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Abstract

Let F'(pn, An) denote a random CNF formula consistingpaf randomly chosen 2-clauses afd
randomly chosen 3-clauses, for some arbitrary constats> 0. It is well-known that, with probability
1—o0(1), if p > 1thenF(pn, An) has alinear-size resolution refutation. We prove thaty probability
1 —o(1), if p < 1thenF(pn, An) has no subexponential-size resolution refutation.

Our result also yields the first proof that random 3-CNF folasuvith densities well below the
generally accepted range of the satisfiability threshald thus believed to be satisfiable) cause natural
Davis-Putnam algorithms to take exponential time (to findt&sg/ing assignment).

Introduction

Satisfiability has received a great deal of study as the dealoNP-complete problem. In the last several
years the very universality and flexibility that made sadisifity a natural starting point for NP-completeness

have also made it the basis for significant progress in thaisalof a variety of practical problems including

problems in constraint satisfaction [35], planning [28],2hd symbolic model checking [10]. The basic
tools for these advances are some very tight and efficiedeimgntations of satisfiability algorithms using

backtracking search based on the Davis-Putnam/DLL (DPkdaggdure [19, 18] and using heuristic search
based on hill-climbing and random walks [35, 34]. In a setisese satisfiability algorithms have become

the hammer and there is now a small industry turning comiouizt problems into nails.
In the last twenty years a significant amount of work has beentéd to the study of randomly generated
satisfiability instances and the performance of differégbi@thms on them. Historically, the motivation for

studying random instances has been the desire to understarithrdness of “typical” instances. While
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many generative models have been proposed over the yeadgma-SAT (described below) is by far
the most studied model. One reason for that is that rankl@@NF formulas enjoy a number of intriguing
mathematical properties, including a form of “expansiont] &he existence of 0-1 laws. Another reason is
that randonk-SAT instances appear hard to deal with computationallyafoertain range of the distribution
parameters, making them a very popular benchmark for geatid tuning satisfiability algorithms. In fact,
some of the better practical ideas in use today come fromghitsigained by studying the performance of
algorithms on random-SAT instances [25, 24].

Let Cy(n) denote the set of all possible disjunctiong:afistinct, non-complementary literals-¢lauses)
from some canonical set afBoolean variables. A randofCNF formula is formed by selecting uniformly,
independently, and with replacementclauses fromCy(n) and taking their conjunction. We will say that
a sequence of random eveidts occurs with high probability (w.h.p.) ifim,_.. Pr[€,] = 1 and with
constant probability ifim inf,, o, Pr[&,] > 0.

One of the most intriguing aspects of randérCNF formulas is th&atisfiability Threshold Conjecture
which asserts that for everly > 3, there exists a constanf, such that a randorm-CNF formula withn
variables andn = An clauses is w.h.p. satisfiable £ < «;, and unsatisfiable i\ > «;. Indeed, this
is known fork = 2 as [14, 20, 23], independently, proved = 1. Moreover, for allk > 2, it has been
proven [21] that there is a sharp transition from the sabidiaegime to the unsatisfiable regimeagoes
through a critical valuey,(n) (but not thatwy(n) converges witm). Empirical evidence (e.g., [36, 29])
suggests approximate values fof, e.g.«3 ~ 4.2. At the same time, for alk it is easy to prove that a
randomk-CNF formula withAn clauses is w.h.p. unsatisfiableAf > 2¥ In 2 and, recently, it was proved
in [6] that such a formula is w.h.p. satisfiableAf < 2% In2 — O(k).

For randomk-CNF formulas in the unsatisfiable regime, the behavior af D&gorithms, and the more
general class of resolution-based algorithms, is welleustdvod. Specifically, since every unsatisfiable 2-
CNF formula has a linear-size resolution refutation\it> cy = 1 then even the simplest DPLL algorithms
w.h.p. run in polynomial time on a random 2-CNF formula. Oa tlther hand, fok > 3 a celebrated result
of Chvatal and Szemerédi [15] asserts that w.h.p. a randk@nF formula in the unsatisfiable regime re-
quires an exponentially long resolution proof of unsatisfiy. More precisely, letes(F#) and DPLL(F')
be the sizes of the minimal resolution and DPLL proofs of theatisfiability of a formulaF’ (assume these
to be infinite if F is satisfiable). In [15] it was proved that for &ll> 3 and any constamh > 0, if F'is aran-
dom k-CNF formula withn variables and\n clauses then w.h.pes(F) = 29" and DPLL(F) = 24",
Thus, forA > 2F1n2 w.h.p. a randonk-CNF formulaf’ is unsatisfiable but all its resolution refutations are
exponentially long, implying that every DPLL algorithm mtake exponential time oR'.

Our main result extends the above theorem of [15] by allowlmgaddition of a random 2-CNF formula
on the same variables. Naturally, since, = 1, a formula containingl + ¢)n random 2-clauses w.h.p. will
have a polynomial-size refutation, as the 2-clauses alohgowwill have such a refutation. Thus, adding
(1 + €)n 2-clauses to a rando@CNF formula with density2® In 2, w.h.p. causes the proof complexity to
collapse from exponential to linear. Our main result asséat, in contrast, adding — ¢)n 2-clauses to
a randomk-CNF formula w.h.p. has essentially no effect on its proahptexity. More precisely, leF",
be the distribution of random CNF formulas with — ¢)n 2-clauses and\n 3-clauses, for some arbiirary
constants\, e > 0. (For simplicity, we focus ot = 3; extensions t& > 3 are straightforward.)

Theorem 1.1. For everyA, e > 0, if F ~ F!',, then w.h.pres(F) = 2") and DPLL(F) = 29",

Theorem 1.1 represents a sharp threshold in proof compleskitce (combined with the facty = 1)
it implies that for every fixed\ > 0, the proof complexity w.h.p. goes from exponential to linaa the
2-clause density goes through 1. Moreover, for> 2.28 it is known [4] that there exists > 0 such that
formulas from7-"”A are w.h.p. unsatisfiable. Combined with Theorem 1.1, tlusgi&ves a method for prov-
ing the first lower bounds on the running times of DPLL alduoris for randonsatisfiableCNF formulas.



More precisely, using standard techniques it is not hardhéovghat many natural DPLL algorithms when
applied to random 3-CNF formulas withn clauses, generate at least one unsatisfiable subproblesistson
ing of a random mixture of 2- and 3-clauses, where the 2-elatone are satisfiable. In particular, this is
true even for values ak for which there is strong empirical evidence of satisfiéjiiie. for A significantly
below the experimentally observed threshald~ 4.23 + 0.05. By Theorem 1.1, in order to resolve any
such subproblem (and backtrack) all DPLL algorithms negmbegntial time. Thus, we can prove that cer-
tain natural DPLL algorithms requixponentiatime significantly below the generally accepted range for
the random 3-SAT threshold. As an example, d(®DERED-DLL (which performs unit-clause propagation
but, otherwise, sets variables in some a priori fixed randaiBrésign) we prove

Theorem 1.2. WhenoRDERED-DLL is applied to a random 3-CNF formula with variables and3.81n
clauses, with constant probability it requires tira8().

Theorem 1.2 sheds light on a widely-cited observation ofmaal Mitchell, and Levesque [36], based
on experiments wittoRDERED-DLL on small problems, stating that random 3-SAT is easy in thisfizdle
region up to the 4.2 threshold, becomes sharply much hatdéeahreshold and quickly becomes easy
again at larger densities in the unsatisfiable region. Tipewuend of this ‘easy-hard-easy’ characterization
is somewhat misleading since, as we saw, the result of [ifafirasserts that w.h.p. random 3-CNF formulas
only have exponential-size proofs of unsatisfiability abdthe threshold. By now the rate of decline in proof
complexity as the density is increased has been analyze@laf8lv Our results show that the lower end
of this characterization is also somewhat misleading; o, fRheorem 1.2 shows that the exponentially
hard region foloORDERED-DLL begins at least at rati®.81, well before ratiod.2. This concurs with recent
experimental evidence that even the best of current DPLIempntations seem to have bad behavior below
the threshold [16].

We also note that one highly successful strategy, in pmchiz satisfiable formulas is to use a random-
ized DPLL algorithm and restart it with different randomsbit it begins to take too long [25, 24]. While
Theorem 1.2 only holds with constant probability, we wikghat random restarts are unlikely to reduce the
running time ofoRDERED-DLL (and similar algorithms) on randomCNF formulas down to polynomial.

Our proof is similar in general spirit to proofs of other lawgounds for resolution complexity but
requires considerably more subtlety. We first prove a nurobéetailed combinatorial properties of random
2-CNF formulas with(1 — €)n clauses. To do this we consider the standard directed geggsiogiated with
2-CNF formulas and, for such graphs, we introduce the natioifne clan of a vertex. Clans seem to be
the appropriate extension of “connected components” i ¢bntext, allowing for an amortization of the
“boundary” of the 2-CNF formula. By carefully bounding thember of vertices in clans of each size we
show that random 2-CNF formulas with — ¢)n clauses, w.h.p. have properties that guarantee that almost
all extensions by linear-sized 3-CNF formulas require evgmtial size resolution (and DPLL) proofs. This
latter argument relies on specialized sharp moment boundgkhas particular properties of clans.

1.1 Background and Related Work

Mixed formulas consisting of 2- and 3-clauses arise for a lmemof reasons. For example, a frequent
observation about converting problems from other domaittsgatisfiability problems is that they typically
become mixed CNF formulas with a substantial number of elas length 2 along with clauses of length
3. Another reason is that as DPLL algorithms run, they reéeelsssolve satisfiability omesidual formulas
restricted versions of their input CNF formula, which areximies of clauses of length at least 2. Randomly
chosen 3-CNF formulas are an important test case for saiigtfialgorithms and when given such formulas
as input, many DPLL algorithms produce residual formulag #re mixtures of 2- and 3-clauses that are



distributed precisely in the form that we analyze, i.e. andoumly random. Moreover, as we will see,
random mixtures of 2- and 3-clauses, originally introduaedhe(2 + p)-SAT model, are a very convenient
means for exploring the interface between computationalptexity and phase transitions.

