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Overview

• more general than finite-dimensional POMDPs

• today: learning is closed form, statistically consistent

• evaluate learning by planning in the learned model.

Predictive State Representations (PSRs)

Bringing system identification and reinforcement learning 
closer together

Learning models of dynamical systems with actions



Modeling a Dynamical System

. . . . . .aot+1 aot+2aot−2 aot−1 aot

Given a sequence of actions and observations
from a partially observable system



. . . . . .aot+1 aot+2aot−2 aot−1 aot

Naive Model: History

• updating is trivial
• harder: storage, prediction, ...

Want to learn something that is less naive

Insight:

• Q: What good is a dynamical system model?
• A:  It lets us predict the future.

Modeling a Dynamical System

ht
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Naive Model: History

• updating is trivial
• harder: storage, prediction, ...

Want to learn something that is less naive

Insight:

The purpose of a dynamical system model is to predict the future

Modeling a Dynamical System
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Less Naive Model: Predictions about the future

ht

Test: ordered sequence of action observation pairs τ = a1o1 . . . akok

aot+1 aot+2

Modeling a Dynamical System

Prediction of a test: Pr[τO | h || τA]

Pr[ot+1, . . . | ht || at+1, . . .]

• predicting is trivial
• harder: storage, updating, ...

A Predictive State Representation (PSR) consists of the 
probabilities of all possible tests
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PSRs: Storage

 Q: Do we have to store all possible tests?

 A: No.

It is often possible to predict all tests as linear functions
of a set of core tests 
(e.g. Partially Observable Markov Decision Processes)

Linear PSRs:

Let

Then

Q = {qi} be a set of tests

Q(h) = [Pr[qO

1 | h || qA

1 ], ...,Pr[qO

|Q| | h || qA

|Q|]] is a prediction vector
for these tests

is a core set of tests, iff for any test   :Q τ Pr[τO | h || τA] = rT
τ Q(h)
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Then

Q = {qi} be a set of tests

Q(h) = [Pr[qO

1 | h || qA

1 ], ...,Pr[qO

|Q| | h || qA

|Q|]] is a prediction vector
for these tests

is a core set of tests, iff for any test   :Q τ Pr[τO | h || τA] = rT
τ Q(h)

E.g., HMM: transition matrix   , observation probability matrix 

Intuition 2:
HMM state can be determined exactly as a linear function of 
a finite set of test predictions

T O

Intuition 1: 
probabilities of tests can be computed as a linear function of state

Pr[ot+k | ht] = OT
k
s(ht)




Pr[ot+1 | ht]

...
Pr[ot+k | ht]



 = As(ht)

A†




Pr[ot+1 | ht]

...
Pr[ot+k | ht]



 = s(ht)
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 Q: Do we have to store all possible tests?

 A: No.

Linear PSRs:

Let

Then

Q = {qi} be a set of tests

Q(h) = [Pr[qO

1 | h || qA

1 ], ...,Pr[qO

|Q| | h || qA

|Q|]] is a prediction vector
for these tests

is a core set of tests, iff for any test   :Q τ Pr[τO | h || τA] = rT
τ Q(h)

It is possible to predict all tests as linear combinations
of predictions of a set of core tests 
(e.g. HMMs, POMDPs)

PSR state is a prediction vector of core tests



PSRs: Updating State

Q(hao) =
MaoQ(h)

Pr[o | h || a]
=

MaoQ(h)
mT
∞MaoQ(h)

Then we can use Bayes’ Rule to update state recursively:      

Mao is a linear transition matrix  (one for each action-observation pair)    

is a normalizing vector      mT
∞

After taking action    and observing    we can update          recursively: a o

Let        be the matrix with rows        Mao rT
aoqi

rT
aoqi

= ·Pr[o, o1, . . . , ok | ht || a, a1, . . . , ak]

prob. of test         aoqi

Q(ht)

Q(ht)

prediction of 
core tests         

recall: Pr[τO | h || τA] = rT
τ Q(h)
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PSRs

In summary:

• PSR state is vector of predictions over a small set of core tests

• PSRs can predict any test as a linear function of state

• PSRs update state by applying a matrix        and then renormalizingMao



Previous Work

Would like to learn a PSR from sequences of observations and actions

In practice, finding a set of core tests is easy
but, finding a minimal set of core tests is hard 

