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Application: Dynamic Textures!
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* Videos of moving scenes that exhibit stationarity properties
* Dynamics can be captured by a low-dimensional model

* Learned models can efficiently simulate realistic sequences
* Applications: compression, recognition, synthesis of videos

1S. Soatto, D. Doretto and Y. Wu. Dynamic Textures. Proceedings of the ICCV, 2001
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Linear Dynamical Systems?
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e State and observation models:

ZUt_|_1 — A(L‘t -

— Wt thN(OaQ)

yt = Cwy -
* Dynamics matrix:

e Observation matrix

_rUt ’UtNN(O,R)

A e R
. C E Ran

2 Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Trans. ASME-]BE



Linear Dynamical Systems?

This talk:

- Learning LDS parameters from data while ensuring a stable

dynamics matrix A more efficiently and accurately than previous
methods

e State and observation models:

ry41 = Al + wy wi ~ N(0,Q)
yt:C{L‘t T V¢t UtNN(OaR)
*|Dynamics matrix: A e R

* Observation matrix: (' ¢ RMXN

2 Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Trans.ASME-]BE
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Learning Linear Dynamical Systems

* Suppose we have an estimated state sequence

N

X1-= 1|21 Zo...27] € RMXT

* Detine state reconstruction error as the objective:

J(A) = ||AX1:7-1 — Xo:7

e We would like to learn A such that
Zl?t_l_]_ ~ AAZEt

1.e. A = minAJ(A)

2
7
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* Subspace ID uses matrix decomposition to
estimate the state sequence

e Build a Hankel matrix D of stacked observations
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3 P. Van Quverschee and B. De Moor Subspace Identification for Linear Systems. Kluwer, 1996
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Subspace Identification?

* In expectation, the Hankel matrix is inherently low-rank!

 Cxq
Cxo

E(D) = Czxs3

Cxo
Cz3
Cxqg

Cz3
Cxy
C.’IZ5

Cxq
C'Axq

CZBQ C.CC3

CAzxy C(CAxj
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* In expectation, the Hankel matrix is inherently low-rank!

[ Cxq1 Cuxo
Cxo Cx3

E(D) - CZU3 C’a:4

* Can use SVD to obtain the
low-dimensional state sequence
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Subspace Identification?

* In expectation, the Hankel matrix is inherently low-rank!

 Cxqy Cxp Cxz --- Czq Cxo Czs
E(D) - Cxo Caj3 Cxgq --- _ CAxqy CAxp C(CAzxs
| Cxz Czyq Cxg --- CA2z1 CA2z5 CAZ2z3
C
i C'A
* Can use SVD to obtain the — | A2 |[a1 @p @3 @4 -
low-dimensional state sequence CA3
For D with k observations per column, |
n X T
DUV =
mk X n svT
U

3 P. Van Overschee and B. De Moor Subspace Identification for Linear Systems. Kluwer, 1996



Subspace Identification?

* In expectation, the Hankel matrix is inherently low-rank!

[ Cx1 Czo Cz3
| Cxo Czz Cxg - -- _
E(D) = Cxz Cxgq Cxg ---

e Can use SVD to obtain the _

low-dimensional state sequence

For D with k observations per column,

D~UXVL _
C=U(1:m,:)

X=XV =21 Zo...%]

Cxq
C'Axq

CA%x1 CA2zo, CAZ?z4

CHJQ CCE3
CAzxy C(CAxj

C
C'A
C A2 [wl o X3 T4 ]
C A3
n X T
mk X n ZVT
U

3 P. Van Overschee and B. De Moor Subspace Identification for Linear Systems. Kluwer, 1996



* Lets train an LDS for steam textures using this
algorithm, and simulate a video from it!
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Y =[y1 yo...y




Simulating from a learned model
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Notation
A, ..,\N, :eigenvaluesof A (|A| >...> |A,]|)

v,...,v, :unit-length eigenvectors of A
Oy,...,0,, :singular values of A (0,>0,> ... 0,)
S, : matrices with |A;| -1
S, : matrices with o; -1
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Stability
* a matrix A is stable if |A;|- 1,ie.if A € S5