1.1.1 Random(2 + p)-SAT

As an attempt to “interpolate” between random 2-SAT and oam@-SAT Kirkpatrick et. al. introduced the
so-called(2 + p)-SAT problem in [31]. Here, one considers randomly-gereetdbrmulas om variables
where a fractiorp of all clauses have length 3 (while the remaining have le2ytand where each clause
of lengthi = 2,3 is chosen uniformly fronC;(n). Using empirical results and non-rigorous techniques of
statistical physics, Kirkpatrick et. al. [31, 32, 33] gawxédence that there exists a critigal ~ 0.417 such
that forp < p. arandom(2 + p)-SAT formula goes from being satisfiable w.h.p. to being tisable w.h.p.
as the 2-clause density goes through= 1. In other words, fop < p. the 3-clauses seem irrelevant to the
formula’s satisfiability and random 2-CNF formulas canrfee!” the presence of up t@./(1 — p.) random
3-clauses. They also gave evidence that argurtie phase transition from satisfiability to unsatisfiailit
changes character from a so-called second order tran§itmtinuous “order parameter”) representative of
2-SAT to a fist-order transition (discontinuous “order paeter”) believed to be representative of 3-SAT.
In [4], Achlioptas et. al. proved a number of rigorous resdtir random(2 + p)-SAT. In particular,
they proved that a formula witfl — ¢)n random 2-clauses anfin random 3-clauses is w.h.p. satisfiable
foralle > 0 andA < 2/3 (and a satisfying assignment can be found by a simple litiear-algorithm),
whereas forA > 2.28 there exist (sufficiently smally > 0 such that w.h.p. it is unsatisfiable. These
results, respectively, impl9/5 < p. < 0.696. In [1], it was later conjectured that in fagt = 2/5, which
is equivalent to saying that for eveby > 0 there exists = ¢(6) > 0 such that a random formula with
(2/3 + 6)n random 3-clauses ard — ¢)n random 2-clauses is w.h.p. unsatisfiable. If true, thissstant
would have significant implications for the “replica methad statistical mechanics. Moreover, as we will
see in the next section, combined with our Theorem 1.1 it dipubvide a sharp threshold for the running
time of DPLL algorithms on random 3-CNF formulas.

1.1.2 DPLL algorithms below the threshold

By now, there has been a long sequence of results giving iedrbounds for the location of the random
3-SAT threshold. The best current bounds assert that a iBdGNF formula is w.h.p. satisfiable £ <
3.26 [5] and w.h.p. unsatisfiable A > 4.598 [26]. Combining this upper bound with the result of [15] we
see that every DPLL algorithm w.h.p. takes exponential toma random 3-CNF formula with > 4.598.

On the other hand, the bourdl < 3.26 above corresponds to the densities for which a specific DPLL
algorithm [5] finds a satisfying truth assignmevithout any backtrackingvith constant probability. In fact,
all lower bounds for the random 3-SAT threshold corresponatues for which this is true for some specific
algorithm? with improved bounds resulting from better criteria fortrhing and value assignment, rather
than from “greater search space exploration”.

Indeed, almost all algorithms that have been analyzed atorar8-CNF formulas fall in the class of
so-called “card-type/myopic algorithms” in the termingyoof [3, 5]. Such algorithms seek to create a
satisfying truth assignment by setting variables seqakytand by definition: i) they never backtrack, i.e.
they stop as soon as a contradiction is generated, ii) thegtama that the residual formula is always a
uniformly random mixture of 2- and 3-clauses on the unassigrariables (unit-clauses are satisfied as soon
as they occur). In order to maintain the latter property, piy@lgorithms use very limited information

1Establishing that a rando#CNF formula is satisfiable with constant probability forigem densityA* is enough to imply
thatay, > A”* since by Friedgut’s theorem [21] there cannot exist cotstAn < A, such that the probability of satisfiability is
bounded away from both 0 and 1 for &l € [A1, Ay].



to decide which variable(s) to set next and what values tmmagbence their name). Examples of such
algorithms areuc (where in the absence of unit clauses a random literal ig@aditrue) andsuc [13]
(where always a random literal in a random shortest clauassigined true).

It is not hard to prove that the largest density, for which a myopic algorithmd has constant proba-
bility of finding a satisfying assignment is precisely thegkst density for which w.h.p. the 2-clause density
of the residual formula remains below 1 througholi$ execution (see e.g. [3]). Fak > A, one can
endowA with a backtracking scheme (so that the execution of theraignyopic algorithm corresponds to
the first path explored in the tree of recursive calls) anehait to analyze its performance. Unfortunately,
any non-trivial amount of backtracking makes it hard to haeempact probabilistic model for the residual
formula (such as the one corresponding to the original d@lgurA). As a result, a probabilistic analysis
akin to that possible foA < A 4 appears beyond the reach of current mathematical tectmiguesee [17]
for a non-rigorous analysis based on ideas from statigticgs$ics). This is where our results come in:

If a DPLL algorithm A ever generates a residual formula that is an unsatisfiabledcem mixture of
2- and 3-clauses with 2-clause density bounded below 1,vhep. A will spend exponential time before
backtracking from it.

That is, by Theorem 1.1, once a node in the backtracking lséarceached that corresponds to an
unsatisfiable random mixture of 2- and 3-clauses (but whereiclauses alone are satisfiable), the search
cannot leave the sub-tree for an exponentially long timan@ird results (see e.g. [3]) thus imply that with
constant probability this is precisely what happensuorstarted with3.81n 3-clauses and fosuc started
with 3.98n 3-clauses. This is because for such initial densities, tlieesponding algorithm has constant
probability of generating a residual formuh*, with A ande known to be w.h.p. unsatisfiable by the
results of [4]. ’

Theorem 1.3. Any backtracking extension afc on a random variable 3-CNF formula withAn clauses
for constantA > 3.81 requires time2(™) with constant probability. Also, any backtracking extensof
Guc on a randomn variable 3-CNF formula withAn clauses for constanh > 3.98 requires time2¢(")
with constant probability.

We note that the only reason for which Theorem 1.3 is not a pigihability result is that with con-
stant probability each algorithm might generate a conttamh and backtrack (thus destroying the uniform
randomness of the residual formula) before reaching artigfiahle restrictionF" .. Nevertheless, by ex-
tendinguc andGuc with a natural backtracking heuristic introduced by Friane Suen [22], in Section 7
we create natural DPLL algorithms for which the analogueledrem 1.3 holds w.h.p.

In fact, we believe that Theorem 1.1 points to a much larggthtthan the specific implications for
the algorithms and backtracking scheme mentioned abovewil\decome clear from its proof in the
upcoming sections, the conclusion of Theorem 1.1 is qultesbwith respect to the probability distribution
of the clauses in the mixture. The essential ingredientaafellows. For the 2-CNF subformula, besides
satisfiability, the crucial property is that for most litex¢ghe associated “tree” of implications is rather small
(constant size on average and with a reasonable tail) and siasple structure. While we only prove this
property for random 2-CNF (as generated by backtrackingimes of myopic algorithms), it is not hard to
imagine that this property would be robust to the branchiage assignments made by any “moderately
smart” DPLL algorithm. For the 3-CNF subformula we only neledt the variable-clause incidence graph
is an expander. Again, while this property is satisfied gitpiy arbitrary subformulas of random 3-CNF
formulas it suggests that, in fact, random 3-CNF formulasraot the only formulas for which one could
hope to prove a result similar to Theorem 1.1. Moreover, priscisely this richness of expanders that
suggests that restarting a DPLL algorithm on a rande@NF formula is unlikely to yield dramatically
different results from run to run (unless, of course, oneilng to restart an exponential number of times).



Finally, as we discuss in section 8, the values 3.81 and 3.9 eorem 1.3 will be readily improved
with any improvement on the bound for the number of 3-clauses needed to make a formula Witk €)n
random 2-clauses unsatisfiable. In particular, if it turosthatA > 2/3 suffices (as mentioned earlier),
then our results would uniformly reduce the onset of exptiaebehavior toA 4 for everybacktracking
extension okeverymyopic algorithmA. In other words, we would get that every such DPLL algorithumsr
in linear-time forA < A 4, but requires exponential time fdx > A 4.

2 Bounding Resolution Refutation Size

The resolution rule allows one to derive a clagde/ B) from two clause$ AV z) and(BV z). A resolution
derivation of a claus€ from a CNF formulaF’ is a sequence of clausés, ..., C; = C such that eacly;
is either a clause aF' or follows from two clauses’;, Cj, for j, & < 7 using the resolution rule. A resolution
refutation of an unsatisfiable formulais a resolution derivation of the empty clause. The prodrefnces
define a directed acyclic graph of in-degree 2 whose verticeghe clauses of the proof. The size of a
resolution refutation is the number of clauses appearirtbeérproof. GivenF’, let res(F’) be the length of
the shortest resolution refutation 8t The Davis-Putham/DLL algorithm on a CNF formulaperforms
a backtracking search for a satisfying assignment'ddy extending partial assignments until they either
reach a satisfying assignment or violate a clausg oit is well known that for an unsatisfiable formuig
the tree of nodes explored by any DPLL algorithm can be ctoesldo a resolution refutation df where
the pattern of inferences forms the same tree.IDBX L(F') be the size of the smallest such refutation, i.e.
the size of the smallest DPLL tree associated with

For a resolution derivatiofl, let width(II) denote the maximum number of literals in any clausélof
For an unsatisfiable CNF formula lgtoo fwidth(F') be the minimum over all resolution refutatiobisof
F of width(IT). Ben-Sasson and Wigderson [9] showed that to prove loweandsoan resolution proof size
it suffices to prove lower bounds on resolution proof width.

Proposition 2.1 ([9]). There is some constaat> 0 such that if all clauses in a formul& have size at most
k, ,’aes(F) > 20(@roofwidth(F)fk]2/n) and DPLL(F) > 2p7’00f’width(F)*k_

Definition 2.2. Given a CNF formulaF’, a literal z is purein F' if and only ifz appears inF’ butz does not
appear inF'. We say that’ = . C if and only if there is a resolution derivation 6f from F' such that in
the associated directed acyclic graph there is a path froeryeelause off’ to the clause”'.

