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Many problems in machine learning and artificial intel-
ligence involve discrete-time partially observable non-
linear dynamical systems. If the observations are
discrete, then Hidden Markov Models (HMMs) (Ra-
biner, 1989) or, in the control setting, Input-Output
HMMs (IO-HMMs) (Bengio & Frasconi, 1995), can
be used to represent belief as a discrete distribution
over latent states. Predictive State Representations
(PSRs) (Littman et al., 2002) are generalizations of
IO-HMMs that have attracted interest because they
can have greater representational capacity for a fixed
model dimension. In contrast to latent-variable repre-
sentations like HMMs, PSRs represent the state of a
dynamical system by tracking occurrence probabilities
of future observable events (called tests) conditioned
on past observable events (called histories). One of
the prime motivations for modeling dynamical systems
with PSRs was that, because tests and histories are
observable quantities, learning PSRs should be easier
than learning IO-HMMs by heuristics like Expectation
Maximization (EM), which suffer from bad local op-
tima and slow convergence rates. For example, Boots
et al. (2010) proposed a statistically consistent spectral
algorithm for learning PSRs with discrete observations
and actions.

Despite their positive properties, many algorithms for
PSRs are restricted to sets of actions and observa-
tions with only moderate cardinality. For continu-
ous actions and observations, learning algorithms for
PSRs often run into trouble: we cannot hope to see
each action or observation more than a small num-
ber of times, so we cannot gather enough data to es-
timate the PSR parameters accurately without addi-
tional assumptions. Previous approaches attempt to
learn continuous PSRs by leveraging kernel density es-
timation (Boots et al., 2010) or modeling PSR distri-
butions with exponential families (Wingate & Singh,
2007a;b); each of these methods must contend with
drawbacks such as slow rates of statistical convergence
and difficult numerical integration.

In this paper, we fully generalize PSRs to contin-
uous observations and actions using a recent con-
cept called Hilbert space embeddings of distribu-
tions (Smola et al., 2007; Sriperumbudur et al., 2008).

The essence of our method is to represent distributions
of tests, histories, observations, and actions as points
in (possibly) infinite-dimensional reproducing kernel
Hilbert spaces. During filtering we update these em-
bedded distributions using a kernel version of Bayes’
rule (Fukumizu et al., 2011). The advantage of this
approach is that embeddings of distributions can be
estimated without having to contend with problems
such as density estimation and numerical integration.

Our approach is similar to recent work that applies
kernel methods to dynamical system modeling and re-
inforcement learning, which we summarize here. Song
et al. (2010) proposed a nonparametric approach to
learning HMM representations in RKHSs. The re-
sulting dynamical system model, called Hilbert Space
Embeddings of Hidden Markov Models (HSE-HMMs),
proved to be more accurate compared to competing
models on several experimental benchmarks. Despite
these successes, HSE-HMMs have two major limita-
tions: first, the update rule for the HMM relies on den-
sity estimation instead of Bayesian inference in Hilbert
space, which results in an awkward model with poor
theoretical guarantees. Second, the model lacks the ca-
pacity to reason about actions, which limits the scope
of the algorithm. Our model can be viewed as an ex-
tension of HSE-HMMs that adds inputs and updates
state using a kernelized version of Bayes’ rule.

Grunewalder et al. (2012) proposed a nonparamet-
ric approach to learning transition dynamics in
Markov decision processes (MDPs) by representing
the stochastic transitions as conditional distributions
in RKHS. This work was extended to POMDPs by
Nishiyama et al. (2012). The resulting Hilbert space
embedding of POMDPs represents distributions over
the states, observations, and actions as embeddings
in RKHS and uses kernel Bayes rule to update these
distribution embeddings. However, the algorithm re-
quires training data that includes labels for the true
latent states. This is a serious limitation: it precludes
learning dynamical systems directly from sensory data.
By contrast, our algorithm only requires access to an
unlabeled sequence of actions and observations, and
learns the more expressive PSR model, which includes
POMDPs as a special case.
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