Solution: from a very large set of tests (assumed core)
               search for a minimal set

learn    (including       ) by regressionMaoF

[Wolfe, James, Singh, 2005], [Wiewiora, 2005], [Bowling et. al, 2006]

iterative, have not been evaluated on planning problems
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Previous Work

In practice, finding a large set of tests capturing elements of 
the system that we want to model is easy

but, finding a minimal set of core tests is hard 

Discovery problem: find minimal set of core tests

Learning problem: find PSR parameters

Would like to learn a PSR from sequences of observations and actions



Previous Work

Previous Solutions: perform an incremental combinatorial search 
                                to try to grow a minimal core set

learn        etc. by regressionMao

[Wolfe, James, Singh, 2005], [Wiewiora, 2005], [Bowling et. al, 2006]

in practice require a huge amount of data



Previous Work

• Spectral algorithms for identifying 

• Linear Dynamical Systems
   [Van Overschee, De Moor, 1996], [Soatto,Chiuso, 2001], [Katayama, 2005], ...

• Hidden Markov Models 
   [Hsu, Kakade, Zhang, 2008]

• Reduced-Rank Hidden Markov Models
   [Siddiqi, Boots, Gordon, 2010]

• Closed-form, no local optima, statistically consistent

An alternative approach? Subspace Identification
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   [Van Overschee, De Moor, 1996], [Soatto,Chiuso, 2001], [Katayama, 2005], ...

• Hidden Markov Models 
   [Hsu, Kakade, Zhang, 2008]

• Reduced-Rank Hidden Markov Models
   [Siddiqi, Boots, Gordon, 2010]

• Closed-form, no local optima, statistically consistent

An alternative approach? Subspace Identification

 matrix factorization instead of combinatorial search
to solve the discovery problem



Today

This work:

• Specify a spectral learning (subspace identification) algorithm for PSRs 

• Extend model to use features of tests and histories 

• Apply algorithm to high dimensional data

• Plan in learned model

Major Features:

• Subspace Identification and PSRs “match” each other 
   (this is a powerful combination of model and learning algorithm)

• Combining system identification with planning
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Outline

1. Preliminaries & PSRs

2. Subspace Identification

3. Learning PSRs by Subspace ID

4. Extending Learning to use Features

5. Experimental Results
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very large set of tests
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strategy for system identification:

st
at

e

compress expand

bottleneck

predict

collect a very large 
set of histories

corresponding to a 
very large set of tests



Subspace Identification (SSID)

Insights:

• All necessary information for predicting future from past is in the
  covariance of past & future

• Bottleneck = rank constraint (SVD)

SSID algorithms for linear systems (Kalman filters and HMMs) are based 
on these insights

Benefits:

• Easy to estimate covariance

• SVD robust, closed form

• Statistically consistent, computationally efficient
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PSR Parameters

Mao

mT
∞

: cardinality of large set of tests and histories

: cardinality of minimal core tests m

n

:            transition matrixm×mMao

:           normalization vector1×mmT
∞

m×m

1×m

:           vector of prior probabilities of testsm× 1m∗ m∗ m× 1



PSR Parameters

: cardinality of large set of tests and histories

: cardinality of minimal core tests m

n

n×m:           matrix of linear prediction functionsR
R

n×m

S
m× n

:            matrix of minimal core test probabilitiesS m× n

Ri,j = Pr[τO

i | qO

j || qA

j , τA

i ]

Si,j = Pr[qO

i | Hj || qA

i ]



Spectral Learning for PSR Parameters

1. Define

2. Matrices factor into PSR parameters

Let      be some large core set of tests and     be a set of historiesT

RPT ,H D=
S

R
S

D=
MaoPT ,ao,H

H

linear functions
minimal core tests

stationary distribution

transition matrix

Idea: Recover PSR parameters from observable joint 
probabilities of tests and histories
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minimal core tests
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stationary distribution of 
histories