The following propositions yield a minor variation of thevmetandard method for proving lower bounds
on the width of resolution proofs [15, 8, 9].

Proposition 2.3. Let /' be a CNF formula and lef’ be a clause. I = . C then every pure literal irt”’
appears inC.

Proposition 2.4. Let F' be an unsatisfiable CNF formula having clauses of size at most there exist
integerss > 2k andt such that

(a) Every subformula of" on at mosts variables is satisfiable, and,

(b) every subformuld” of F' onv variables, wher%ls < v < s, contains at least literals that are pure
in £,

thenproofwidth(F') > t.



Proof. LetII be any resolution refutation df. To each claus€’ in II we associate the subformulg: of
F consisting of those clauses Bfthat are used iifil to deriveC. Observe that'c =5 C.

For the empty clausé, Fy, must be unsatisfiable and therefdrg must contain more thanvariables.
Now, let us follow the graph of the proof backwards startirapf A, at each step choosing the predecessor
whose associated clause has the larger number of varigbtesied that number is more thajpi2. Clearly,
this will lead us to a claus€, such thatF- has more thar/2 variables and the two predecessdrand B
in IT (which must exist sincé has more tha variables) each contain at moegt2 variables.

Since Fo = F4 U Fp, F¢ contains at most/2 + s/2 = s variables. Therefore by assumption
(2.4), F contains at least pure literals. By Proposition 2.3, every pure literal ig appears inC, so
proofwidth(F) > |C| > t. O

Recall that for each fixed > 0, Ci(n) denotes the set of ai*(},) non-trivial k-clauses on some
canonical set of, variables. We will consider a random formulaon n variables formed by selecting
uniformly, independently and with replacement = m3(n) clauses fronCy(n) andms = ms(n) clauses
from C(n). In particular, recall tha# , denotes the distribution whete; = (1 — ¢)n andm;s = An, for
some arbitraryconstantsA, e > 0. Our main technical lemma is the following analoguerfikedrandom
formulas of similar lemmas from [15, 8, 9] for randdfrCNF formulas.

Lemma 2.5. For everyA, e > 0 there exist = ((A,€) > 0 andp = (A, €) > 0 such that forf” ~ F7' o
(&) w.h.p. every subformula @f onv < (n variables is satisfiable, and
(b) w.h.p. every subformula @f onv variables With%(n < v < (n contains at leasin pure literals.

Theorem 1.1 follows immediately from Lemma 2.5, along witbgdsitions 2.1 and 2.4. However, the
presence of 2-clauses in formulAs~ F, makes the analysis required to prove Lemma 2.5 significantly
more involved than the corresponding analysis for rande@NF formulas, wheré > 3.

Definition 2.6. Let F' be an arbitrary CNF formula. Let
e V(F)={x,...,z,} denote the set of variables 6&f,
e |F'| denote the number of clausesih and

e thedegreeof a variablev, deg(v), be the number of clauses Bfcontaining one of, v (analogously
for literals).

e We say that a literal is near-purdn F if deg(¢) = 1.

For F,, the subformula consisting of the 2-clause#'ofve associate the directed graph( #,) whose vertex
setis{z1,...,zpn,Z1,..., Ty}, and whose edge set{é$z — y), (y — =) : (z Vy) isaclause inFy} .

e We say that a directed cyclé = ¢ — {y — --- — £, — {1 in ﬁ(Fz) is pureif all of ¢,,...,¢, are
near-pure inF'. (Note that each literal can appear in at most one pure cycle.

e We call a pure literal or pure cycle of a CNF formulaa pure itemof F'.
We derive Lemma 2.5 from the following lemma.
Lemma 2.7. For everyA, e > 0 there exisg = ((A,€) > 0 andp = (A, €) > 0 such that forF” ~ F7* y
(a) w.h.p. every subformula @f onv < (n variables contains at least one pure item, and

(b) w.h.p. every subformula @f on v variables with%gn < v < (n contains at leastin pure literals.

7



Proof of Lemma 2.5 from Lemma 2.Property (b) is identical to thatin Lemma 2.5. A formulangimally
unsatisfiableif it is unsatisfiable but each of its subformulas is satidéabClearly, every unsatisfiable
formula contains a minimally unsatisfiable subformula. btaver, a minimally unsatisfiable formuld
cannot contain a pure item, since it is easily seen that aigfysag assignment of the subformuld’ of F’
obtained by deleting all clauses involving the pure item loamextended to a satisfying assignmentbby
setting the pure or near-pure literals in the pure item te.tfTherefore, property (b) implies thathas no
minimally unsatisfiable subformula on fewer thamvariables and hence it has no unsatisfiable subformula
on fewer thar(n variables. Thus, properties (a) and (b) imply properti¢afal (b) of Lemma 2.5. O

The proof of Lemma 2.7 occupies Sections 3 to 6. The proofegjyas to first i) establish certain high-
probability properties of the 2-clauses Bf then ii) use these properties to prove that all subformofas
have relatively many pure items, and finally iii) show that eddition of 3-clauses does not significantly
reduce these pure items. In fact, we will not only show thagdasubformulas have many pure items but we
will also show that they have relatively few pure cycles, st they have many pure literals.

The overall argument is subtle because the 2-clausds afe arbitrarily close to being unsatisfiable
themselves and, further, because we need to handle albpossibformulas among the 2-clauses which,
unlike the casé > 3, requires a careful delineation of the different “localgiéorhoods” of each variable
among the 2-clauses. Indeed, this latter requirement siggtes the introduction of a novel graph-theoretic
concept in the digraph associated with the 2-clausds tbfat we call “clans”.

3 Analyzing Subformulas using Clans

To prove Lemma 2.7 we will in fact prove a stronger lemma. Irtipalar, rather than proving the lemma’s
assertion foﬂfg A» We will prove it for an arbitrary formula on variables formed by starting with a 2-CNF
formula satisfying certain properties and adding tait= An random 3-clauses. To complete the proof, in
Section 5, we prove thdf, satisfies these properties w.h.p. To describe these preper need to introduce
the following definitions.

Definition 3.1. Let F' be an arbitrary 2-CNF formula. For literalsy appearing in¥' let us writezx ~p y
iff =y or there exists a directed pathin(F) from z to y.

e For each literalz we letlng(z) = {y : y ~Fr z}.

e For aset of literals$s let G(S) = G (.S) be the undirected graph formed by considering the subgraph
of D(F') induced by the vertices correspondingSt@nd ignoring the direction of arcs.

— We will say thatlny(z) is tree-likeif G(Inp(x)) containsnocycle.
— We will say thatlny(z) is simpleif G(Ing(z)) containsat most oneycle.

e Foreach literal in £, theclanof z, Clanp(z) = Inp(2) U Uyery ) Inr(9).
Clang(z) if Inp(y) is tree-like for ally € Clang(x)

DefineClany(z) = {{x z} otherwise

e Foreach > 0, we letT;(F') = |{z : |Clan}.(z)| > i}|.

The importance of clans will become apparent in the proofafima 4.2. Roughly, they allow us to
identify a relatively small seP* of pure literals, such that eveiyc F' belongs to the clan of some member
of P*. Also, in a random formuld’ w.h.p. a very small number of literatswill have In(x) not tree-like.
These literals must be dealt with in a special way; the demiof Clan™ allows us to do so.

Lemma 2.7 will follow readily from the following two lemmas.
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Lemma 3.2. Fixp € (0,1), C > 0, andA > 0. Let F** be a formula formed by taking
e Any set of clauses froiiy(n) such that the resulting formul; satisfies:

1. For every literal/, In; (£) is simple.

2. There are at mosbg n literals £ such thatClang; (¢) contains a literalt’ with In; (£') not
tree-like.

3. For every literall, | Clang; (¢)| < log® .
4. Foralli > 3, T;(Fy) < 2(1 - p)'n.

e No more thamAn clauses fronC;(n), chosen uniformly, independently and with replacement.
There exist = ((A, p) andp = (A, p,¢) > 0 such that:
(@) W.h.p. every subformula t* onv < (n variables has at least one pure item.
(b) W.h.p. every subformula &t onwv variables with%gn < v < (n contains at leas.n pure literals.

Lemma 3.3. Fix ¢ > 0 and letF;, be a random 2-CNF formula formed by selecting uniformlyepehdently
and with replacementny < (1 — €)n 2-clauses fronCy(n). There existp = p(e), such that w.h.pF
simultaneously satisfies all four conditions of Lemma 3l2ef@F; = F3).

If one replaced Clan” by “In” throughout the statements of the conditions of Lemma Zh2nt
Lemma 3.3 would follow quickly from some standard and weltlerstood properties of random 2-CNF
formulae. Intuitively, Lemma 3.3 holds because clans affecgntly similar in structure to the seia ().
We defer the lengthy proof to Section 5. We prove Lemma 3.2:ictiSn 4.

Proof of Lemma 2.7 from Lemma 3.@iven A, ¢ > ( we start by applying Lemma 3.3 to get= p(¢) and
then apply Lemma 3.2 with that O

4 Proof of Lemma 3.2

Let p, A > 0, F be fixed and choosé™ as in the statement of the lemma. Consider any (candidate)
subformula# of F*. Letv = |V (H)| and denote by{, the subformula induced by the 2-clausedhf

The general idea of the argument is as follows. The subf@amflylhas many “loose ends”, namely the
pure items ofH, and the literals oV (H) — V (H;), that must be (mostly) covered by the 3-clauseg/of
in order for H to have very few pure items. We show that every literaHois in the clan of one of a small
subset of these loose ends. Thus, since the clan sizes dtetemaumber of loose ends must be large. In
order to cover all (or most) of these loose ends, we need a targber of 3-clauses, all of whose variables
lie within V' (H). However, since the number of variablesdnis small, it is highly unlikely that enough of
the random 3-clauses will “land” ifl. The formal analysis is a bit involved, and require a shageisized
moment bound to show that the rare large clans do not skewrdimlpilities too much. We present that
moment bound in the next section.

