
A sharp threshold in proof complexity yields lower bounds for
satisfiability search

Dimitris Achlioptas
Microsoft Research

One Microsoft Way

Redmond, WA 98052

optas@microsoft.com

Paul Beame�

Computer Science and Engineering

University of Washington

Seattle, WA 98195-2350

beame@cs.washington.edu

Michael Molloyy

Department of Computer Science

University of Toronto

Toronto, Ontario M5S 1A4

molloy@cs.toronto.edu

April 18, 2003

Abstract

Let F (�n;�n) denote a random CNF formula consisting of�n randomly chosen 2-clauses and�n
randomly chosen 3-clauses, for some arbitrary constants�;� � 0. It is well-known that, with probability
1�o(1), if � > 1 thenF (�n;�n) has a linear-size resolution refutation. We prove that, with probability
1� o(1), if � < 1 thenF (�n;�n) has no subexponential-size resolution refutation.

Our result also yields the first proof that random 3-CNF formulas with densities well below the
generally accepted range of the satisfiability threshold (and thus believed to be satisfiable) cause natural
Davis-Putnam algorithms to take exponential time (to find a satisfying assignment).

1 Introduction

Satisfiability has received a great deal of study as the canonical NP-complete problem. In the last several
years the very universality and flexibility that made satisfiability a natural starting point for NP-completeness
have also made it the basis for significant progress in the solution of a variety of practical problems including
problems in constraint satisfaction [35], planning [28, 27], and symbolic model checking [10]. The basic
tools for these advances are some very tight and efficient implementations of satisfiability algorithms using
backtracking search based on the Davis-Putnam/DLL (DPLL) procedure [19, 18] and using heuristic search
based on hill-climbing and random walks [35, 34]. In a sense,these satisfiability algorithms have become
the hammer and there is now a small industry turning computational problems into nails.

In the last twenty years a significant amount of work has been devoted to the study of randomly generated
satisfiability instances and the performance of different algorithms on them. Historically, the motivation for
studying random instances has been the desire to understandthe hardness of “typical” instances. While

� Research supported by NSF grant CCR-9800124.
y Research supported by NSERC and by a Sloan Fellowship

1

many generative models have been proposed over the years, random k-SAT (described below) is by far
the most studied model. One reason for that is that randomk-CNF formulas enjoy a number of intriguing
mathematical properties, including a form of “expansion” and the existence of 0-1 laws. Another reason is
that randomk-SAT instances appear hard to deal with computationally fora certain range of the distribution
parameters, making them a very popular benchmark for testing and tuning satisfiability algorithms. In fact,
some of the better practical ideas in use today come from insights gained by studying the performance of
algorithms on randomk-SAT instances [25, 24].

LetC
k

(n) denote the set of all possible disjunctions ofk distinct, non-complementary literals (k-clauses)
from some canonical set ofnBoolean variables. A randomk-CNF formula is formed by selecting uniformly,
independently, and with replacementm clauses fromC

k

(n) and taking their conjunction. We will say that
a sequence of random eventsE

n

occurs with high probability (w.h.p.) iflim
n!1

Pr[E

n

℄ = 1 and with
constant probability iflim inf

n!1

Pr[E

n

℄ > 0.
One of the most intriguing aspects of randomk-CNF formulas is theSatisfiability Threshold Conjecture

which asserts that for everyk � 3, there exists a constant�
k

such that a randomk-CNF formula withn
variables andm = �n clauses is w.h.p. satisfiable if� < �

k

and unsatisfiable if� > �

k

. Indeed, this
is known fork = 2 as [14, 20, 23], independently, proved�

2

= 1. Moreover, for allk � 2, it has been
proven [21] that there is a sharp transition from the satisfiable regime to the unsatisfiable regime as� goes
through a critical value�

k

(n) (but not that�
k

(n) converges withn). Empirical evidence (e.g., [36, 29])
suggests approximate values for�

k

, e.g.�
3

� 4:2. At the same time, for allk it is easy to prove that a
randomk-CNF formula with�n clauses is w.h.p. unsatisfiable if� � 2

k

ln 2 and, recently, it was proved
in [6] that such a formula is w.h.p. satisfiable if� � 2

k

ln 2�O(k).
For randomk-CNF formulas in the unsatisfiable regime, the behavior of DPLL algorithms, and the more

general class of resolution-based algorithms, is well-understood. Specifically, since every unsatisfiable 2-
CNF formula has a linear-size resolution refutation, if� > �

2

= 1 then even the simplest DPLL algorithms
w.h.p. run in polynomial time on a random 2-CNF formula. On the other hand, fork � 3 a celebrated result
of Chvátal and Szemerédi [15] asserts that w.h.p. a randomk-CNF formula in the unsatisfiable regime re-
quires an exponentially long resolution proof of unsatisfiability. More precisely, letres(F) andDPLL(F)
be the sizes of the minimal resolution and DPLL proofs of the unsatisfiability of a formulaF (assume these
to be infinite ifF is satisfiable). In [15] it was proved that for allk � 3 and any constant� > 0, if F is a ran-
domk-CNF formula withn variables and�n clauses then w.h.p.res(F) = 2

(n) andDPLL(F) = 2

(n).
Thus, for� � 2

k

ln 2 w.h.p. a randomk-CNF formulaF is unsatisfiable but all its resolution refutations are
exponentially long, implying that every DPLL algorithm must take exponential time onF .

Our main result extends the above theorem of [15] by allowingthe addition of a random 2-CNF formula
on the samen variables. Naturally, since�

2

= 1, a formula containing(1+�)n random 2-clauses w.h.p. will
have a polynomial-size refutation, as the 2-clauses alone w.h.p. will have such a refutation. Thus, adding
(1 + �)n 2-clauses to a randomk-CNF formula with density2k ln 2, w.h.p. causes the proof complexity to
collapse from exponential to linear. Our main result asserts that, in contrast, adding(1 � �)n 2-clauses to
a randomk-CNF formula w.h.p. has essentially no effect on its proof complexity. More precisely, letFn

�;�

be the distribution of random CNF formulas with(1 � �)n 2-clauses and�n 3-clauses, for some arbitrary
constants�; � > 0. (For simplicity, we focus onk = 3; extensions tok > 3 are straightforward.)

Theorem 1.1. For every�; � > 0, if F � F

n

�;�

, then w.h.p.res(F) = 2

(n) andDPLL(F) = 2

(n).

Theorem 1.1 represents a sharp threshold in proof complexity, since (combined with the fact�
2

= 1)
it implies that for every fixed� > 0, the proof complexity w.h.p. goes from exponential to linear as the
2-clause density goes through 1. Moreover, for� > 2:28 it is known [4] that there exists� > 0 such that
formulas fromFn

�;�

are w.h.p. unsatisfiable. Combined with Theorem 1.1, this fact gives a method for prov-
ing the first lower bounds on the running times of DPLL algorithms for randomsatisfiableCNF formulas.

2

More precisely, using standard techniques it is not hard to show that many natural DPLL algorithms when
applied to random 3-CNF formulas with�n clauses, generate at least one unsatisfiable subproblem consist-
ing of a random mixture of 2- and 3-clauses, where the 2-clauses alone are satisfiable. In particular, this is
true even for values of� for which there is strong empirical evidence of satisfiability, i.e. for� significantly
below the experimentally observed threshold�

3

� 4:23 � 0:05. By Theorem 1.1, in order to resolve any
such subproblem (and backtrack) all DPLL algorithms need exponential time. Thus, we can prove that cer-
tain natural DPLL algorithms requireexponentialtime significantly below the generally accepted range for
the random 3-SAT threshold. As an example, forORDERED-DLL (which performs unit-clause propagation
but, otherwise, sets variables in some a priori fixed random order/sign) we prove

Theorem 1.2. WhenORDERED-DLL is applied to a random 3-CNF formula withn variables and3:81n
clauses, with constant probability it requires time2
(n).

Theorem 1.2 sheds light on a widely-cited observation of Selman, Mitchell, and Levesque [36], based
on experiments withORDERED-DLL on small problems, stating that random 3-SAT is easy in the satisfiable
region up to the 4.2 threshold, becomes sharply much harder at the threshold and quickly becomes easy
again at larger densities in the unsatisfiable region. The upper end of this ‘easy-hard-easy’ characterization
is somewhat misleading since, as we saw, the result of [15] infact asserts that w.h.p. random 3-CNF formulas
only have exponential-size proofs of unsatisfiability above the threshold. By now the rate of decline in proof
complexity as the density is increased has been analyzed as well [8]. Our results show that the lower end
of this characterization is also somewhat misleading; in fact, Theorem 1.2 shows that the exponentially
hard region forORDERED-DLL begins at least at ratio3:81, well before ratio4:2. This concurs with recent
experimental evidence that even the best of current DPLL implementations seem to have bad behavior below
the threshold [16].