Idea: Recover PSR parameters from observable joint 
probabilities of tests and histories

prediction functions
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similarity transform
of the minimal PSR 

transition matrix      

other parameters can be recovered up to a linear transform as well 

PT ,ao,H = RMaoSDPT ,H = RSD

Bao ≡ (UTPT ,ao,H)(UTPT ,H)† = (UTR)Mao(UTR)−1

Pick a    s.t.          is invertibleU UTR
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Spectral Learning for PSR Parameters

similarity transform
of the minimal PSR 

transition matrix      

other parameters can be recovered up to a linear transform from observable 
matrices as well 

PT ,ao,H = RMaoSDPT ,H = RSD

Bao ≡ (UTPT ,ao,H)(UTPT ,H)† = (UTR)Mao(UTR)−1

Pick a    s.t.          is invertibleU UTR

normalizing vector     

initial test predictions

bT
∞ = mT

∞(UTR)−1

b∗ = (UTR)m∗

and given (from previous slide):



Spectral Learning for PSR Parameters

Q: Why is this important?

We can perform inference with transformed parameters!

the linear and similarity transforms cancel

Pr[o1, . . . , ok || a1, . . . ak]

=mT
∞Makok . . . Ma1o1m∗

=mT
∞(UTR)−1(UTR)Makok(UTR)−1 . . . (UTR)Ma1o1(U

TR)−1(UTR)m∗

=bT
∞Bakok . . . Ba1o1b∗

We can predict with transformed parameters!
Pr[T O |hk || T A]

=RMakok . . . Ma1o1m∗

=U(UTR)Makok(UTR)−1 . . . (UTR)Ma1o1(U
TR)−1(UTR)m∗

=UBakok . . . Ba1o1b∗
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Spectral Learning for PSR Parameters

Q: Why is this important?

We can perform inference with transformed parameters!

(the linear transforms cancel)

Pr[o1, . . . , ok || a1, . . . ak]

=mT
∞Makok . . . Ma1o1m∗

=mT
∞(UTR)−1(UTR)Makok(UTR)−1 . . . (UTR)Ma1o1(U

TR)−1(UTR)m∗

=bT
∞Bakok . . . Ba1o1b∗

We can also filter, predict, and plan with these parameters

we can parameterize PSRs in terms of observable quantities



Spectral Learning for PSR Parameters

The algorithm:

1. Look at triples                 in the data and estimate
    joint probabilities:         and

2. Compute SVD of          and take the left singular 
vectors as

3. Find transformed PSR parameters 
    e.g. 

�U

�T , ao,H�

�PT ,H
�PT ,ao,H

�PT ,H

�Bao ≡ (�UT �PT ,ao,H)(�UT �PT ,H)†



Spectral Learning for PSR Parameters

as data increases, 
estimates converge to true joint probs.

The algorithm:

1. Look at triples                 in the data and estimate
    joint probabilities:         and

2. Compute SVD of          and take the left singular 
vectors as

3. Find transformed PSR parameters 
    e.g. 

�U

�T , ao,H�

�PT ,H
�PT ,ao,H

�PT ,H

�Bao ≡ (�UT �PT ,ao,H)(�UT �PT ,H)†

transformed parameter estimates are consistent
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PSR inference, filtering, prediction, planning 
(other terms cancel)

Learning is closed form, statistically consistent

A   -dimensional PSR is considerably more expressive than 
a   -state POMDP

k
k

Two recent HMM algorithms are special cases of this PSR 
algorithm 
               [Hsu et al., 2009], [Siddiqi et al., 2010] 
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Spectral Learning for PSR Parameters

Learning is closed form, statistically consistent

A   -dimensional PSR is considerably more expressive than 
a   -state POMDP

k
k

Two recent HMM learning algorithms that outperform 
previous methods are special cases of this PSR algorithm 

               [Hsu et al., 2009], [Siddiqi et al., 2010] 

Transformed parameters allow accurate 
PSR inference, filtering, prediction, planning 
(other terms cancel)
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Spectral Learning with Features

In the real-world, PSR learning algorithms often need to 
see a lot of tests and histories to recover parameters

Solution: Use features of tests and features of histories

We redefine: 
[PT ,H]i,j = E(φTi (τO) · φHj (h) || τA)

[PT ,ao,H]i,j = E(φTi (τO) · φHj (h) · δ(o) || a, τA)

• can use a small set of features in place of a
   larger set of tests and a larger set of histories