We now work through the details of the argument. Define thePset P(H) of literals based orif
as follows: P consists of the pure literals di,, the smallest numbered literal in each pure cycledef
and every literal on the variables &f(H) — V(H>). Clearly P contains every pure literal dff and also
contains one literal from each pure cycleféf(and since pure cycles are disjoint they are represented by
distinct literals). SaP(H ) contains the “loose ends” referred to above.



Lemma 4.1. For any subformulad of £*, the number of distinct literals in the 3-clausesidfis at least
the number of literals irlP( H) that are not contained in pure items H.

Proof. We define a one-to-one (but not necessarily onto) mapping fhe literals ofP = P(H) that are
not contained in pure items @f to the literals appearing in the 3-clausesbf Any literal  in P, that was
pure inHy or is a literal onV (H) — V(H2) but is not pure inH, must havez in some 3-clause off and

so we mape to . The pure cycles of{;, whose smallest numbered literals form the remainde? cére
disjoint from each other and from the other literalsfin Consider such a cycl€ that is pure inHds and
let z € P be the smallest numbered literal@h C will remain pure inH unless there is somgin C such
thaty appears in a 3-clause éf. We mapzx to 3. The fact that our map is one-to-one follows from the
disjointness property of the cycles. O

For convenience throughout the rest of this proof we willtes@lan(z) for Clany; (z) and for a sef”
of literals we will write Clan(7T") = |J . Clan(z). For any literalz (set of literalsT), let cover(z) (resp.
cover(T')) be the set of literals appearing @lan(z) (resp. Clan(7')) together with the complements of
those literals.

The next step is to show that there is a smalll3etC P such that every literal off lies in cover(P*).
It is easy to see that this is true if we simply také = P, and in fact this would be true even if we used a
much simpler structure than the clan. However, we neetb be smaller tha® (roughly half as small will
do), and this is the reason that we need to focus on clans.

Lemma 4.2. For any subformulaH of F'* there exists®* = P*(H) C P = P(H) such that
1. cover(P*) contains every literal appearing i and

2. |P*| < [3(|P] + t.)] wheret, = t.(H) is the number of literals: € P* such thatlng, (z) is not
tree-like.

Proof. Let P C P be the set of literals it® on variables inl/ (Hy). By definition, for everyr € P — P,

z e P—P. LetP,.. C P be the set of all literals: € P with Ingy (7) tree-like. First we prove that
for everyz € P, there is at least ong € P, y # x such thaty € In; (x). Forz € Pyee, Ing, (z) is
tree-like sincelny, (z) C Ing; (x). Therefore there is a vertexe Ing, (z) of in-degree 0 inD(H,) such

thatz # z. Furthermore, since appears in,, z € P so we can takeg = z ¢ {z,z}.
Note thaty € Iny,(z) C Ing;(z) impliesz € Ing; (y). Thus we form an undirected grajghwith

vertex set” and an edgéz,y) for each pair of literals withy € Ing; (z). Let P' O P,.. be the set of
vertices inG of positive degree, consider a spanning forest of the \esriic’’, and consider any bipartition
of that forest. LetP; be the smaller side of that bipartition. TherefdPe dominatesP”’, i.e. every vertex
in P’ — P, has a neighbor i, and thusP, U (P — P') dominates all ofP. Letting |P — P'| = a,
|PLU(P-P)| <a+ |L(|P|-a)] < [L(|P|+a)]. Adding the positive form of each literal iR — P to
Py U(P — P') we obtain a seP* of size at most 1 (|P| + a)]. SinceP — P’ C P* andPy.. C P',t. > a
and P* satisfies the claimed size condition.

By definition of P, P, andP*, P* contains the positive literal corresponding to each végiabV/ (H) —
V(Hz2), socover(P*) contains all literals on variables i(H) — V (H3).

Let = be a literal such that appears in,. In the digraphﬁ(Hg) walk forward fromz until either a
sink node is reached or a node on the path is repeated. If wh eesink of D(H,), the label of that sink
is a pure literaly in P which satisfiest € Ing,(y). If we reach a repeated node then we have found a
cycle inﬁ(Hz) and, since all clans contain at most one cycle, this cyclepisra cycle ofH,. The smallest
numbered literay in this pure cycle is inP and satisfies: € Ing, (y). Therefore, in either case there is a
literal y € P such thatr € Ing, (y).
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By definition of P* eithery € P* or there is some € P* such thaty € Ing,(z). Thereforez €
Clan(z) and thus botlr andz are incover(z). Thuscover(P*) contains all literals oiv' (H3) as well, so
the lemma follows. O

We now show how the property of having few pure items in a subita 4 of F™* requires that there
are a large number of 3-clausesif whose literals lie entirely in the relatively small sesper(P*(H)).

Lemma 4.3. LetT be a set of literals{ = |T'|. Suppose that is a subformula of™ with P*(H) = T,
t. = t.(H) and at most/10 pure items. Thet/, and thus formuld™, must contain at leastot/30 —¢./3
3-clauses whose literals are contained-twer(1"); further if ¢ > 10¢. then there are at leastt /5 3-clauses
of F”* whose literals are contained iwver(T').

Proof. By Lemma4.2, sincé*(H) =T, |P(H)| > 2|T|—t. = 2t—t.. By Lemma4.1, sincél has at most
t/10 pure items, the 3-clauses &f contain at leas?t — ¢, — ¢/10 literals and thereforé! contains at least
(19t/10 —t.)/3 3-clauses of™. By Lemma 4.2, all literals in these clauses areduer(P*) = cover(T).
In caset > 10¢. then this is at leagtl9/30 — 1/30)¢t > 3t/5. O

We will bound the probability that™ has a small subformul& with few pure items by bounding the
probability for each set of literal$' that there is a subformuld of F* with P*(H) = T and with at most
|T'|/10 pure items and then summing this bound over all choicés. dfhis immediately proves part (a) of
Lemma 3.2. We will also prove that for any subformuifaon a linear number of variableg?*(H)| is of
linear size but the number of pure cycles is at most polyitiyaic in size and, together with our probability
bound, this will prove part (b) of Lemma 3.2.

Lemma 4.4. Fix A, p > 0. There isK = K(A) and anng = ng(A) such that forn > ny and forT" a set
of literals, ¢ = |T’|, the probability thatt™ has a subformula? with P*(H) = T and at most /10 pure
items is at most

(@) R(T) = (K/(tn?))%/5|Clan(T)|""/% if t > log* n, and at most
(b) R'(T,t.) = (K/n?)'9t/30=te/3|Clan(T)| /10~ if t < log* n.

Proof. Sincef™ hasAn 3-clauses, for an integer> 1, the probability that at leastof them land entirely
in cover(T') is at most

(An) [|cover(T)|3 ’ <An> |Clan(T)|? ’
5 8(3) 5 (3)

< [K'/s(n®))*|Clan(T)|** 1)
for some constank’ = K'(A). Let K = 5K'/3. By assumption abouf’, ¢, < logn and so ift >
log* n thent > 10t.. Thus, by Lemma 4.3, we get the probability upper bound it @&#) by setting
s = [3t/5] and observing that the upper bound in (1) is at mést(¢n?)]*|Clan(T)[>* and that this is a
decreasing function of (which is therefore at mosk(7')) for R(T") < 1. Also, by Lemma 4.3, we get
the probability upper bound in part (4.4) by setting- [19¢/30 — ¢./3] and observing that (1) is bounded
above by[K'/(n?)]*|Clan(T)]** which is also a decreasing function efand thus at mosR'(7, t.) for
R'(T,t.) < 1. O

Lemma 4.5. Fix A, p > 0. The probability that there exists some $eof sizet < log* n and a subformula
H of F* with P*(H) = T and at most /10 pure items is)(1) in n.
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Proof. Suppose that < log* n. By assumption aboufy, any subformula with |P*(H)| = ¢ and with
at mostt/10 pure items would satisfy,(H) < logn and|Clan(P*(H))| < tlog®n < log’ n. For each
t < log*n and eacht,, t. < t, there are at mosf?")(,2 ) different setsT" with |T| = ¢ containing
t. literals z with non-tree-likelng; (z). Therefore, by Lemma 4.4(4.4), the probability that thereame
subformula# of F* with |P*(H)| =t, |t.(H)| = t. and at most/10 pure items is at most

(log n)tc (2n)t—tc (K/n2)19t/30—tc/3(10g7 n)19t/10—tc
which is bounded above by )! (log n)4*n~4/1> for some constank” = K"(A, p) > 0. The probabil-
ity that anH satisfying the conditions of the lemma withif) < log* n exists is then at most

logn log* n
Z Z (K//n—4/15 10g14 n)t < K//n—4/15 loglg n
te=1 t=t.

for n sufficiently large, which i®(1) in n. O

It will be convenient to rewrite the summations over all pbieschoices of sefl” = P*(H) with
IT| =1t > log* n in terms of a probability calculation involving a uniforméhosen random set of literals,
T, of sizet. RecallingClan® from Definition 3.1 , observe that for any su@h Clan(7") < 2Clan*(T)
since there are are mdsk* n literals in clans of literals: with Ingy (x) not tree-like.

Lemma 4.6. Fix p > 0. There is a constanB = B(p) > 0 such that for any and for7" a set of literals
with |T'| = ¢ chosen uniformly at randon¥ (|Clan*(7')|) < Bt.

Proof. Let B = ZiZIi(l — p)t. By assumption, for: chosen uniformly at random from among the
possible literalsE; (|Clan™(z)]) < 2+ 37,5 5i(1 - p) = B and thereforé&(|Clan*(T)|) < Bt. O

Lemma 4.7. For everyp > 0 there existsx = «(p) > 0 such that for allr > 0 we have forl" a set of
literals with |T"| = ¢ chosen uniformly at random,
Pry(|Clan*(T)| > (r + 16)Ey(|Clan*(T)])) < 2-e V™,
This lemma is proven in Section 6 using a moment generatingtiftn argument.

Lemma 4.8. Fix p > 0. There isK; = K, (p) such that for anyt > 0 and for a set of literalsI" with

|T'| = t > log* n chosen uniformly at randon#(|Clan(T')|*/%) < (K t)%/5.