We also note that one highly successful strategy, in practice, for satisfiable formulas is to use a random-
ized DPLL algorithm and restart it with different random bits if it begins to take too long [25, 24]. While
Theorem 1.2 only holds with constant probability, we will see that random restarts are unlikely to reduce the
running time ofORDERED-DLL (and similar algorithms) on randomk-CNF formulas down to polynomial.

Our proof is similar in general spirit to proofs of other lower bounds for resolution complexity but
requires considerably more subtlety. We first prove a numberof detailed combinatorial properties of random
2-CNF formulas with(1� �)n clauses. To do this we consider the standard directed graphsassociated with
2-CNF formulas and, for such graphs, we introduce the notionof the clan of a vertex. Clans seem to be
the appropriate extension of “connected components” in this context, allowing for an amortization of the
“boundary” of the 2-CNF formula. By carefully bounding the number of vertices in clans of each size we
show that random 2-CNF formulas with(1 � �)n clauses, w.h.p. have properties that guarantee that almost
all extensions by linear-sized 3-CNF formulas require exponential size resolution (and DPLL) proofs. This
latter argument relies on specialized sharp moment bounds as well as particular properties of clans.

1.1 Background and Related Work

Mixed formulas consisting of 2- and 3-clauses arise for a number of reasons. For example, a frequent
observation about converting problems from other domains into satisfiability problems is that they typically
become mixed CNF formulas with a substantial number of clauses of length 2 along with clauses of length
3. Another reason is that as DPLL algorithms run, they recursively solve satisfiability onresidual formulas,
restricted versions of their input CNF formula, which are mixtures of clauses of length at least 2. Randomly
chosen 3-CNF formulas are an important test case for satisfiability algorithms and when given such formulas
as input, many DPLL algorithms produce residual formulas that are mixtures of 2- and 3-clauses that are

3

distributed precisely in the form that we analyze, i.e. are uniformly random. Moreover, as we will see,
random mixtures of 2- and 3-clauses, originally introducedas the(2 + p)-SAT model, are a very convenient
means for exploring the interface between computational complexity and phase transitions.

1.1.1 Random(2 + p)-SAT

As an attempt to “interpolate” between random 2-SAT and random 3-SAT Kirkpatrick et. al. introduced the
so-called(2 + p)-SAT problem in [31]. Here, one considers randomly-generated formulas onn variables
where a fractionp of all clauses have length 3 (while the remaining have length2) and where each clause
of lengthi = 2; 3 is chosen uniformly fromC

i

(n). Using empirical results and non-rigorous techniques of
statistical physics, Kirkpatrick et. al. [31, 32, 33] gave evidence that there exists a criticalp

� 0:417 such
that forp < p

a random(2 + p)-SAT formula goes from being satisfiable w.h.p. to being unsatisfiable w.h.p.
as the 2-clause density goes through�

2

= 1. In other words, forp < p

the 3-clauses seem irrelevant to the
formula’s satisfiability and random 2-CNF formulas cannot “feel” the presence of up top

=(1� p

) random
3-clauses. They also gave evidence that aroundp

the phase transition from satisfiability to unsatisfiability
changes character from a so-called second order transition(continuous “order parameter”) representative of
2-SAT to a fist-order transition (discontinuous “order parameter”) believed to be representative of 3-SAT.

In [4], Achlioptas et. al. proved a number of rigorous results for random(2 + p)-SAT. In particular,
they proved that a formula with(1 � �)n random 2-clauses and�n random 3-clauses is w.h.p. satisfiable
for all � > 0 and� � 2=3 (and a satisfying assignment can be found by a simple linear-time algorithm),
whereas for� > 2:28 there exist (sufficiently small)� > 0 such that w.h.p. it is unsatisfiable. These
results, respectively, imply2=5 � p

� 0:696. In [1], it was later conjectured that in factp

= 2=5, which
is equivalent to saying that for everyÆ > 0 there exists� = �(Æ) > 0 such that a random formula with
(2=3 + Æ)n random 3-clauses and(1 � �)n random 2-clauses is w.h.p. unsatisfiable. If true, this statement
would have significant implications for the “replica method” of statistical mechanics. Moreover, as we will
see in the next section, combined with our Theorem 1.1 it would provide a sharp threshold for the running
time of DPLL algorithms on random 3-CNF formulas.

1.1.2 DPLL algorithms below the threshold

By now, there has been a long sequence of results giving improved bounds for the location of the random
3-SAT threshold. The best current bounds assert that a random 3-CNF formula is w.h.p. satisfiable if� <

3:26 [5] and w.h.p. unsatisfiable if� > 4:598 [26]. Combining this upper bound with the result of [15] we
see that every DPLL algorithm w.h.p. takes exponential timeon a random 3-CNF formula with� > 4:598.

On the other hand, the bound� < 3:26 above corresponds to the densities for which a specific DPLL
algorithm [5] finds a satisfying truth assignmentwithout any backtrackingwith constant probability. In fact,
all lower bounds for the random 3-SAT threshold correspond to values for which this is true for some specific
algorithm,1 with improved bounds resulting from better criteria for branching and value assignment, rather
than from “greater search space exploration”.

Indeed, almost all algorithms that have been analyzed on random 3-CNF formulas fall in the class of
so-called “card-type/myopic algorithms” in the terminology of [3, 5]. Such algorithms seek to create a
satisfying truth assignment by setting variables sequentially and by definition: i) they never backtrack, i.e.
they stop as soon as a contradiction is generated, ii) they maintain that the residual formula is always a
uniformly random mixture of 2- and 3-clauses on the unassigned variables (unit-clauses are satisfied as soon
as they occur). In order to maintain the latter property, myopic algorithms use very limited information

1Establishing that a randomk-CNF formula is satisfiable with constant probability for a given density�� is enough to imply
that�

k

� �

� since by Friedgut’s theorem [21] there cannot exist constants�

1

< �

2

such that the probability of satisfiability is
bounded away from both 0 and 1 for all� 2 [�

1

;�

2

℄.

4

to decide which variable(s) to set next and what values to assign (hence their name). Examples of such
algorithms areUC (where in the absence of unit clauses a random literal is assigned true) andGUC [13]
(where always a random literal in a random shortest clause isassigned true).

It is not hard to prove that the largest density�

A

for which a myopic algorithmA has constant proba-
bility of finding a satisfying assignment is precisely the largest density for which w.h.p. the 2-clause density
of the residual formula remains below 1 throughoutA’s execution (see e.g. [3]). For� > �

A

one can
endowA with a backtracking scheme (so that the execution of the original myopic algorithm corresponds to
the first path explored in the tree of recursive calls) and attempt to analyze its performance. Unfortunately,
any non-trivial amount of backtracking makes it hard to havea compact probabilistic model for the residual
formula (such as the one corresponding to the original algorithm A). As a result, a probabilistic analysis
akin to that possible for� < �

A

appears beyond the reach of current mathematical techniques (but see [17]
for a non-rigorous analysis based on ideas from statisticalphysics). This is where our results come in:

If a DPLL algorithmA ever generates a residual formula that is an unsatisfiable random mixture of
2- and 3-clauses with 2-clause density bounded below 1, thenw.h.p.A will spend exponential time before
backtracking from it.

That is, by Theorem 1.1, once a node in the backtracking search is reached that corresponds to an
unsatisfiable random mixture of 2- and 3-clauses (but where the 2-clauses alone are satisfiable), the search
cannot leave the sub-tree for an exponentially long time. Standard results (see e.g. [3]) thus imply that with
constant probability this is precisely what happens forUC started with3:81n 3-clauses and forGUC started
with 3:98n 3-clauses. This is because for such initial densities, the corresponding algorithm has constant
probability of generating a residual formulaFn

�;�

with � and � known to be w.h.p. unsatisfiable by the
results of [4].

Theorem 1.3. Any backtracking extension ofUC on a randomn variable 3-CNF formula with�n clauses
for constant� � 3:81 requires time2
(n) with constant probability. Also, any backtracking extension of
GUC on a randomn variable 3-CNF formula with�n clauses for constant� � 3:98 requires time2
(n)

with constant probability.

We note that the only reason for which Theorem 1.3 is not a highprobability result is that with con-
stant probability each algorithm might generate a contradiction and backtrack (thus destroying the uniform
randomness of the residual formula) before reaching an unsatisfiable restrictionFn

�;�

. Nevertheless, by ex-
tendingUC andGUC with a natural backtracking heuristic introduced by Friezeand Suen [22], in Section 7
we create natural DPLL algorithms for which the analogue of Theorem 1.3 holds w.h.p.

