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What is out there?
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" What is out there? Dynamical Systems

<+—— Past | Future ——

State

Dynamical System = A recursive rule for updating state
based on observations
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today I will focus on Spectral Learning Algorithms for
Predictive State Representations
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sense

s Predictive State Representations

parameters are only determined up to a similarity transform S € R**¢

if we replace
M,, — S 'M,,S
X1 — 5_1331

e S'le

the resulting PSR makes exactly the same predictions as the original one

e.g. P(o| z¢,do(ay)) =e' SS™tM,, ,SS™ ',




PSRs Are Very Expressive

Predictive State Representations

Reduced-Rank HMMs &
Reduced Rank POMDPS

HMMs & POMDPS

for fixed latent dimension d




Learning PSRs

can use fast,
statistically consistent,
spectral methods

to learn PSR parameters
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A General Principle

data about past
(many samples)

compress

predict

data about future
(many samples)

bottleneck

If bottleneck = rank constraint, then get a spectral method




Why Spectral Methods?

There are many ways to learn a dynamical system

 Maximum Likelihood via Expectation Maximization, Gradient Descent, ...
e Bayesian inference via Gibbs, Metropolis Hastings, ...

In contrast to these methods, spectral learning algorithms give

* No local optima:
» Huge gain in computational efficiency
* Slight loss in statistical efficiency




Spectral Learning for PSRs

moments of directly observable features
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273 covariance matrix of features of the future and past

2 A0,A0 covariance matrix of features present
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Spectral Learning for PSRs

moments of directly observable features

“trivariance” tensor of features of the future, present, and past
covariance matrix of features of the future and past
covariance matrix of features present

left d singular vectors of ¥+ 4

S_lMaOS = ZT,.AO,"H X1 UT X9 gb(ao)T(ZA@,A@)_l X3 (E;E,%U)T

the other parameters can be found analogously




Spectral Learning for PSRs

Spectral Learning Algorithm:
* Estimate2 7 40,% , Y71 , and X 40,40 from data
* FindU by SVD
* Plug in to recover PSR parameters

e Learning is Statistically Consistent
* Only requires Linear Algebra

For details, see:

B. Boots, S. M. Siddiqi, and G. Gordon. Closing the learning-planning
loop with predictive state representations. RSS, 2010.



http://www.cs.cmu.edu/%7Eggordon/boots-siddiqi-gordon-closing-loop-psrs.pdf
http://www.cs.cmu.edu/%7Eggordon/boots-siddiqi-gordon-closing-loop-psrs.pdf
http://www.cs.cmu.edu/%7Eggordon/boots-siddiqi-gordon-closing-loop-psrs.pdf
http://www.cs.cmu.edu/%7Eggordon/boots-siddiqi-gordon-closing-loop-psrs.pdf

Infinite Features

e Can extend the learning algorithm to infinite feature spaces
» Kernels

e Learning algorithm that we have seen is linear algebra
» works just fine in an arbitrary RKHS
» Can rewrite all of the formulas in terms of Gram matrices
» Uses kernel SVD instead of SVD

Result: Hilbert Space Embeddings of Dynamical Systems

* handles near arbitrary observation distributions
e good prediction performance

For detalls, see:

L. Song, B. Boots, S. M. Siddiqi, G. Gordon, and A. J. Smola. Hilbert
space embeddings of hidden Markov models. ICML, 2010.




An Experiment

10 20 30 40 50 60 70 80 90 100
horizon

L. Song, B. Boots, S. M. Siddiqi, G. Gordon, and A.]. Smola. Hilbert space embeddings
of hidden Markov models. ICML, 2010.




Batch Methods

e Bottleneck: SVD of Gram or Covariance matrix
»  G: (# time steps)?

» C: (# features x window length) x (# time steps)

e E.g.,1hrvideo, 24 fps, 300x300, features of past and
future are all pixels in 2 s windows

> G: (3600 x 24) x (3600 x 24) = 1010




Making it Fast

e Two techniques
» online learning

» random projections

* Neither one new, but combination with spectral learning
for PSRs is, and makes huge difference in practice
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U left d singular vectors of Y7 4

ST ' MaoS = Traom x1UT X2 ¢(a0) (Sa0.40) " x5 (574U)]

 With each new observation, rank-1 update of:
» SVD (Brand)

» inverse (Sherman-Morrison)
 nfeatures; latent dimension d; T steps
» space = O(nd): may fit in cache!

» time = O(nd?T): bounded time per example




Random Projections

U left d singular vectors of Y7 4

ST ' MaoS = Traom x1UT X2 ¢(a0) (Sa0.40) " x5 (574U)]

 With each new observation, rank-1 update of:
» SVD (Brand)

» inverse (Sherman-Morrison)

 nfeatures; latent dimension d; T steps
» space = O(nd): may fit in cache!

» time = O(nd?T): bounded time per example
* Problem: no rank-1 update of kernel SVD!

» can use random projections [Rahimi & Recht, 2007]




Experiment (Revisited)
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Conference Room
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Paper Summary

We present spectral learning algorithms for PSR models of partially
observable nonlinear dynamical systems.

We show how to update parameters of the estimated PSR model given
new data

» efficient online spectral learning algorithm

We show how to use random projections to approximate kernel-based
learning algorithms