Proof. Fix an integert > log* n and consider choosin@ uniformly at random with|7'| = ¢. Since

t > log*n, it suffices to prove the result fd€lan*(7')| instead of|Clan(T')| since the latter is at most
twice the former. We divide up the range of possible valuegCtin*(7")| into segments of size(T') =
Er(|Clan*(T")|) < Bt whereB = B(p) is the constant from Lemma 4.6 and use our tail bounds within
each segment. Therefore by Lemma 4.7,

Er(|Clan*(T)[*/°) < (16 - Ep(|Clan*(T)|))"/°

+ > Pro(|Clan®(T)| > (r + 16)(T)) x [(r + 17)w (1)
r>0

< [V(T)]Qt/5 x (169t/5 +2. Z efa\/Ft(,r + 17)9t/5)
r>0
Ko\ 9t/5
< 9t/5 _1
< (Bt)”? x ( 5 >
< (Klt)Qt/5,
for someK; = K;(a, B) = K (p). .
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Lemma 4.9. Fix A, p > 0. There is(y = (o(4A, p) > 0 such that the probability that™ has a subformula
H witht = |P*(H)| < {on and with at most/10 pure items i (1) in n.

Proof. By Lemmas 4.4(4.4) and 4.5, the probability of this eventisast} . q.4,,<|r<¢,n £(T) plus a
term that iso(1) in . Using Lemma 4.8, we obtain: o

S R < (2")(K/(m2>>3t/5ET<|01an<T>|9t/5>

t
T, T|=t

IN

(2en/t)" (K /(tn*))*/> (K10)™/°
= ((2¢)°K°K}t/n)!/?
< (Kat/n)'"?
for some constank’, = K3 (A, p) > 0.
Now if we let(y, = 1/(32K>) then the probability that such d exists is at most a term thata$l) in
n plus

n/(32Kz)
> (Kat/n)!P < Y 2!
t=log* n t>log* n
which is alsoo(1) in n. O

Lemma 4.9 immediately implies Lemma 3.2(a) sincédithas no pure items, then of course it has at
mostt/10 pure items where = |P*(H)|. It doesn’t quite prove Lemma 3.2(b) since we need to rulefbut
having fewer thapn pure items wheg¢n < |V (H)| < ¢(nwhereas Lemma 4.9 only rules out subformulas
H with up to ;5| P*(H )| pure items. So Lemma 4.9 falls short on the case wheteH )| = o(|V (H)|). We
rectify this problem by showing that|it’ (H)| = ©(n) then|P*(H )| = ©(n) and using our polylogarithmic
upper bound on the number of pure cycledin

Lemma 4.10.Fix A, p and consider any > 0. Then there exist§ = §((, p) such that ifH is a subformula
on more thant(n variables, therfP*(H)| > én.

Proof. Choosel = I((,p) > 2suchthaly,. ;2i(1-p)" < 3(. LetP; C P* = P*(H) be the set of items
in P*(H) whose clans have size greater tHaBy Lemma 4.2 and the fact thadver(P*) is closed under
complementations of literalgcover(P*)| > 2|V (H)| which is more tharin. By condition 4 of Lemma
3.2,|cover(P})| < 3¢n, and so we must have

1 1
|cover(P* — Pr)| > |cover(P*)| — |cover(Pf)| > (n — §(n > §Cn.

Since each literat in P* — Py has|cover(z)| < 2|Clan(z)| < 21, this implies tha{P* — Py| > (n/(41)
and thus proves the lemma with= {/(41). O

Proof of Lemma 3.2Given A, p we take( = (o(A, p) from Lemma 4.9 and we set = §((, p)/11 from
Lemma 4.10. Part (a) is immediate. AT is as in part (b), then it must have at leéa&f, p)n/10 = %,u,’n,
pure items. By condition 2 from Lemma 3.2, at mbgjn of these items can be pure cycles. Thereféie,
has at Ieas%/m — logn > pn pure literals; this proves part (b). O
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5 Properties of subcritical random 2-CNF formulae

We will now prove that subcritical random 2-CNF formulassfgtthe properties in Lemma 3.2 w.h.p.

Lemma 5.1. Let F» be random 2-SAT formula formed by pickingg = (1 — ¢)n clauses fromCsy(n)
uniformly, independently and with replacement. Theretexis= p(¢) > 0 such that w.h.p. all of the
following hold simultaneously.

1. For every literalt, Ing, (¢) is simple.

2. There are at mosbg n literals ¢, such thafinp, (¢') is not tree-like for somé € Clang, ().
3. For every literal/, |Clang, (£)| < log? n.

4. Foralli > 3, |{¢:|Clan}, (£)] > i}| < 2(1 — p)'n.

Proof. To prove this lemma it will be easier to work with random folamsiformed by including each of the
4(72‘) possible 2-SAT clauses independently with probabjpityn particular, we will prove that each of the
four properties holds w.h.p. in such a random formula when(1 — ¢)/(2n), for everye > 0. Given that,
using the observations of the paragraph below, it is easgtabksh that each of the four properties holds
w.h.p. when we pickn = (1 — ¢)n clauses fronCs(n), for everye > 0. This readily implies the lemma
since the intersection of any finite collection of high prioitity events also holds w.h.p.

First, observe that each of the four properties is monoteceedsing, i.e. adding clauses can only hurt a
formula in terms of having each property. Secondly, obs#ratif a formula contains multiple occurrences
of a clause (which could happen when we pick clauses witltacgphent), we can remove all but one of
these occurrences without affecting the property. Furtiteserve that ip = (1 — ¢')/(2n), then w.h.p. the
resulting formula has at lea&t — ¢)n 2-clauses for every > ¢'. Moreover, note that the resulting formula
is uniformly random conditional on its number of clausesafy, note that the same is true for a random
formula formed by picking clauses frofi, () and removing any duplicates.

To prove that each of the four properties holds w.h.p. when(1 — €)/(2n) it will be useful to define
for every literall € {zi,...,z,,Z1,...,Z,}, a setS = S(¢) of ‘related literals’, a setD = D({) of
‘dangerous questions’ and a 98t= B(/) of ‘bad answers’. We first define the sétsand D by applying
the following two-part procedure. Initially, we s8t=7 = {/} andD = (. (7" will be an auxiliary set.)

i) Repeat the following untill’ = 0: choose a literal: € T" and remove it fronil’; for every literal
y # x, if neithery nor g is in S then if (z VvV ) is in F» addy to both S andT’; otherwise, if either, or 7 is
in S, add(z V y)to D.

When part i) terminates I8y = S andDy = D. If Sy = {/1,...£4s} then addR = {/;,...,4,} tO
S. We will process the elements &fin sequenceas described below, with the processing of each element
further expandingS. The setsS and D that result after we process all elementsfofare the ones we
associate with literal (we will derive B from D). The processing of eadh € R creates a se$; and
amounts to the following procedure, analogous to what wdatid, where here we use an auxiliary g6t
initialized to7; = S; = {/;}.

i) Repeat the following untill’; = (: Choose a literak € T; and remove it fron;. For every literal
y # z, if neithery nor g is in S then if (z v §) is in F, addy to S, S;, and7}; otherwise, if eithery or 7 is
in S, add(z V y)to D.

The setB consists of those clausesinthat are also 5.

The reason for introducing(¢) is that|S(¢)| can be bounded by considering a “branching process”
argument, while at the same tin$&¢) allows us to capture the behavior bfy, (¢) and Clang, (¢) for a
“typical” literal £. Our branching process is analogous to an iterated vers$ithre doranching process used
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to bound the component sizes in sub-critical random graphjs [n particular, after running such a process
once, we run a new independent process for each vertex inrdtepfocess. Naturally, we need some
additional twists to handle the fact that we have a directeglgon literals (where each clause creates two
directed edges) and the fact that the presence of cyclessiaddranching process analogy imperfect.

To prove that each of the first three properties holds w.hepwill first show two deterministic relations
betweenS and B (Claim 5.2 below) and then we will give a tail bound figt(¢)| for a fixed literal/. To
prove the fourth property, we will need to do some additiomalk in order to show that the number of
literals whose clan-star has size at leasta sharply concentrated random variable.

Claim 5.2.

1. If B(¢) = 0, thenIng,(¢) is tree-like andClan, (¢£) = S(¢). Moreover, for all/’ € Clang, (),
Ing, (¢') is tree-like.

2. If |B(¢)| <1, thenlnp, (¢) is simple andng, (¢) C S(¥).

Proof. SupposeB(¢) = (), i.e., thatF, contains no elements dP(¢). In creatingSy(¢), we mimicked a
search procedure discoverifigy, (¢) and did not find any cycles; the only potential locations fdges in
D(F,) that lead taSy(¢) were those corresponding to clause®if(¢). Since, by assumptio, N Dy (¢) =

(0, it follows that the search is completgy(¢) = Inp,(¢) andIng,(¢) is tree-like. Moreover, by the same
reasoning, sincé, N D(¢) = (), eachS;(¢) is tree-like and

[So0(6)]

U me@= U S0
j=1

y€lnp, (€)

and thusClang, (£) = S(¥).

Suppose thaf’, contains precisely one element bf(Z). If that element is not inDy(¢) then by the
above argumenin g, (¢) is tree-like andunp, (¢) = So(¢) C S(¢). therefore we consider the case that the
element is inDy (). There are two kinds of clauses By (¢): those corresponding to ‘internal’ edges, those
edges(y, z) wherez, y € Sy(£), and ‘external’ edges, those that would create an égge) in D(F3) (and
also the edgéz, y)) wherez,y € Sy(¢). If the single element oDy (¢) N F» corresponds to an internal
edge thenSy(F;) = Inp, (¢) andIng,(4) has precisely one cycle. If that element corresponds tareadte
edges(y, z) and(z,y) wherez,y € Sy(¢) thenSy(¢) is internally tree-like and we find precisely one cycle
involving this pair of edges in the subgraph®(F») induced byS,(¢) U R(¢). The search folnp, (¢) does
not end withSy () because we have missed exploring fromnd fromy. However, in creating (£) we also
search from every literal iR(¢) and, since none of the elementdii/) — Dy (¢) is in F5, these searches will
fully exploreIng, (z) andlng,(y) and thus will finish the exploration dhiz, (£), yieldingIng, (¢) C S(¢).
Furthermore, no additional cycles will be found in these setd thudnz, (¢) will be simple. O

Claim 5.3. Fix any literal £ and letS = S(¢). There exists = o(e¢) > 0 such that for everyy > 2,
Pr[|S| > q] < (1 —0)4.