In fact, we believe that Theorem 1.1 points to a much larger truth than the specific implications for
the algorithms and backtracking scheme mentioned above. Aswill become clear from its proof in the
upcoming sections, the conclusion of Theorem 1.1 is quite robust with respect to the probability distribution
of the clauses in the mixture. The essential ingredients areas follows. For the 2-CNF subformula, besides
satisfiability, the crucial property is that for most literals the associated “tree” of implications is rather small
(constant size on average and with a reasonable tail) and hasa simple structure. While we only prove this
property for random 2-CNF (as generated by backtracking versions of myopic algorithms), it is not hard to
imagine that this property would be robust to the branching/value assignments made by any “moderately
smart” DPLL algorithm. For the 3-CNF subformula we only needthat the variable-clause incidence graph
is an expander. Again, while this property is satisfied strongly by arbitrary subformulas of random 3-CNF
formulas it suggests that, in fact, random 3-CNF formulas are not the only formulas for which one could
hope to prove a result similar to Theorem 1.1. Moreover, it isprecisely this richness of expanders that
suggests that restarting a DPLL algorithm on a randomk-CNF formula is unlikely to yield dramatically
different results from run to run (unless, of course, one is willing to restart an exponential number of times).

5

Finally, as we discuss in section 8, the values 3.81 and 3.98 in Theorem 1.3 will be readily improved
with any improvement on the bound for the number�n of 3-clauses needed to make a formula with(1��)n

random 2-clauses unsatisfiable. In particular, if it turns out that� > 2=3 suffices (as mentioned earlier),
then our results would uniformly reduce the onset of exponential behavior to�

A

for everybacktracking
extension ofeverymyopic algorithmA. In other words, we would get that every such DPLL algorithm runs
in linear-time for� < �

A

, but requires exponential time for� > �

A

.

2 Bounding Resolution Refutation Size

The resolution rule allows one to derive a clause(A_B) from two clauses(A_x) and(B_ �x). A resolution
derivation of a clauseC from a CNF formulaF is a sequence of clausesC

1

; : : : ; C

`

= C such that eachC
i

is either a clause ofF or follows from two clausesC
j

; C

k

for j; k < i using the resolution rule. A resolution
refutation of an unsatisfiable formulaF is a resolution derivation of the empty clause. The proof inferences
define a directed acyclic graph of in-degree 2 whose verticesare the clauses of the proof. The size of a
resolution refutation is the number of clauses appearing inthe proof. GivenF , let res(F) be the length of
the shortest resolution refutation ofF . The Davis-Putnam/DLL algorithm on a CNF formulaF performs
a backtracking search for a satisfying assignment ofF by extending partial assignments until they either
reach a satisfying assignment or violate a clause ofF . It is well known that for an unsatisfiable formulaF ,
the tree of nodes explored by any DPLL algorithm can be converted to a resolution refutation ofF where
the pattern of inferences forms the same tree. LetDPLL(F) be the size of the smallest such refutation, i.e.
the size of the smallest DPLL tree associated withF .

For a resolution derivation�, letwidth(�) denote the maximum number of literals in any clause of�.
For an unsatisfiable CNF formula letproofwidth(F) be the minimum over all resolution refutations� of
F of width(�). Ben-Sasson and Wigderson [9] showed that to prove lower bounds on resolution proof size
it suffices to prove lower bounds on resolution proof width.

Proposition 2.1 ([9]). There is some constant
 > 0 such that if all clauses in a formulaF have size at most
k, res(F) � 2

([proofwidth(F)�k℄

2

=n) andDPLL(F) � 2

proofwidth(F)�k.

Definition 2.2. Given a CNF formulaF , a literal x is purein F if and only ifx appears inF but �x does not
appear inF . We say thatF)

Res

C if and only if there is a resolution derivation ofC fromF such that in
the associated directed acyclic graph there is a path from every clause ofF to the clauseC.

The following propositions yield a minor variation of the now standard method for proving lower bounds
on the width of resolution proofs [15, 8, 9].

Proposition 2.3. LetF be a CNF formula and letC be a clause. IfF)

Res

C then every pure literal inF
appears inC.

Proposition 2.4. Let F be an unsatisfiable CNF formula having clauses of size at mostk. If there exist
integerss � 2k andt such that

(a) Every subformula ofF on at mosts variables is satisfiable, and,

(b) every subformulaF 0 of F on v variables, where1
2

s < v � s, contains at leastt literals that are pure
in F

0,

thenproofwidth(F) � t.

6

Proof. Let � be any resolution refutation ofF . To each clauseC in � we associate the subformulaF
C

of
F consisting of those clauses ofF that are used in� to deriveC. Observe thatF

C

)

res

C.
For the empty clause�, F

�

must be unsatisfiable and thereforeF
�

must contain more thans variables.
Now, let us follow the graph of the proof backwards starting from�, at each step choosing the predecessor
whose associated clause has the larger number of variables,provided that number is more thans=2. Clearly,
this will lead us to a clauseC, such thatF

C

has more thans=2 variables and the two predecessorsA andB
in � (which must exist sinceF

C

has more thank variables) each contain at mosts=2 variables.
SinceF

C

= F

A

[F

B

, F
C

contains at mosts=2 + s=2 = s variables. Therefore by assumption
(2.4), F

C

contains at leastt pure literals. By Proposition 2.3, every pure literal inF
C

appears inC, so
proofwidth(F) � jCj � t.

Recall that for each fixedk � 0, C
k

(n) denotes the set of all2k
�

n

k

�

non-trivial k-clauses on some
canonical set ofn variables. We will consider a random formulaF on n variables formed by selecting
uniformly, independently and with replacementm

2

= m

2

(n) clauses fromC
2

(n) andm
3

= m

3

(n) clauses
fromC

3

(n). In particular, recall thatFn

�;�

denotes the distribution wherem
2

= (1� �)n andm
3

= �n, for
some arbitraryconstants�; � > 0. Our main technical lemma is the following analogue formixedrandom
formulas of similar lemmas from [15, 8, 9] for randomk-CNF formulas.

Lemma 2.5. For every�; � > 0 there exist� = �(�; �) > 0 and� = �(�; �) > 0 such that forF � F

n

�;�

(a) w.h.p. every subformula ofF on v � �n variables is satisfiable, and

(b) w.h.p. every subformula ofF on v variables with1

2

�n < v � �n contains at least�n pure literals.

Theorem 1.1 follows immediately from Lemma 2.5, along with Propositions 2.1 and 2.4. However, the
presence of 2-clauses in formulasF � F

n

�;�

makes the analysis required to prove Lemma 2.5 significantly
more involved than the corresponding analysis for randomk-CNF formulas, wherek � 3.

Definition 2.6. LetF be an arbitrary CNF formula. Let

� V (F) = fx

1

; : : : ; x

n

g denote the set of variables ofF ,

� jF j denote the number of clauses inF , and

� thedegreeof a variablev, deg(v), be the number of clauses ofF containing one ofv; �v (analogously
for literals).

� We say that a literal̀ is near-purein F if deg(�`) = 1.

For F
2

, the subformula consisting of the 2-clauses ofF , we associate the directed graph~D(F

2

) whose vertex
set isfx

1

; : : : ; x

n

; �x

1

; : : : ; �x

n

g, and whose edge set isf(�x! y); (�y ! x) : (x _ y) is a clause inF
2

g :

� We say that a directed cycleC = `

1

! `

2

! � � � ! `

q

! `

1

in ~

D(F

2

) is pureif all of `
1

; : : : ; `

q

are
near-pure inF . (Note that each literal can appear in at most one pure cycle.)

� We call a pure literal or pure cycle of a CNF formulaF a pure itemof F .

We derive Lemma 2.5 from the following lemma.

Lemma 2.7. For every�; � > 0 there exist� = �(�; �) > 0 and� = �(�; �) > 0 such that forF � F

n

�;�

(a) w.h.p. every subformula ofF on v � �n variables contains at least one pure item, and

(b) w.h.p. every subformula ofF on v variables with1

2

�n < v � �n contains at least�n pure literals.

7

Proof of Lemma 2.5 from Lemma 2.7.Property (b) is identical to that in Lemma 2.5. A formula isminimally
unsatisfiableif it is unsatisfiable but each of its subformulas is satisfiable. Clearly, every unsatisfiable
formula contains a minimally unsatisfiable subformula. Moreover, a minimally unsatisfiable formulaF 0

cannot contain a pure item, since it is easily seen that any satisfying assignment of the subformulaF 00 of F 0

obtained by deleting all clauses involving the pure item canbe extended to a satisfying assignment ofF

0 by
setting the pure or near-pure literals in the pure item to true. Therefore, property (b) implies thatF has no
minimally unsatisfiable subformula on fewer than�n variables and hence it has no unsatisfiable subformula
on fewer than�n variables. Thus, properties (a) and (b) imply properties (a) and (b) of Lemma 2.5.

The proof of Lemma 2.7 occupies Sections 3 to 6. The proof strategy is to first i) establish certain high-
probability properties of the 2-clauses ofF , then ii) use these properties to prove that all subformulasof F
have relatively many pure items, and finally iii) show that the addition of 3-clauses does not significantly
reduce these pure items. In fact, we will not only show that large subformulas have many pure items but we
will also show that they have relatively few pure cycles, so that they have many pure literals.