• selection of features allows us to incorporate expert
   knowledge



PSR Parameters

Mao

mT
∞

: cardinality of large set of tests and histories

: cardinality of minimal core tests m

n

R

n×m

m×m

1×m

S
m× n

m∗ m× 1



PSR Parameters

Mao

mT
∞

: cardinality of large set of tests and histories

: cardinality of minimal core tests m

n

R

n×m

m×m

1×m

S
m× n

m∗ m× 1

ΦH
T

ΦT

l ×m

m× l

:           features of testsl ×mΦT

:           features of historiesΦH
T

m× l
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Spectral Learning with Features

small set of featuressmall set of features

large set of tests large set of histories

R
S=

D ΦH
T

ΦT

PT ,ao,H

minimal core tests

Mao

transition matrix
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Spectral Learning with Features

small set of featuressmall set of features

large set of tests large set of histories

R
S=

D ΦH
T

ΦT

PT ,ao,H

minimal core tests

Mao

transition matrix



Spectral Learning with Features

similarity transform
of the minimal PSR 

transition matrix      

other parameters can be recovered up to a linear transform as well 

is invertible    PT ,ao,H = ΦT RMaoSDΦHPT ,H = ΦT RSDΦH UTΦT R

Bao ≡ (UTPT ,ao,H)(UTPT ,H)† = (UTΦT R)Mao(UTΦT R)−1



Spectral Learning with Features

similarity transform
of the minimal PSR 

transition matrix      

other parameters can be recovered up to a linear transform as well 

is invertible    PT ,ao,H = ΦT RMaoSDΦHPT ,H = ΦT RSDΦH UTΦT R

Bao ≡ (UTPT ,ao,H)(UTPT ,H)† = (UTΦT R)Mao(UTΦT R)−1

can use the exact same algorithm to
recover PSR parameters



Spectral Learning with Features

Possible to learn PSRs for continuous observation spaces

Use kernel density estimation to model distributions of
observations: see paper for details.
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Experiments

Future of Robotics: Engineering + Learning

 State of the art: lots of engineering, comparatively little learning

• learning algorithms are not capable of converting a   
   huge amount of raw data to model of environment

• we believe our learning algorithm is much better
  than previous methods



Experiments

We test the capabilities of algorithm by dropping all 
engineering support:

The algorithm itself does all of the heavy lifting



Experimental Domain

agents can execute discrete but noisy translations and rotations

t = 1

observation at observation at
t = 1

Bird’s Eye View

3d View

t = 10

t = 10



Experiments

Goal: 

1. Learn a PSR model of how an agent’s 
observations change as it takes actions in the 
environment

2. Test learned model by planning 



Fix a random policy execute it many times from many different starting positions.

Learning

• sample 10,000 start positions

• collect short execution traces of observations (16x16 images) and actions (1-6)

• use all the methods from this talk to learn a PSR model



Experimental Results
project histories into learned subspace

colors are the predominant color in 
image following history

2 dimensions of a learned 5 dimensional subspace



Experimental Results

map points back to geometric space



To plan, need a reward function:

• regression from state to reward

• include reward as observation

learned a reasonable PSR subspace

Planning

the best test of the learned model is planning



• i.e. Hard! (in the worst case exponential in horizon)

• exponential depends on dim. of PSR
• Thus, PSRs can be exponentially better than POMDPs due to 
lower dimensionality of state space. 

• we can use approximate techniques (PBVI)

Planning in PSRs is just like planning in POMDPS:

Planning



goal

Planning



goal

Planning

goal



goal goal

Planning



Conclusion

Summary:

Related Work:
• Hilbert Space Embeddings of Hidden Markov Models (ICML-2010)
  [L. Song, B. Boots, S. Siddiqi, G. Gordon, A. Smola]

• Reduced Rank Hidden Markov Models (AISTATS-2010)  [S. Siddiqi, B. 
Boots, G. Gordon]

• Introduced a consistent, spectral learning algorithm for PSRs

• Extended learning algorithm to use features

• Successfully applied PSR learning to high dimensional data

• Planned in learned model

• Should be viewed in the context of merging powerful 
   subspace ID algorithms together with planning and RL



Thank you!