Proof. Let C,, be the distribution of the number of vertices in the conrciemponent’(v) of a fixed
vertexv in a random graptG(2n,p = (1 — €)/(2n)). Since each clause appears in the formula with
probability p it is easy to show (see e.g. [12]) that the size of the treeesponding t,(£) and each of the
trees corresponding to the differe$if(£) is dominated by, ,,.
Let X ~C,, and let
W=Wi+Wy+---+Wx
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where thel/; are i.i.d. random variables with; ~ C, ,,. Observe tha2lW dominatesS(¢)| since each
|Si(£)| is dominated by¥; for ¢ > 1. To analyze|S(¢)| we will obtain an upper tail bound oW using a
standard moment generating function argument. Forhay0 we have

Pr[W > q] = Prlexp(hW) > exp(hq)]
exp(—hq)E(exp(hW)) ,

IN

using Markov’s (or Bernstein’s) inequality. Note now that

k
E(exp(hW)) = Y Pr[X =k|E (H exp(hWZ-)) 2)
E>1 i=1
k
= ZPr[X = k] HE(exp(hWi)) )
E>1 i=1
= > Pr[X = k] (B (exp(hW;))* | (4)
E>1

where passing from (2) to (3) uses that the random varidiblgare independent while passing from (3) to
(4) uses that they are identically distributed.

LetPr[W; = k] = Pr[X = k] = pi. Letc =1 — €. To bound (4) we will use the following well-known
facts (see, for example, p.156 in [7]). Namely, that asytigaby in 7,

pr = (1/c) (ce_c)]C kR /! (5)
and that for alk < 1,
> pr=1. (6)
k>1

Further, let us note that the functigitz) = ze ™ * is continuous and increasing iih 1), going fromf(0) =
0to f(1) = e~!. In particular forall0 < e < 1,ifc = 1 —¢,d = ¢+ €?/3 andh = €/3, then
ce t" < de~? andd < 1. Moreover,de ¢ < e~! which will be useful in bounding&(exp(hW)). With
all this in mind,

E(exp(hW;)) = Zpk exp(hk)
k>1

= (1/c) > (ce™ k=1 /R

k>1

< (1/e) Y (de™)FEr1 k!

k>1
= djc .

Thus,

E(exp(hW)) < > pe(d/c)*
E>1

= (1/e) ) (de ) /k!

k>1

< (o)) (deHhr

k>1
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which is a geometric series with ratiz—“*t! < 1 depending only or and therefore converges to some
U(e) < oo. Therefore, forl > ¢ > 0 there ist = 7(¢) > 0 andgy = go(€) such that for aly > qo,

Pr[W >¢q] < exp(—hq)Ul(e)
e3
~ e (~54)

< 1-7)7.

To obtain an upper bound fall ¢ as opposed to just those larger than we observe that for any fixed
value ofg > 1, Pr[W > ¢] < 1, and so there exists' = ¢'(, q9) such that for all > 1,

Pr[W >¢] < (1 -0¢")? . (7)
Now, lettingo = ¢'/2, we see that
Pr(|S(6)] > ¢) < Pr[W > ¢/2] < (1 = 0")9? < (1 - 0)".
U

Claim 5.4. W.h.p. there are at mosig n literals for which|B(¢)| > 0 and no literals for whichB(¢)| > 1.

Proof. Observe thatD(¢)| < 2|S5(¢)|* and that each element 6f(¢) appears in the formula with probabil-
ity p < 1/n. Therefore, for any,

Pr[[B(0)] > 0] < pE(2IS(OP) < 10p+ 3 (1 = 0)¥2k%p = O/,
k>2

for some constant’ = C(¢). Therefore, the expected number of literalwith |B(£)| > 0 is bounded by
2C and by Markov’s inequality, w.h.p. there are at mogfn such literals. Similarly, observe that

pepol> 1 < e ((1501)) < om

and therefore w.h.p. no such literals exist. O

Proof of 1. By Claim 5.4 w.h.p. for every we are in one of the two cases of Claim 5.2. In both cases
Ing, (£) is simple.

Proof of 2: By Claim 5.4, w.h.p. there are at mast » literals not falling in the first case of Lemma 5.2. It
is only for such literals thaflany, (¢) could contain somé such thafing, (¢') is not tree-like.

Proof of 3: First observe that by (7) there exists a constastich that w.h.p. for everg, S(¢) has size at
mostC log n. Since w.h.p. everyB(¢)| < 1, everylng, (£) is contained in its associatet{¢) and therefore
has size at mogt' log n. Therefore for any,

(Clang (£)]

IN

g (Ol + Y up @)

y€lnp, (£)
Clogn + (Clogn)?

<
< logn .

Proof of 4: We will choosey later as a function of. Observe that we only need to considesuch that
B(¢) = () sinceB(¢) # () precisely wherClany, (£) has a literal’ with Ing, (¢') not tree-like.
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For these literals, by Claim 5.2lang, (£) = S(¢). Therefore fori > 3, by linearity of expectation and
Claim 5.3, ,
E(T;(Fy)) <2n x (1 —o0)". (8)

Our next step is to show that for eacthere exists); < E (7;(F3)) such that w.h.p. for all > 3,
|T3(Fy) — Qi <n®/* . (9)

To prove (9) we will need to do some work before appealing torecentration inequality. The reason
for this is that, a priori, replacing a single clausdincould changd’;(F,) dramatically, for some; luckily,
this is an unlikely event. To capture this last fact we wittagduce a family of random variablég with the
following properties: i) w.h.pU;(F,) = T;(F>) for all 4, and ii) by definition (of thdJ;), replacing a clause
in F, can affect eacl/; by at mostpolylog(n). Thus, appealing to a large deviation inequality for the
will yield the desired result.

The random variable§; are motivated by the following observation.

Observation 5.5. If z € Clanp, (y) theny € Clanp,(z). Thus, if B = max, |Clang,(x)|, then no literal
appears in more tha® clans.

Recall now that for every literal, Clan*(£) C Clan(¢) and w.h.p|Clan(¢)| < log® n for all £. There-
fore, the above observation suggests that when addingviegha single are’ in ﬁ(Fg) there are at most
log® n literals for whichClanj, (¢) changes. This is becau§any, (¢) can change only if it contains one
of the two endpoints of and, by our observation, each endpoinEa@fppears in at mosbvg® » clans.

This leads us to introduce the notion of themponentDomp(¥), of a literal /. The domponents of
all literals in a 2-SAT formulaF” are determined as follows. We first associate with eacte @mcD(F) a
count(€) equal to the number of clan-stars in whigls present{ is present in a clan-star if it was followed
at least once in determining that clan-star). We then cnaeatd)graptﬁ’(F) of ﬁ(F) by removing all arcs
& such thatcount (&) > log® n. The domponent of each literéis then its clan-star i’ (F). If for a literal
¢, Domp(£) = Clan}, (£) then we will say thaDomp(¢) is good Analogously tdl;(F) we let

Ui(Fy) = |{z : |Domp(z)| = ¢ andDomp(x) is good}| .

Note that for allz, by definition, U;(Fy) < T;(F») and thereforeéE(U;(Fy)) < E(T;(F»)). Further,
note that by part 3 of the lemma w.h.p(F) = D'(F'). Therefore, to prove (9) it suffices to takg =
E(U;(F,)) and prove that w.h.p. for all |U;(Fy) — E(U;(Fy))| < n®/%,

To prove that the random variablég are concentrated around their expectation we considerrtie p
ability space corresponding to the, independent choices of clauses fraim(n) that determing?. We
claim that for any possible set of values for these choices f@r any set of clauses), changing the value
of any single random variable (i.e. replacing a clause witnes other clause) can only affebomp(¥)
for at most4 log® . literals. To prove this claim we break-down the replacentéri clause to four steps
corresponding to the four arcs that are removed/add(f@{n). The claim then follows by the fact that the
removal/addition of each such arc can affBeinp(¢) for at mostlog®  literals. This last assertion follows
trivially from the fact that, by the definition of domponenthe arcé being added (removed), cannot be
traversed (have been traversed) during the determinatitire@omponents more thasg® n times.

Given the above claim, we can apply the following inequadityvicDiarmid [30] to get that the proba-
bility of each.D; deviating byn?/* is bounded byxp(—n'/?). The union bound then implies that w.h.p. no
D; deviates by that much.
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Theorem 5.6 ([30]). LetX = (X, Xo,...,X,,) be a family of independent random variables with each
X, taking values in a sel;,. Suppose that the real-valued functipriefined o[ [ A, satisfies

1f(x) = f(X)] < e

whenever the vectoss andx’ differ only in thek-th coordinate. Lef be the expected value of the random
variable f(X). Then for anyt > 0,

Pr{f(X)>p+t] < exp (—2t2/ 3y ci) and
PUf(X) <p—1] < exp(-22/3 )
Combining (8) and (9) we get that there exists- o(¢) > 0 such that w.h.p. foi > 3,
Ty(Fy) < 2n x (1 — o) +n®* . (10)

Further, recall that by (7)
w.h.p. T;(Fy)=0foralli > Clogn . (12)

Let us now choose < o such tha(1 — ¢)¢198™ > n=1/4, Thus, for alli < C'logn
In x (1—¢)' >2m3/* . (12)

We claim that w.h.p. for all > 3,
T;(Fy) < (4n) x (1 - ¢)" . (13)
If > C'logn then (13) holds by (11). if < C'logn then by (10), (13) ané < o, respectively,
< mx(1—o) +n*t
< 2 x(1—0)'+2nx (1—¢)
< dnx(1—¢).