The overall argument is subtle because the 2-clauses ofF are arbitrarily close to being unsatisfiable
themselves and, further, because we need to handle all possible subformulas among the 2-clauses which,
unlike the casek � 3, requires a careful delineation of the different “local neighborhoods” of each variable
among the 2-clauses. Indeed, this latter requirement necessitates the introduction of a novel graph-theoretic
concept in the digraph associated with the 2-clauses ofF that we call “clans”.

3 Analyzing Subformulas using Clans

To prove Lemma 2.7 we will in fact prove a stronger lemma. In particular, rather than proving the lemma’s
assertion forFn

�;�

, we will prove it for an arbitrary formula onn variables formed by starting with a 2-CNF
formula satisfying certain properties and adding to itm

3

= �n random 3-clauses. To complete the proof, in
Section 5, we prove thatF

2

satisfies these properties w.h.p. To describe these properties we need to introduce
the following definitions.

Definition 3.1. Let F be an arbitrary 2-CNF formula. For literalsx; y appearing inF let us writex ;
F

y

iff x = y or there exists a directed path in~D(F) from x to y.

� For each literalx we letIn
F

(x) = fy : y ;

F

xg.

� For a set of literalsS letG(S) = G

F

(S) be the undirected graph formed by considering the subgraph
of ~D(F) induced by the vertices corresponding toS and ignoring the direction of arcs.

– We will say thatIn
F

(x) is tree-likeif G(In
F

(x)) containsnocycle.

– We will say thatIn
F

(x) is simpleif G(In
F

(x)) containsat most onecycle.

� For each literalx in F , theclan of x, Clan
F

(x) = In

F

(x) [

S

y2In

F

(x)

In

F

(�y).

DefineClan�
F

(x) =

(

Clan

F

(x) if In
F

(y) is tree-like for ally 2 Clan

F

(x)

fx; �xg otherwise.

� For eachi � 0, we letT
i

(F) = jfx : jClan

�

F

(x)j � igj.

The importance of clans will become apparent in the proof of Lemma 4.2. Roughly, they allow us to
identify a relatively small setP � of pure literals, such that everyx 2 F belongs to the clan of some member
of P �. Also, in a random formulaF w.h.p. a very small number of literalsx will have In

F

(x) not tree-like.
These literals must be dealt with in a special way; the definition of Clan� allows us to do so.

Lemma 2.7 will follow readily from the following two lemmas.

8

Lemma 3.2. Fix � 2 (0; 1), C > 0, and� > 0. LetF � be a formula formed by taking

� Any set of clauses fromC
2

(n) such that the resulting formulaF �
2

satisfies:

1. For every literal̀ , In
F

�

2

(`) is simple.

2. There are at mostlog n literals ` such thatClan
F

�

2

(`) contains a literal`0 with In

F

�

2

(`

0

) not
tree-like.

3. For every literal̀ , jClan
F

�

2

(`)j � log

3

n.

4. For all i � 3, T
i

(F

�

2

) � 2(1� �)

i

n.

� No more than�n clauses fromC
3

(n), chosen uniformly, independently and with replacement.

There exist� = �(�; �) and� = �(�; �; �) > 0 such that:

(a) W.h.p. every subformula ofF � on v � �n variables has at least one pure item.

(b) W.h.p. every subformula ofF � on v variables with1

2

�n < v � �n contains at least�n pure literals.

Lemma 3.3. Fix � > 0 and letF
2

be a random 2-CNF formula formed by selecting uniformly, independently
and with replacementm

2

� (1 � �)n 2-clauses fromC
2

(n). There exists� = �(�), such that w.h.p.F
2

simultaneously satisfies all four conditions of Lemma 3.2 (whereF �
2

= F

2

).

If one replaced “Clan” by “ In” throughout the statements of the conditions of Lemma 3.2, then
Lemma 3.3 would follow quickly from some standard and well-understood properties of random 2-CNF
formulae. Intuitively, Lemma 3.3 holds because clans are sufficiently similar in structure to the setsIn

F

(x).
We defer the lengthy proof to Section 5. We prove Lemma 3.2 in Section 4.

Proof of Lemma 2.7 from Lemma 3.2.Given�; � > 0 we start by applying Lemma 3.3 to get� = �(�) and
then apply Lemma 3.2 with that�.

4 Proof of Lemma 3.2

Let �;� > 0, F �
2

be fixed and chooseF � as in the statement of the lemma. Consider any (candidate)
subformulaH of F �. Let v = jV (H)j and denote byH

2

the subformula induced by the 2-clauses ofH.
The general idea of the argument is as follows. The subformulaH

2

has many “loose ends”, namely the
pure items ofH

2

and the literals ofV (H) � V (H

2

), that must be (mostly) covered by the 3-clauses ofH

in order forH to have very few pure items. We show that every literal ofH is in the clan of one of a small
subset of these loose ends. Thus, since the clan sizes are small, the number of loose ends must be large. In
order to cover all (or most) of these loose ends, we need a large number of 3-clauses, all of whose variables
lie within V (H). However, since the number of variables inH is small, it is highly unlikely that enough of
the random 3-clauses will “land” inH. The formal analysis is a bit involved, and require a sharp specialized
moment bound to show that the rare large clans do not skew the probabilities too much. We present that
moment bound in the next section.

We now work through the details of the argument. Define the setP = P (H) of literals based onH
as follows:P consists of the pure literals ofH

2

, the smallest numbered literal in each pure cycle ofH

2

,
and every literal on the variables ofV (H) � V (H

2

). ClearlyP contains every pure literal ofH and also
contains one literal from each pure cycle ofH (and since pure cycles are disjoint they are represented by
distinct literals). SoP (H) contains the “loose ends” referred to above.

9

Lemma 4.1. For any subformulaH of F �, the number of distinct literals in the 3-clauses ofH is at least
the number of literals inP (H) that are not contained in pure items inH.

Proof. We define a one-to-one (but not necessarily onto) mapping from the literals ofP = P (H) that are
not contained in pure items ofH to the literals appearing in the 3-clauses ofH. Any literal x in P , that was
pure inH

2

or is a literal onV (H) � V (H

2

) but is not pure inH, must have�x in some 3-clause ofH and
so we mapx to �x. The pure cycles ofH

2

, whose smallest numbered literals form the remainder ofP , are
disjoint from each other and from the other literals inP . Consider such a cycleC that is pure inH

2

and
let x 2 P be the smallest numbered literal inC. C will remain pure inH unless there is somey in C such
that �y appears in a 3-clause ofH. We mapx to �y. The fact that our map is one-to-one follows from the
disjointness property of the cycles.

For convenience throughout the rest of this proof we will writeClan(x) for Clan
F

�

2

(x) and for a setT
of literals we will writeClan(T) =

S

x2T

Clan(x). For any literalx (set of literalsT), let
over(x) (resp.

over(T)) be the set of literals appearing inClan(x) (resp. Clan(T)) together with the complements of
those literals.

The next step is to show that there is a small setP

�

� P such that every literal ofH lies in
over(P �).
It is easy to see that this is true if we simply takeP � = P , and in fact this would be true even if we used a
much simpler structure than the clan. However, we needP

� to be smaller thanP (roughly half as small will
do), and this is the reason that we need to focus on clans.

Lemma 4.2. For any subformulaH of F � there existsP � = P

�

(H) � P = P (H) such that

1.
over(P �) contains every literal appearing inH and

2. jP �j � b

1

2

(jP j + t

)
 wheret

= t

(H) is the number of literalsx 2 P

� such thatIn
H

2

(x) is not
tree-like.

