tion parameter λ is set at 10−1. For efficiency we used
random features for approximating the kernel (Rahimi
& Recht, 2008). For comparison, regular HMMs with
axis-aligned Gaussian observation models, LDSs and
RR-HMMs were trained using multi-restart EM (to
avoid local minima), stable Subspace ID and the spec-
tral algorithm of (Siddiqi et al., 2009) respectively, also
with 10, . . . , 50 latent dimensions or states.

For RR-HMMs, regular HMMs and LDSs, the class-
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the product of the compatibility scores for each obser-
vation, i.e.
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For each model size, we performed 50 random 2:1
partitions of data from each class and used the re-
sulting datasets for training and testing respectively.
The mean accuracy and 95% confidence intervals over
these 50 randomizations are reported in Figure 5. The
graph indicates that embedded HMMs have higher ac-
curacy and lower variance than other standard alter-
natives at every model size. Though other learning
algorithms for HMMs and LDSs exist, our experiment
shows this to be a non-trivial sequence classification
problem where embedded HMMs significantly outper-
form commonly used sequential models trained using
typical learning and model selection methods.

5. Conclusion

We proposed a Hilbert space embedding of HMMs
that extends traditional HMMs to structured and non-
Gaussian continuous observation distributions. The
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• We present spectral learning algorithms for PSR models of partially 
observable nonlinear dynamical systems. 

• We show how to update parameters of the estimated PSR model given 
new data

‣ efficient online spectral learning algorithm 

• We show how to use random projections to approximate kernel-based 
learning algorithms
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