T;(F2)

By (10) and (13) it follows that there j§ < ¢ such that w.h.p. for all > 3, T;(F,) < 2n x (1 —p)®. O

6 Proof of Lemma 4.7

We will prove a somewhat more general concentration statensast in terms of picking weighted balls
without replacement.

Lemma 6.1. Let B be a set ofn weighted balls, each balt having integerweight(z) > 0. Let B; denote
the number of balls with weiglitand suppose that there is;gg> 0 such that

B; < (1 —p)m, foralli>0 . (14)

Then there is am’ > 0 such that for every > 1 and1 < ¢t < m/2, if we choose a random subsetC B
of ¢ balls, and let =}, weight(z) then

Pr[W > 4(1 + £)?B(W)] < 2exp(—a/&t) .

Lemma 4.7 follows from Lemma 6.1 by setting = 2n, B; = |{z : Clan®(z) = ¢ + 2}
and4(1 + €)? = r + 16 and observing that = /4 + r/4 — 1 > max{1, /7/3}.

, o =d'/3,
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Proof of Lemma 6.1We start by considering’ to be defined in the following, equivalent, manner. Set
be an infinite sequence of balls formed by choosing ballsoumify, independently andith replacement
from 5. Let W be the sum of the weights of the firstlistinct elements of.

Let us consider the prefiR = p1, po,...,pq Of S whered = 2(1 + &) x ¢. In particular, let us form a
random seR’ C 3, by scanningP linearly and adding t&’ every ball not seen before, until eithgt'| = ¢
or we exhausP. Let

d
W' = Z weight(z) and Q= Z weight(p;) .
i=1

TzeR!

Then, by (the miracle of) linearity of expectation, we sest #(Q) = 2(1 + £)E(W) and, thus, for any
E>0

Pr[W > 4(1 + &)?’E(W)] < Pr[W' > 4(1 + €)’B(W)] + Pr[W' £ W]
< Pr[Q > 4(1 + &)’E(W)] + Pr[W' £ W]
<

Prj@Q > (2+ E(Q)] + Pr[W' £ W] .

ForW' £ W to occur it must be that we pickeq1 + ¢)¢ balls out ofr balls with replacement and got
fewer thant distinct balls. We start by proving that for &ll> 1, the probability of this event is bounded
above byexp(—£t/2). For this, we first observe that the expected number of bedied after drawing the
i-th distinct ball and until drawing thg + 1)-st distinct ball ism/(m — ¢). Therefore, since < m/2, it
follows that after drawin@(1 + ¢)t balls we expect at leaét + ¢)¢ distinct balls. To prove the probability
bound we will use Theorem 5.6. In particular, we }étbe the label of theé-th ball drawn and we lef be
the number of distinct balls. Clearly, the random varialjl&s} are independent and we can tale= 1
for all k. Therefore we get that the probability we draw fewer thaistinct balls, for alé > 1, is bounded

above by
2
Pr{f(X) < 1] < Pr[f(X) < i — £1] < exp (—%) < exp(—¢t/2) .

We will prove below thaPr[Q > (2 + {)E(Q)] < exp(—0&t) for somed = 6(p) > 0. Combining this
with the estimate folV’ # W we get that forr > 1 the probability of havingV > 4(1 + ¢)?E(W) is at
mostexp(—0¢t) + exp(—£t/2) < 2exp(—d/{t) for @ = min{¢, 1/2} as required.

To prove our tail bound o) we first note that for any > 0,

Pr[Q > 2+ OBQ)] = Prlexp(hQ) > exp((2 + E)hE(Q))]
< E(exp(hQ)) x exp(—(2 + OMB(Q)) . (15)

Now let {Q;}¢_, be i.i.d.r.v. defined by); = weight(p;). Thus,Q = Z?Zl Q; and as a result

d
E <H exp(hQi)>

i=1

E(exp(hQ))

d
= JIE (exp (hQy))
=1

= (E(exp (hQ:)))" . (16)

To simplify notation let us replacg; with 7" in the rest of the proof and let = E(T).
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To go from (17) to (18) we use (14). To go from (18) to (19) weuiegh < p, which suffices to
guarantee the sum’s convergence. Finally, to go from (192®) we use that foh > 0, e > 1 — h.

E(exp(hT)) = ZPr i] exp(hi)
= ZPr[T =] (1 4 hi + (exp(hi) — hi — 1)) (17)
< 1+hp+ Y (1= p)(exp(hi) — hi—1) (18)
=1
B 1 h+p
- 1+h“+(1_p)<p—1+exp(—h)_ p? ) (19)
1 h+
< 1—|—h,u—|—(1—p)(p_—h— p2p> (20)
= 1+hp+ (( ; (21)

Now, substitutingh = p? in (21) we get (22), while (23) follows from > 1 > (p+ 1)~}

3

E 3 1+ 3 p 22
(exp(p°T)) < +pu+p+1 (22)

< 1+20% . (23)

Note now that, by (15) and (16), for &l > 0,

( E(exp(hT)) . > 2(1+6)t

Pr[@Q > 2+ 6E(Q)] < exp((2 + &) RE(T

E(exp(hT)) )+
<W> x exp(—2h&put) . (24)

Takingh = p3, (23) implies that the ratio in (24) is bounded by 1. Thusgsim > 1, if § = 2p3, then

Pri@ > (2 + HE(Q)] < exp(-0¢t) .

7 Implications for Satisfiability Algorithms

A number of algorithms for finding satisfying assignments@NF formulas operate by building a partial
assignment step by step. These algorithms commit to thgramsints made at each step and operate on a
residual formula in which clauses already satisfied have been removed, Wialeemaining clauses have
been shortened by the removal of their falsified literals.dalesuch algorithmg$orward searchalgorithms

and they include the myopic algorithreg andGuc mentioned in the introduction, as well as several more
sophisticated variants [13, 14, 2, 5]. During the executibany such algorithm a partial assignment may
produce clauses of size 1 (unit clauses) in the residualdl@mvhich in turn create addition&drcedchoices

in the partial assignment, since the variables appearinmiinclauses have only one possible assignment
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if the formula is to be satisfied. The choices made by a forwsaatch algorithm when no unit clauses are
present are callefiee As we saw, inuc a free choice amounts to assigning a random value to a random
unassigned variable; iauc a random literal in a random clause of smallest size in thewaksformula is
satisfied; the branching rule oRDERED-DLL amounts to assigning O to the smallest-numbered unassigned
variable (which makes a simple forward search versicoRIPERED-DLL probabilistically equivalent toc

for randomk-CNF).

We are interested in extensions of forward search algostionsomplete algorithms via backtracking. In
any such extension, if a path in the search tree leads to eadliction, the algorithm must begin backtracking
by undoing all the (forced) choices up to the last free chaice flipping the assignment to that variable.
From there, perhaps the simplest option would be for theriggo to act as if it had reached this point
without backtracking and apply the original heuristic teide which variable(s) to set next. An alternative
heuristic which we call FS-backtracking (inspired by [28])he following: When a contradiction is reached,
record the portion of the assignment between the last freieeland the contradiction; these literals become
hot After flipping the value of the last free choice, instead @king the choice that the original heuristic
would suggest, give priority to the complements of the Hetdils in the order that they appeared; once the
hot literals are exhausted continue as with the originafieec. FS-backtracking is quite natural in that this
last part of the partial assignment got us into trouble infittsé place.

A key property of FS-backtracking that is useful in our as@y as in that of [22], is that as long as
the value of each variable in a partial assignment has bggretliat most once, the residual formula is
uniformly random conditional on the number of clauses ofhesize. This property will be very useful
for us as it would allow us to apply Theorem 1.1 to residuairfolas generated after some backtracking
has already occurred. We emphasize that while the origimdilvation for introducing FS-backtracking is
technical convenience, FS-backtracking is also in factramely good algorithmic idea. Specifically, given
a forward search algorithm, let us write A-SIMPLE to denote its extension using simple backtracking
and A-FS for its extension using FS-backtracking. Initial expemts comparingpRDERED-DLL-FS t0
ORDERED-DLL (which uses simple backtracking) on random formulas absabetween 3.8 and 4.0 show
that the histogram of run-times of FS-backtrackingignificantly betteithan that of simple backtracking
throughout the range.

Any DPLL algorithm A has the property that for any residual subformifacreated byA, either A
satisfiesF” or A produces a resolution refutation Bf. Thus, to prove lower bounds for DPLL algorithms,
our plan is to prove that each such algorithm is likely tovarat a point during its execution in which the
residual formulaF” is unsatisfiable but any resolution refutationfFdfmust have exponential size, implying
that A must run for exponential time beyond that point.

Let us say that a DPLL algorithm is at.astageif preciselyt variables have been set.

Definition 7.1. Lete = 10~*. At-stage of a DPLL algorithm ibadif the residual formula at that stage is
the union of a random 3-CNF formula wifB.281 + ¢)(n — t) clauses and a random 2-CNF formula with
(0.999 =+ €)(n — t) 2-clauses, where < n/2.

Recall from our discussion in the introduction that fornsuées in Definition 7.1 above are w.h.p. unsat-
isfiable while, by our Theorem 1.1, w.h.p. all their resauatrefutations have exponential size.

Lemma 7.2. LetAyc = AorpEREDDLL = 3.81 and letAgyc = 3.98.

1. For eachA € {UC,ORDERED-DLL,GUC}, an execution oainy backtracking extension ol on a
random 3-CNF formula witi\ 4n clauses reaches laadi-stage with constant probability.

2. For eachA € {uC,ORDERED-DLL,GUC}, an execution of algorithnd-FS on a random 3-CNF
formula withA 4n clauses reaches badi-stage w.h.p.
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Corollary 7.3. LetAyc = AorpereppLL = 3.81 and letAgyc = 3.98.

1. For eachA € {UC,ORDEREDDLL,GUC}, an execution oiny backtracking extension ol on a
random 3-CNF formula with\ 4n clauses takes tim%(") with constant probability.

2. For eachA € {UC,ORDERED-DLL,GUC}, an execution of algorithmd-FS on a random 3-CNF
formula withA 4 clauses takes tim2?(™ w.h.p.