Proof. Let ^

P � P be the set of literals inP on variables inV (H

2

). By definition, for everyx 2 P �

^

P ,
�x 2 P �

^

P . Let P
tree

�

^

P be the set of all literalsx 2

^

P with In

F

�

2

(x) tree-like. First we prove that

for everyx 2 P

tree

there is at least oney 2 ^

P , y 6= x such that�y 2 In

F

�

2

(x). Forx 2 P

tree

, In
H

2

(x) is

tree-like sinceIn
H

2

(x) � In

F

�

2

(x). Therefore there is a vertexz 2 In

H

2

(x) of in-degree 0 in~D(H

2

) such

thatz 6= �x. Furthermore, sincez appears inH
2

, �x 2 ^

P so we can takey = �z =2 fx; �xg.
Note that�y 2 In

H

2

(x) � In

F

�

2

(x) implies �x 2 In

F

�

2

(y). Thus we form an undirected graphG with

vertex set^P and an edgehx; yi for each pair of literals with�y 2 In

F

�

2

(x). Let P 0 � P

tree

be the set of
vertices inG of positive degree, consider a spanning forest of the vertices inP 0, and consider any bipartition
of that forest. LetP

1

be the smaller side of that bipartition. ThereforeP
1

dominatesP 0, i.e. every vertex
in P

0

� P

1

has a neighbor inP
1

and thusP
1

[(

^

P � P

0

) dominates all of^P . Letting j ^P � P

0

j = a,
jP

1

[(

^

P � P

0

)j � a+ b

1

2

(j

^

P j � a)
 � b

1

2

(j

^

P j+ a)
. Adding the positive form of each literal inP �

^

P to
P

1

[(

^

P �P

0

) we obtain a setP � of size at mostb1
2

(jP j+ a)
. Since ^P �P

0

� P

� andP
tree

� P

0, t

� a

andP � satisfies the claimed size condition.
By definition ofP , ^P , andP �, P � contains the positive literal corresponding to each variable inV (H)�

V (H

2

), so
over(P �) contains all literals on variables inV (H)� V (H

2

).
Let x be a literal such that�x appears inH

2

. In the digraph~D(H

2

) walk forward fromx until either a
sink node is reached or a node on the path is repeated. If we reach a sink of~D(H

2

), the label of that sink
is a pure literaly in P which satisfiesx 2 In

H

2

(y). If we reach a repeated node then we have found a
cycle in ~D(H

2

) and, since all clans contain at most one cycle, this cycle is apure cycle ofH
2

. The smallest
numbered literaly in this pure cycle is inP and satisfiesx 2 In

H

2

(y). Therefore, in either case there is a
literal y 2 P such thatx 2 In

H

2

(y).

10

By definition ofP � eithery 2 P

� or there is somez 2 P

� such that�y 2 In

H

2

(z). Thereforex 2

Clan(z) and thus bothx and�x are in
over(z). Thus
over(P �) contains all literals onV (H

2

) as well, so
the lemma follows.

We now show how the property of having few pure items in a subformulaH of F � requires that there
are a large number of 3-clauses ofF

� whose literals lie entirely in the relatively small set,
over(P

�

(H)).

Lemma 4.3. LetT be a set of literals,t = jT j. Suppose thatH is a subformula ofF � with P �(H) = T ,
t

= t

(H) and at mostt=10 pure items. ThenH, and thus formulaF �, must contain at least19t=30� t

=3

3-clauses whose literals are contained in
over(T); further if t � 10t

then there are at least3t=5 3-clauses
of F � whose literals are contained in
over(T).

Proof. By Lemma 4.2, sinceP �(H) = T , jP (H)j � 2jT j�t

= 2t�t

. By Lemma 4.1, sinceH has at most
t=10 pure items, the 3-clauses ofH contain at least2t� t

� t=10 literals and thereforeH contains at least
(19t=10� t

)=3 3-clauses ofF �. By Lemma 4.2, all literals in these clauses are in
over(P

�

) =
over(T).
In caset � 10t

then this is at least(19=30 � 1=30)t > 3t=5.

We will bound the probability thatF � has a small subformulaH with few pure items by bounding the
probability for each set of literalsT that there is a subformulaH of F � with P

�

(H) = T and with at most
jT j=10 pure items and then summing this bound over all choices ofT . This immediately proves part (a) of
Lemma 3.2. We will also prove that for any subformulaH on a linear number of variables,jP �(H)j is of
linear size but the number of pure cycles is at most polylogarithmic in size and, together with our probability
bound, this will prove part (b) of Lemma 3.2.

Lemma 4.4. Fix �; � > 0. There isK = K(�) and ann
0

= n

0

(�) such that forn � n

0

and forT a set
of literals, t = jT j, the probability thatF � has a subformulaH with P

�

(H) = T and at mostt=10 pure
items is at most

(a) R(T) = (K=(tn

2

))

3t=5

jClan(T)j

9t=5 if t � log

4

n, and at most

(b) R0(T; t

) = (K=n

2

)

19t=30�t

=3

jClan(T)j

19t=10�t

 if t � log

4

n.

Proof. SinceF � has�n 3-clauses, for an integers � 1, the probability that at leasts of them land entirely
in
over(T) is at most

�

�n

s

�

"

j
over(T)j

3

8

�

n

3

�

#

s

�

�

�n

s

�

"

jClan(T)j

3

�

n

3

�

#

s

� [K

0

=s(n

2

)℄

s

jClan(T)j

3s (1)

for some constantK 0

= K

0

(�). Let K = 5K

0

=3. By assumption aboutF �
2

, t

� log n and so ift >
log

4

n then t > 10t

. Thus, by Lemma 4.3, we get the probability upper bound in part (4.4) by setting
s = d3t=5e and observing that the upper bound in (1) is at most[K=(tn

2

)℄

s

jClan(T)j

3s and that this is a
decreasing function ofs (which is therefore at mostR(T)) for R(T) � 1. Also, by Lemma 4.3, we get
the probability upper bound in part (4.4) by settings = d19t=30 � t

=3e and observing that (1) is bounded
above by[K 0

=(n

2

)℄

s

jClan(T)j

3s which is also a decreasing function ofs and thus at mostR0(T; t

) for
R

0

(T; t

) � 1.

Lemma 4.5. Fix �; � > 0. The probability that there exists some setT of sizet � log

4

n and a subformula
H of F � with P �(H) = T and at mostt=10 pure items iso(1) in n.

11

Proof. Suppose thatt � log

4

n. By assumption aboutF �
2

, any subformulaH with jP �(H)j = t and with
at mostt=10 pure items would satisfyt

(H) � logn and jClan(P �(H))j � t log

3

n � log

7

n. For each
t � log

4

n and eacht

, t

� t, there are at most
�

log n

t

��

2n

t�t

�

different setsT with jT j = t containing
t

literalsx with non-tree-likeIn
F

�

2

(x). Therefore, by Lemma 4.4(4.4), the probability that there is some
subformulaH of F � with jP �(H)j = t, jt

(H)j = t

and at mostt=10 pure items is at most

(log n)

t

(2n)

t�t

(K=n

2

)

19t=30�t

=3

(log

7

n)

19t=10�t

which is bounded above by(K 00

)

t

(log n)

14t

n

�4t=15 for some constantK 00

= K

00

(�; �) > 0. The probabil-
ity that anH satisfying the conditions of the lemma witht(H) � log

4

n exists is then at most

log n

X

t

=1

log

4

n

X

t=t

(K

00

n

�4=15

log

14

n)

t

� K

00

n

�4=15

log

19

n

for n sufficiently large, which iso(1) in n.

It will be convenient to rewrite the summations over all possible choices of setT = P

�

(H) with
jT j = t � log

4

n in terms of a probability calculation involving a uniformlychosen random set of literals,
T , of sizet. RecallingClan� from Definition 3.1 , observe that for any suchT , Clan(T) � 2Clan

�

(T)

since there are are mostlog4 n literals in clans of literalsx with In

F

�

2

(x) not tree-like.

Lemma 4.6. Fix � > 0. There is a constantB = B(�) > 0 such that for anyt and forT a set of literals
with jT j = t chosen uniformly at random,E

T

(jClan

�

(T)j) � Bt.

Proof. Let B =

P

i�1

i(1 � �)

i. By assumption, forx chosen uniformly at random from among the2n
possible literals,E

x

(jClan

�

(x)j) � 2 +

P

i�3

i(1� �)

i

= B and thereforeE
T

(jClan

�

(T)j) � Bt.

Lemma 4.7. For every� > 0 there exists� = �(�) > 0 such that for allr � 0 we have forT a set of
literals with jT j = t chosen uniformly at random,

Pr
T

(jClan

�

(T)j > (r + 16)E

T

(jClan

�

(T)j)) < 2 � e

��

p

rt

:

This lemma is proven in Section 6 using a moment generating function argument.

Lemma 4.8. Fix � > 0. There isK
1

= K

1

(�) such that for anyt > 0 and for a set of literalsT with
jT j = t � log

4

n chosen uniformly at random,E
T

(jClan(T)j

9t=5

) � (K

1

t)

9t=5.

Proof. Fix an integert � log

4

n and consider choosingT uniformly at random withjT j = t. Since
t � log

4

n, it suffices to prove the result forjClan�(T)j instead ofjClan(T)j since the latter is at most
twice the former. We divide up the range of possible values ofjClan

�

(T)j into segments of size�(T) =
E

T

(jClan

�

(T)j) � Bt whereB = B(�) is the constant from Lemma 4.6 and use our tail bounds within
each segment. Therefore by Lemma 4.7,

E

T

(jClan

�

(T)j

9t=5

) � (16 � E

T

(jClan

�

(T)j))

9t=5

+

X

r�0

Pr
T

(jClan

�

(T)j > (r + 16)�(T)) � [(r + 17)�(T)℄

9t=5

� [�(T)℄

9t=5

� (16

9t=5

+ 2 �

X

r�0

e

��

p

rt

(r + 17)

9t=5

)

� (Bt)

9t=5

�

�

K

1

B

�

9t=5

� (K

1

t)

9t=5

;

for someK
1

= K

1

(�;B) = K

1

(�).