20 :
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Al_{ 0 0.3] °l

x,(2)
= -20 \ . .
l}\'ll 0.3 8] 5 t 10 15 20
1000
03 99] xu
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Stability

* a matrix A is stable if |A, |-

20

1,ie if A€ S,

. 0.3 10 x,(1),
Al_{ 0 0.3] i e BT e

|A;| =0.3 20l

1000
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20

_[03 99] xm j|
Az = {0.1 0.3] e
A, | =1.295 0 :

0

e We would like to solve

3

t

10 15

min, J(A)
st. Ae S,
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Stability and Convexity
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* But S, is non-convex! 10

* Letslook at §_ instead ...
- S_ is convex B0

- Sal‘l S)L

e Previous work*
exploits these properties to
learn a stable A by solving the semi-definite program
min 4 J(A)
st.Aec S,

4S. L. Lacy and D. S. Bernstein. Subspace identification with guaranteed stability using constrained
optimization. In Proc. of the ACC (2002), IEEE Trans. Automatic Control (2003)




* Lets train an LDS for steam again, this time
constraining A tobe in S



Simulating from a Lacy-Bernstein
stable texture model

Model is

| | over-constrained.
2l Can we do better?




Our Approach

* Formulate the S_ approximation of the problem as
a semi-definite program (SDP)

e Start with a quadratic program (QP) relaxation of
this SDP, and incrementally add constraints

* Because the SDP is an inner approximation of the
problem, we reach stability early, before reaching
the feasible set of the SDP

* We interpolate the solution to return the best
stable matrix possible



The Algorithm
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The Algorithm

objecfive function contours
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e,

stable
matrices

generated

constraint ™ unstable

matrices

A unconstrained QP solution (least squares estimate)
A,: QP solution after 1 constraint (happens to be stable)

Agyq Interpolation of stable solution with the last one
A 4 Lacy Bernstein (2002)

previous metho



* Lets train an LDS for steam using constraint
generation, and simulate ...



Simulating from a Constraint
(Generation stable texture model

Model captures
more dynamics
and is still stable




* Least Squares * Constraint Generation




Empirical Evaluation
* Algorithms:

— Constraint Generation - CG (our method)
- Lacy and Bernstein (2002) -LB-1

* finds a 0; - 1 solution

- Lacy and Bernstein (2003)-LB-2

* solves a similar problem in a transformed space

* Data sets
- Dynamic textures
— Biosurveillance baseline models (see paper)






Reconstruction error

e Steam video
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% decrease in objective
g

(lower is better)
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number of latent dimensions



Running time

e Steam video

Running time (s)

70

60

50

40

30

201

10|

1259.6 23978.9 79516.98 289.79

number of latent dimensions




Conclusion

* A novel constraint generation algorithm for learning
stable linear dynamical systems

* SDP relaxation enables us to optimize over a larger set
of matrices while being more efficient



Conclusion

* A novel constraint generation algorithm for learning
stable linear dynamical systems

* SDP relaxation enables us to optimize over a larger set
of matrices while being more efficient

* Future work:
- Adding stability constraints to EM
— Stable models for more structured dynamic textures

B




* Thank youl!






Subspace ID with Hankel matrices

Stacking multiple observations in D forces latent states

to model the future )
vio Y2 Y3 o Yr e
Y2 Y3 Yya - Yr41
D= |y3 w4 Ys - Yrq2 | = mk X n ZVT
| Yk Yk+1 Yk+2 0 Yr+k |[mkXT
C=U(1:m,:) U
e.g. annual sunspots data with 12-year cycles
. k=1 k=12
/-J- S f/\;)\\ \\
\, / / \ N\
Ve X N
]
t t

First 2 columns of U
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Stability and Convexity

The state space of a stable LDS lies
inside some ellipse

The set of matrices that map a particular
ellipse into itself (and hence are stable) is
convex

If we knew in advance which ellipse
contains our state space, finding A
would be a convex problem.

But we don’t

...and the set of all stable matrices is
non-convex
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