Note that in Lemma 7.2 and Corollary 7.3 when we refeoRDERED-DLL we considerlany algorithm
that extends the first branch of the standard versiobRISERED-DLL that does simple backtracking.

Proof of Lemma 7.2The lemma follows from results in [13, 3, 22]. Below we outlithese results and show
how they can be combined. The original analyses in thesepamge largely geared towards understanding
the ratios between clauses and variables at which rard@NF formulas remain satisfiable almost surely,
particularly in the case thdt = 3. In fact, virtually the only method known for determiningaler bounds

on the satisfiability threshold for 3-CNF formulas is basedanalyzing such algorithms. These analyses
apply primarily to forward search algorithms, suchuasandGuc.

A forward search algorithm is a prefix of any of its backtrackiextensions — it corresponds to the
first path explored in the backtracking search tree: We wiidivg that our full DPLL algorithms reach bad
t-stages by proving that the corresponding prefixes of theseutions reach such baestages.

We restate the previous analyses of some of the forwardtse&gorithms on random 3-CNF formulas.
The key property shown in all of these analyses is that wheydhe run on uniformly random formulas, the
residual formula at each stage in these prefixes remaingraomif random conditional only on the number
of clauses of each length. To state this more precisely/(&X denote the set of variables not assigned a
value aftert steps and le€’;(¢) denote the number of clauses in the residual formula witbttep after ¢
steps. Then, for each the set ofj-clauses in the residual formula is distributed as a se&t;¢f) clauses
drawn uniformly, with replacement among afl(‘vg.t)') j-clauses on the variables Vi(t).

Given the above claim, to prove the lemma it suffices to prbaedtarting with a random 3-SAT formula
with An clauses, with suitable probability there existsuch that the residual formula aftesteps has the
appropriate number of-clauses for each < j < 3; i.e., it remains now to analyze the valuesf(t)
as a function oft for the various algorithms. As is usual in such analyse$oalyh the forward search
algorithm would stop precisely when a 0-clause in the rediflrmula is created, we first do the analysis
of the evolution of the residual formula without taking irgocount this stopping condition and then prove
that with appropriate probability no O-clause is created.

Forj = 2,3, it can be shown that the number tlauses at time can be approximated by the scaled
solution to a pair of differential equations. In particuldre following claims were proved in [13, 3] for
UC,0RDERED-DLL and in [22] forGucC.

UC,0ORDEREDDLL: For anys > 0, w.h.p. forall0 <¢ < (1 — 6)n,

Cs3(t) = Al —t/n)> - n+o(n) , (25)
Cy(t) = %(t/n)(l—t/n)2-n+o(n) . (26)

For anyA > 2/3 let « be the unique solution Az — 3Az2 + 41n(1 — z) = 0.
Gguc: Foranyé > 0, w.h.p. forall0 < ¢ < (a — 6)n,

C3(t) = Al —t/n)’ n+o(n), (27)
Cy(t) = <%t/n — %(t/n)z +In(1 — t/n)> (1—t/n)-n+o(n) . (28)
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For the number of 1- and O-clauses we will use another keynafahich, intuitively, amounts to saying
that if the density of the residual 2-CNF subformula remdosnded away from 1, then 1-clauses do not
accumulate and with positive probability no O-clauses &ex generated. More precisely, if for a given
there exis®, e > 0 such thaty < (1 — 6)n and w.h.p. for alb <t < ¢y, C2(t) < (1 — €)(n — t), then with
probability p = p(6,¢) > 0, C1(to) + Co(to) = 0. (Note that since O-clauses are never removed from the
residual formula, having’; (o) = 0 means that no 0-clauses were generated during thefisgeps.)

To gain some intuition for the last claim we observe that fbofthe algorithmsA we consider and all
t=0,...,n — 1, the expected number of unit clauses generated intsep’>(t)/(n — t) + o(1). Since
each algorithm can satisfy (and thus remove) one unit clausach step, unit clauses will not accumulate
as long as this rate is bounded abovelby ¢ for somee > 0. In fact, under this conditior(’; (¢) behaves
very much like the queue size in a stable server system. hicplar, there exist constanfdf = M (6)
andk > 0 such that w.h.pCy(t) < log®n for all ¢, and w.h.p.>>, C1(t) < Mn. This implies, that the
number of O-clauses generated is dominated by a Poissoomavatiable with constant mean (the constant
depending orl/). Moreover, there is a > 0 such that w.h.p. there is no periodlog’ n consecutive steps
in which (7 is strictly positive.

Now, by substituting the given values fdx, ¢ in equations (25)—(28) we see that indeed there exists
t < n/2 such that at time w.h.p. we have the right number of 2- and 3-clauses for a bafigroation.
Moreover, up to that, w.h.p. the density of 2-clauses stays uniformly below 1, &imerefore, with positive
probability we indeed get a bad configuration. In partigular UC,0ORDERED-DLL, if A = Ayc = 3.81,
this occurs when =~ .22625n. ForGuc, if A = Agyc = 3.98, this occurs when =~ .243n. This yields
our positive probability results for arbitrary backtraogiversions ofsc, ORDERED-DLL, andGuUC.

FS-Backtracking. As we saw above, as long as the density of the residual 2-QbfBignula is bounded
below 1, the number of 1-clauses in one of the forward sedgdrithms behaves like a random walk with
negative drift and a barrier at 0. As a result, it is naturatlitdde an algorithm’s execution intepochs
where a step ends an epoch i€’ (¢) = 0. From our discussion above, each epoch has constant edpecte
length and w.h.p. no epoch lasts more than a polylogaritmuimber of steps.

Frieze and Suen [22] developed a method for improving theesscprobability of the above forward
search algorithms with a small amount of backtracking uieghotion of epoch. This limited backtracking
allows one to backtrack to the beginning of the current egdcih not further into the past). This epoch
begins with a free choice followed by a sequence of forcedtelso As in the usual backtracking algorithms,
in Frieze and Suen’s method one flips the value of the assignmade by the last free choice but, unlike
usual backtracking algorithms, in their method one als@ flife value of the assignmentab variables set
so far during the current epoch. After all these values apgdli, if there are any unit clauses remaining
then these propagations are done to finish the epoch. If augelis generated during this epoch after the
flip then the algorithms fails. After the epoch is completertlall assignments are fixed and the algorithm
continues as before.

Frieze and Suen’s method does not do full backtracking aeckthre, like the forward search algo-
rithms, is an incomplete search procedure. It is easy tokctiet our modification, FS-backtracking, ex-
tends it to a complete backtracking search in such a wayhkatsidual formulas that occur in their limited
backtracking algorithms at the end of each epoch also agseresidual formulas using FS-backtracking.
Although Frieze and Suen applied their method onltac, creating a procedure they calledics, it is
clear that it can be used and analyzed in exactly the sameaentorrany algorithm having the property that
the residual formula is uniformly random conditioned on iienber of clauses of each length.

The first observation of Frieze and Suen’s analysis is ttatdkidual formula resulting after the flip
is uniformly random conditional on the number of clauses ahelength. (This was the motivation for
the particular form of backtracking and would not be true & did not flip all variables set so far during
the epoch.) To see this, we separate the clauses of the ak&doula at the beginning of the last epoch
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into volatile clausesthose containing a variable whose value is tentative in ey be flipped, and the
remaining non-volatile clauses. Clearly, and in every stgfng the epoch, the set of non-volatile clauses
remains uniformly random conditional on their size. Eaclatite clause may contain literals that agree or
disagree with the tentative value assignment. If a volaideise contains any variable that disagrees with
the tentative assignment then, when the assignment isdljppe clause will be satisfied and therefore will
disappear from the residual formula. It remains to consitervolatile clauses that only contain literals
that agree with the tentative assignment. After the flips¢helauses will be shortened by the removal of
the literals that agree with the tentative assignment. igefloe tentative assignment was flipped, the only
thing “exposed” about such clauses is that they containecbthese literals (since they were immediately
satsified by it) and therefore the remaining literals in éheauses are uniformly random. Thus, the formula
as a whole is uniformly random conditional on the number afisks of each length.

The other key observation is that the number of volatile stguthat re-enter the residual formula as
the result of a flip is at most polylogarithmic. This is beaatisere are only a polylogarithmic number of
variables flipped (by the epoch-length argument) and nabkiappears in more than, s&yg? n clauses,
since we are dealing with sparse random formulas. As sho2Rinthis implies that once the assignment
has been flipped the probability of a second 0-clause beingrgeed by that flipped assignment (together
with its resulting unit propagation) is very small. In padiar, this probability is so small that combined
with the fact that each epoch’s probability of requiring a f8 O(1/n), it implies that w.h.p. no O-clause is
ever generated.

As a result, by considering epochs instead of individugbsteve get that w.h.p. at the end of each
epoch there are no 1- or O-clauses. Furthermore, the nurhbeslauses; = 2, 3 aftert steps is still given
by equations (25)—(28) (th&n) term absorbing the effect of any flips). Thus, afterariables have been
set, where ~ .22625n for ORDERED-DLL-FS andUc-Fs, andt =~ .243n for GUC-FS, we see that each
algorithm w.h.p. will be in a badstage. O

8 Further Research

Our upper bounds on the number of 3-clauses needed to capeeestial behavior in satisfiability algo-
rithms will be readily improved with any improvement on th28n upper bound for unsatisfiability in
random(2 + p)-SAT. That is, if it is shown that for some> 0 and2/3 < A < 2.28, random formulas
with (1 — €)n 2-clauses and\n 3-clauses are unsatisfiable w.h.p. then the bounds of 3@3.88 will be
immediately reduced. In fact, A is reduced t®/3, to match the lower bound, then our results immedi-
ately imply the following remarkably sharp behavior: eveayd-type algorithmd is such that it operates in
linear time with constant probability up to some thresh@ldbut any backtracking extension dfrequires
exponential time with constant probability for all rati@ggder than3,. In fact, if A uses FS-backtracking
then it would work in linear time almost surely at ratios vel6, and require exponential time almost surely
abovesy,.

It seems quite likely that one can extend our w.h.p. analgsibe simple backtracking versions o€,
GUC, ORDERED-DLL, and other card-type algorithms.
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