12

Lemma 4.9. Fix �; � > 0. There is�
0

= �

0

(�; �) > 0 such that the probability thatF � has a subformula
H with t = jP

�

(H)j � �

0

n and with at mostt=10 pure items iso(1) in n.

Proof. By Lemmas 4.4(4.4) and 4.5, the probability of this event is at most
P

T;log

4

n�jT j��

0

n

R(T) plus a
term that iso(1) in n. Using Lemma 4.8, we obtain:

X

T;jT j=t

R(T) �

�

2n

t

�

(K=(tn

2

))

3t=5

E

T

(jClan(T)j

9t=5

)

� (2en=t)

t

(K=(tn

2

))

3t=5

(K

1

t)

9t=5

= ((2e)

5

K

3

K

9

1

t=n)

t=5

� (K

2

t=n)

t=5

for some constantK
2

= K

2

(�; �) > 0.
Now if we let �

0

= 1=(32K

2

) then the probability that such anH exists is at most a term that iso(1) in
n plus

n=(32K

2

)

X

t=log

4

n

(K

2

t=n)

t=5

�

X

t�log

4

n

2

�t

which is alsoo(1) in n.

Lemma 4.9 immediately implies Lemma 3.2(a) since ifH has no pure items, then of course it has at
mostt=10 pure items wheret = jP

�

(H)j. It doesn’t quite prove Lemma 3.2(b) since we need to rule outH

having fewer than�n pure items when1
2

�n < jV (H)j � �nwhereas Lemma 4.9 only rules out subformulas
H with up to 1

10

jP

�

(H)j pure items. So Lemma 4.9 falls short on the case wherejP

�

(H)j = o(jV (H)j). We
rectify this problem by showing that ifjV (H)j = �(n) thenjP �(H)j = �(n) and using our polylogarithmic
upper bound on the number of pure cycles inH.

Lemma 4.10. Fix �; � and consider any� > 0. Then there existsÆ = Æ(�; �) such that ifH is a subformula
on more than1

2

�n variables, thenjP �(H)j > Æn.

Proof. ChooseI = I(�; �) � 2 such that
P

i>I

2i(1��)

i

<

1

2

�. LetP �
I

� P

�

= P

�

(H) be the set of items
in P

�

(H) whose clans have size greater thanI. By Lemma 4.2 and the fact that
over(P �) is closed under
complementations of literals,j
over(P �)j � 2jV (H)j which is more than�n. By condition 4 of Lemma
3.2, j
over(P �

I

)j �

1

2

�n, and so we must have

j
over(P

�

� P

�

I

)j � j
over(P

�

)j � j
over(P

�

I

)j > �n�

1

2

�n >

1

2

�n:

Since each literalx in P

�

� P

�

I

hasj
over(x)j � 2jClan(x)j � 2I, this implies thatjP � � P

�

I

j � �n=(4I)

and thus proves the lemma withÆ = �=(4I).

Proof of Lemma 3.2.Given�; � we take� = �

0

(�; �) from Lemma 4.9 and we set� = Æ(�; �)=11 from
Lemma 4.10. Part (a) is immediate. IfF � is as in part (b), then it must have at leastÆ(�; �)n=10 =

11

10

�n

pure items. By condition 2 from Lemma 3.2, at mostlogn of these items can be pure cycles. Therefore,F

�

has at least11
10

�n� logn > �n pure literals; this proves part (b).

13

5 Properties of subcritical random 2-CNF formulae

We will now prove that subcritical random 2-CNF formulas satisfy the properties in Lemma 3.2 w.h.p.

Lemma 5.1. Let F
2

be random 2-SAT formula formed by pickingm
2

= (1 � �)n clauses fromC
2

(n)

uniformly, independently and with replacement. There exists � = �(�) > 0 such that w.h.p. all of the
following hold simultaneously.

1. For every literal̀ , In
F

2

(`) is simple.

2. There are at mostlog n literals `, such thatIn
F

2

(`

0

) is not tree-like for somè0 2 Clan

F

2

(`).

3. For every literal̀ , jClan
F

2

(`)j � log

3

n.

4. For all i � 3, jf` : jClan�
F

2

(`)j � igj � 2(1 � �)

i

n.

Proof. To prove this lemma it will be easier to work with random formulas formed by including each of the
4

�

n

2

�

possible 2-SAT clauses independently with probabilityp. In particular, we will prove that each of the
four properties holds w.h.p. in such a random formula whenp = (1� �)=(2n), for every� > 0. Given that,
using the observations of the paragraph below, it is easy to establish that each of the four properties holds
w.h.p. when we pickm = (1 � �)n clauses fromC

2

(n), for every� > 0. This readily implies the lemma
since the intersection of any finite collection of high probability events also holds w.h.p.

First, observe that each of the four properties is monotone decreasing, i.e. adding clauses can only hurt a
formula in terms of having each property. Secondly, observethat if a formula contains multiple occurrences
of a clause (which could happen when we pick clauses with replacement), we can remove all but one of
these occurrences without affecting the property. Further, observe that ifp = (1� �

0

)=(2n), then w.h.p. the
resulting formula has at least(1� �)n 2-clauses for every� > �

0. Moreover, note that the resulting formula
is uniformly random conditional on its number of clauses. Finally, note that the same is true for a random
formula formed by picking clauses fromC

2

(n) and removing any duplicates.

To prove that each of the four properties holds w.h.p. whenp = (1� �)=(2n) it will be useful to define
for every literal` 2 fx

1

; : : : ; x

n

; �x

1

; : : : ; �x

n

g, a setS = S(`) of ‘related literals’, a setD = D(`) of
‘dangerous questions’ and a setB = B(`) of ‘bad answers’. We first define the setsS andD by applying
the following two-part procedure. Initially, we setS = T = f`g andD = ;. (T will be an auxiliary set.)

i) Repeat the following untilT = ;: choose a literalx 2 T and remove it fromT ; for every literal
y 6= x, if neithery nor �y is in S then if (x _ �y) is in F

2

addy to bothS andT ; otherwise, if eithery or �y is
in S, add(x _ �y) toD.

When part i) terminates letS
0

= S andD
0

= D. If S
0

= f`

1

; : : : `

s

g then addR = f

�

`

1

; : : : ;

�

`

s

g to
S. We will process the elements ofR in sequence, as described below, with the processing of each element
further expandingS. The setsS andD that result after we process all elements ofR are the ones we
associate with literal̀ (we will deriveB from D). The processing of each�`

j

2 R creates a setS
j

and
amounts to the following procedure, analogous to what we didfor `, where here we use an auxiliary setT

j

initialized toT
j

= S

j

= f

�

`

j

g.
ii) Repeat the following untilT

j

= ;: Choose a literalx 2 T

j

and remove it fromT
j

. For every literal
y 6= x, if neithery nor �y is in S then if (x _ �y) is in F

2

addy to S, S
j

, andT
j

; otherwise, if eithery or �y is
in S, add(x _ �y) toD.
The setB consists of those clauses inD that are also inF

2

.

The reason for introducingS(`) is that jS(`)j can be bounded by considering a “branching process”
argument, while at the same timeS(`) allows us to capture the behavior ofIn

F

2

(`) andClan
F

2

(`) for a
“typical” literal `. Our branching process is analogous to an iterated version of the branching process used

14

to bound the component sizes in sub-critical random graphs [11]. In particular, after running such a process
once, we run a new independent process for each vertex in the first process. Naturally, we need some
additional twists to handle the fact that we have a directed graph on literals (where each clause creates two
directed edges) and the fact that the presence of cycles makes the branching process analogy imperfect.

To prove that each of the first three properties holds w.h.p. we will first show two deterministic relations
betweenS andB (Claim 5.2 below) and then we will give a tail bound forjS(`)j for a fixed literal`. To
prove the fourth property, we will need to do some additionalwork in order to show that the number of
literals whose clan-star has size at leasti is a sharply concentrated random variable.

Claim 5.2.

1. If B(`) = ;, thenIn
F

2

(`) is tree-like andClan
F

2

(`) = S(`). Moreover, for all`0 2 Clan

F

2

(`),
In

F

2

(`

0

) is tree-like.

2. If jB(`)j � 1, thenIn
F

2

(`) is simple andIn
F

2

(`) � S(`).

Proof. SupposeB(`) = ;, i.e., thatF
2

contains no elements ofD(`). In creatingS
0

(`), we mimicked a
search procedure discoveringIn

F

2

(`) and did not find any cycles; the only potential locations for edges in
~

D(F

2

) that lead toS
0

(`) were those corresponding to clauses inD

0

(`). Since, by assumption,F
2

\D

0

(`) =

;, it follows that the search is complete,S
0

(`) = In

F

2

(`) andIn
F

2

(`) is tree-like. Moreover, by the same
reasoning, sinceF

2

\D(`) = ;, eachS
j

(`) is tree-like and

[

y2In

F

2

(`)

In

F

2

(�y) =

jS

0

(`)j

[

j=1

S

j

(`)

and thusClan
F

2

(`) = S(`).
Suppose thatF

2

contains precisely one element ofD(`). If that element is not inD
0

(`) then by the
above argumentIn

F

2

(`) is tree-like andIn
F

2

(`) = S

0

(`) � S(`). therefore we consider the case that the
element is inD

0

(`). There are two kinds of clauses inB
0

(`): those corresponding to ‘internal’ edges, those
edges(y; x) wherex; y 2 S

0

(`), and ‘external’ edges, those that would create an edge(�y; x) in ~

D(F

2

) (and
also the edge(�x; y)) wherex; y 2 S

0

(`). If the single element ofD
0

(`) \ F

2

corresponds to an internal
edge thenS

0

(F

2

) = In

F

2

(`) andIn
F

2

(`) has precisely one cycle. If that element corresponds to external
edges(�y; x) and(�x; y) wherex; y 2 S

0

(`) thenS
0

(`) is internally tree-like and we find precisely one cycle
involving this pair of edges in the subgraph ofG(F

2

) induced byS
0

(`)[R(`). The search forIn
F

2

(`) does
not end withS

0

(`) because we have missed exploring from�x and from�y. However, in creatingS(`) we also
search from every literal inR(`) and, since none of the elements inD(`)�D

0

(`) is inF
2

, these searches will
fully explore In

F

2

(�x) andIn
F

2

(�y) and thus will finish the exploration ofIn
F

2

(`), yielding In
F

2

(`) � S(`).
Furthermore, no additional cycles will be found in these sets and thusIn

F

2

(`) will be simple.

Claim 5.3. Fix any literal ` and letS = S(`). There exists� = �(�) > 0 such that for everyq > 2,
Pr[jSj � q℄ < (1� �)

q.

Proof. Let C
p;n

be the distribution of the number of vertices in the connected componentC(v) of a fixed
vertex v in a random graphG(2n; p = (1 � �)=(2n)). Since each clause appears in the formula with
probabilityp it is easy to show (see e.g. [12]) that the size of the tree corresponding toS

0

(`) and each of the
trees corresponding to the differentS

j

(`) is dominated byC
p;n

.
LetX � C

p;n

and let
W =W

1

+W

2

+ � � �+W

X

15

where theW
i

are i.i.d. random variables withW
i

� C

p;n

. Observe that2W dominatesjS(`)j since each
jS

i

(`)j is dominated byW
i

for i � 1. To analyze,jS(`)j we will obtain an upper tail bound onW using a
standard moment generating function argument. For anyh > 0 we have

Pr[W � q℄ = Pr[exp(hW) � exp(hq)℄

� exp(�hq)E(exp(hW)) ;

using Markov’s (or Bernstein’s) inequality. Note now that

E(exp(hW)) =

X

k�1

Pr[X = k℄E

k

Y

i=1

exp(hW

i

)

!

(2)

=

X

k�1

Pr[X = k℄

k

Y

i=1

E (exp(hW

i

)) (3)

=

X

k�1

Pr[X = k℄ (E (exp(hW

i

)))

k

; (4)

where passing from (2) to (3) uses that the random variablesW

i

are independent while passing from (3) to
(4) uses that they are identically distributed.

LetPr[W
i

= k℄ = Pr[X = k℄ � p

k

. Let
 = 1� �. To bound (4) we will use the following well-known
facts (see, for example, p.156 in [7]). Namely, that asymptotically in n,

p

k

= (1=
)

�

e

�

�

k

k

k�1

=k! (5)

and that for all
 < 1,
X

k�1

p

k

= 1 : (6)

Further, let us note that the functionf(x) = xe

�x is continuous and increasing in[0; 1), going fromf(0) =

0 to f(1) = e

�1. In particular for all0 < � < 1, if
 = 1 � �, d =
 + �

2

=3 andh = �

3

=3, then

e

�
+h

< de

�d andd < 1. Moreover,de�
 < e

�1 which will be useful in boundingE(exp(hW)). With
all this in mind,

E(exp(hW

i

)) =

X

k�1

p

k

exp(hk)

= (1=
)

X

k�1

(
e

�
+h

)

k

k

k�1

=k!

< (1=
)

X

k�1

(de

�d

)

k

k

k�1

=k!

= d=
 :

Thus,

E(exp(hW)) <

X

k�1

p

k

(d=
)

k

= (1=
)

X

k�1

(de

�

)

k

k

k�1

=k!

< (1=
)

X

k�1

(de

�
+1

)

k

;

16

which is a geometric series with ratiode�
+1

< 1 depending only on� and therefore converges to some
U(�) <1. Therefore, for1 > � > 0 there is� = �(�) > 0 andq

0

= q

0

(�) such that for allq � q

0

,

Pr[W � q℄ < exp(�hq)U(�)

= U(�) exp

�

�

�

3

3

q

�

� (1� �)

q

:

To obtain an upper bound forall q as opposed to just those larger thanq
0

, we observe that for any fixed
value ofq > 1, Pr[W � q℄ < 1, and so there exists�0 = �

0

(�; q

0

) such that for allq > 1,

Pr[W � q℄ < (1� �

0

)

q

: (7)

Now, letting� = �

0

=2, we see that

Pr[jS(`)j � q℄ � Pr[W � q=2℄ < (1� �

0

)

q=2

< (1� �)

q

:

Claim 5.4. W.h.p. there are at mostlog n literals for whichjB(`)j > 0 and no literals for whichjB(`)j > 1.

Proof. Observe thatjD(`)j � 2jS(`)j

2 and that each element ofD(`) appears in the formula with probabil-
ity p < 1=n. Therefore, for anỳ,

Pr[jB(`)j > 0℄ � pE(2jS(`)j

2

) < 10p+

X

k>2

(1� �)

k

2k

2

p = C=n ;

for some constantC = C(�). Therefore, the expected number of literals` with jB(`)j > 0 is bounded by
2C and by Markov’s inequality, w.h.p. there are at mostlog n such literals. Similarly, observe that

Pr[jB(`)j > 1℄ � p

2

E

��

2jS(`)j

2

2

��

= o(1=n)

and therefore w.h.p. no such literals exist.

Proof of 1: By Claim 5.4 w.h.p. for everỳ we are in one of the two cases of Claim 5.2. In both cases
In

F

2

(`) is simple.
Proof of 2: By Claim 5.4, w.h.p. there are at mostlog n literals not falling in the first case of Lemma 5.2. It
is only for such literals thatClan

F

2

(`) could contain somè0 such thatIn
F

2

(`

0

) is not tree-like.
Proof of 3: First observe that by (7) there exists a constantC such that w.h.p. for everỳ, S(`) has size at
mostC logn. Since w.h.p. everyjB(`)j � 1, everyIn

F

2

(`) is contained in its associatedS(`) and therefore
has size at mostC logn. Therefore for anỳ,

jClan

F

2

(`)j � jIn

F

2

(`)j+

X

y2In

F

2

(`)

jIn

F

2

(�y)j

� C logn+ (C log n)

2

� log

3

n :

Proof of 4: We will choose� later as a function of�. Observe that we only need to consider` such that
B(`) = ; sinceB(`) 6= ; precisely whenClan

F

2

(`) has a literal̀ 0 with In

F

2

(`

0

) not tree-like.

17

For these literals, by Claim 5.2,Clan
F

2

(`) = S(`). Therefore fori � 3, by linearity of expectation and
Claim 5.3,

E(T

i

(F

2

)) < 2n� (1� �)

i

: (8)

Our next step is to show that for eachi there existsQ
i

� E (T

i

(F

2

)) such that w.h.p. for alli � 3,

jT

i

(F

2

)�Q

i

j < n

3=4

: (9)

To prove (9) we will need to do some work before appealing to a concentration inequality. The reason
for this is that, a priori, replacing a single clause inF

2

could changeT
i

(F

2

) dramatically, for somei; luckily,
this is an unlikely event. To capture this last fact we will introduce a family of random variablesU

i

with the
following properties: i) w.h.p.U

i

(F

2

) = T

i

(F

2

) for all i, and ii) by definition (of theU
i

), replacing a clause
in F

2

can affect eachU
i

by at mostpolylog(n). Thus, appealing to a large deviation inequality for theU

i

will yield the desired result.
The random variablesU

i

are motivated by the following observation.

Observation 5.5. If x 2 Clan

F

2

(y) then�y 2 Clan

F

2

(�x). Thus, ifB = max

x

jClan

F

2

(x)j; then no literal
appears in more thanB clans.

Recall now that for every literal̀, Clan�(`) � Clan(`) and w.h.p.jClan(`)j � log

3

n for all `. There-
fore, the above observation suggests that when adding/removing a single arc~e in ~

D(F

2

) there are at most
log

3

n literals for whichClan�
F

2

(`) changes. This is becauseClan
F

2

(`) can change only if it contains one
of the two endpoints of~e and, by our observation, each endpoint of~e appears in at mostlog3 n clans.

This leads us to introduce the notion of thedomponent, Domp(`), of a literal `. The domponents of
all literals in a 2-SAT formulaF are determined as follows. We first associate with each arc~e in ~

D(F) a

ount(~e) equal to the number of clan-stars in which~e is present (~e is present in a clan-star if it was followed
at least once in determining that clan-star). We then createa subgraph~D0

(F) of ~D(F) by removing all arcs
~e such that
ount(~e) � log

3

n. The domponent of each literal` is then its clan-star in~D0

(F). If for a literal
`, Domp(`) = Clan

�

F

2

(`) then we will say thatDomp(`) is good. Analogously toT
i

(F

2

) we let

U

i

(F

2

) = jfx : jDomp(x)j = i andDomp(x) is goodgj :

Note that for alli, by definition,U
i

(F

2

) � T

i

(F

2

) and thereforeE(U
i

(F

2

)) � E(T

i

(F

2

)). Further,
note that by part 3 of the lemma w.h.p.~D(F) =

~

D

0

(F). Therefore, to prove (9) it suffices to takeQ
i

=

E(U

i

(F

2

)) and prove that w.h.p. for alli, jU
i

(F

2

)�E(U

i

(F

2

))j < n

3=4.

To prove that the random variablesU
i

are concentrated around their expectation we consider the prob-
ability space corresponding to them

2

independent choices of clauses fromC
2

(n) that determineF
2

. We
claim that for any possible set of values for these choices (i.e. for any set of clauses), changing the value
of any single random variable (i.e. replacing a clause with some other clause) can only affectDomp(`)

for at most4 log3 n literals. To prove this claim we break-down the replacementof a clause to four steps
corresponding to the four arcs that are removed/added in~

D(F

2

). The claim then follows by the fact that the
removal/addition of each such arc can affectDomp(`) for at mostlog3 n literals. This last assertion follows
trivially from the fact that, by the definition of domponents, the arc~e being added (removed), cannot be
traversed (have been traversed) during the determination of the domponents more thanlog3 n times.

Given the above claim, we can apply the following inequalityof McDiarmid [30] to get that the proba-
bility of eachD

i

deviating byn3=4 is bounded byexp(�n1=5). The union bound then implies that w.h.p. no
D

i

deviates by that much.

18

Theorem 5.6 ([30]). LetX = (X

1

;X

2

; : : : ;X

n

) be a family of independent random variables with each
X

k

taking values in a setA
k

. Suppose that the real-valued functionf defined on
Q

A

k

satisfies

jf(x)� f(x

0

)j �

k

whenever the vectorsx andx0 differ only in thek-th coordinate. Let� be the expected value of the random
variablef(X). Then for anyt � 0,

Pr[f(X) � �+ t℄ � exp

�

�2t

2

=

X

2

k

�

and

Pr[f(X) � �� t℄ � exp

�

�2t

2

=

X

2

k

�

:

Combining (8) and (9) we get that there exists� = �(�) > 0 such that w.h.p. fori � 3,

T

i

(F

2

) � 2n� (1� �)

i

+ n

3=4

: (10)

Further, recall that by (7)
w.h.p. T

i

(F

2

) = 0 for all i � C log n : (11)

Let us now choose� < � such that(1� �)

C logn

� n

�1=4. Thus, for alli < C logn

2n� (1� �)

i

� 2n

3=4

: (12)

We claim that w.h.p. for alli � 3,
T

i

(F

2

) � (4n)� (1� �)

i

: (13)

If i � C log n then (13) holds by (11). Ifi < C logn then by (10), (13) and� < �, respectively,

T

i

(F

2

) � 2n� (1� �)

i

+ n

3=4

� 2n� (1� �)

i

+ 2n� (1� �)

i

� 4n� (1� �)

i

:

By (10) and (13) it follows that there is� < � such that w.h.p. for alli � 3, T
i

(F

2

) � 2n� (1� �)

i

:

6 Proof of Lemma 4.7

We will prove a somewhat more general concentration statement, cast in terms of picking weighted balls
without replacement.

Lemma 6.1. LetB be a set ofm weighted balls, each ballx having integerweight(x) � 0. LetB
i

denote
the number of balls with weighti and suppose that there is a� > 0 such that

B

i

� (1� �)

i

m; for all i � 0 : (14)

Then there is an�0 > 0 such that for every� � 1 and1 � t � m=2, if we choose a random subsetR � B

of t balls, and letW =

P

x2R

weight(x) then

Pr[W > 4(1 + �)

2

E(W)℄ < 2 exp(��

0

�t) :

Lemma 4.7 follows from Lemma 6.1 by settingm = 2n, B
i

= jfx : Clan

�

(x) = i + 2gj, � = �

0

=3,
and4(1 + �)

2

= r + 16 and observing that� =
p

4 + r=4� 1 � maxf1;

p

r=3g.

19

Proof of Lemma 6.1.We start by consideringW to be defined in the following, equivalent, manner. LetS

be an infinite sequence of balls formed by choosing balls uniformly, independently andwith replacement
from B. LetW be the sum of the weights of the firstt distinct elements ofS.

Let us consider the prefixP = p

1

; p

2

; : : : ; p

d

of S whered = 2(1 + �) � t. In particular, let us form a
random setR0 � B, by scanningP linearly and adding toR0 every ball not seen before, until eitherjR0j = t

or we exhaustP . Let

W

0

=

X

x2R

0

weight(x) and Q =

d

X

i=1

weight(p

i

) :

Then, by (the miracle of) linearity of expectation, we see thatE(Q) = 2(1 + �)E(W) and, thus, for any
� > 0

Pr[W > 4(1 + �)

2

E(W)℄ � Pr[W

0

> 4(1 + �)

2

E(W)℄ + Pr[W

0

6=W ℄

� Pr[Q > 4(1 + �)

2

E(W)℄ + Pr[W

0

6=W ℄

� Pr[Q > (2 + �)E(Q)℄ + Pr[W

0

6=W ℄ :

ForW 0

6=W to occur it must be that we picked2(1 + �)t balls out ofm balls with replacement and got
fewer thant distinct balls. We start by proving that for all� � 1, the probability of this event is bounded
above byexp(��t=2). For this, we first observe that the expected number of balls drawn after drawing the
i-th distinct ball and until drawing the(i + 1)-st distinct ball ism=(m � i). Therefore, sincet � m=2, it
follows that after drawing2(1 + �)t balls we expect at least(1 + �)t distinct balls. To prove the probability
bound we will use Theorem 5.6. In particular, we letX

i

be the label of thei-th ball drawn and we letf be
the number of distinct balls. Clearly, the random variablesfX

i

g are independent and we can take

k

= 1

for all k. Therefore we get that the probability we draw fewer thant distinct balls, for all� � 1, is bounded
above by

Pr[f(X) < t℄ � Pr[f(X) < �� �t℄ � exp

�

�

2(�t)

2

2(1 + �)t

�

� exp(��t=2) :

We will prove below thatPr[Q > (2 + �)E(Q)℄ < exp(���t) for some� = �(�) > 0. Combining this
with the estimate forW 0

6= W we get that for� � 1 the probability of havingW > 4(1 + �)

2

E(W) is at
mostexp(���t) + exp(��t=2) � 2 exp(��

0

�t) for � = minf�; 1=2g as required.

To prove our tail bound onQ we first note that for anyh > 0,

Pr[Q > (2 + �)E(Q)℄ = Pr[exp(hQ) > exp((2 + �)hE(Q))℄

� E(exp(hQ))� exp(�(2 + �)hE(Q)) : (15)

Now letfQ
i

g

d

i=1

be i.i.d.r.v. defined byQ
i

= weight(p

i

). Thus,Q =

P

d

i=1

Q

i

and as a result

E(exp(hQ)) = E

d

Y

i=1

exp(hQ

i

)

!

=

d

Y

i=1

E (exp (hQ

i

))

= (E (exp (hQ

i

)))

d

: (16)

To simplify notation let us replaceQ
i

with T in the rest of the proof and let� = E(T).

20

To go from (17) to (18) we use (14). To go from (18) to (19) we require h < �, which suffices to
guarantee the sum’s convergence. Finally, to go from (19) to(20) we use that forh > 0, e�h > 1� h.

E(exp(hT)) =

1

X

i=0

Pr[T = i℄ exp(hi)

=

1

X

i=0

Pr[T = i℄ (1 + hi+ (exp(hi)� hi� 1)) (17)

� 1 + h�+

1

X

i=1

(1� �)

i

(exp(hi) � hi� 1) (18)

= 1 + h�+ (1� �)

�

1

�� 1 + exp(�h)

�

h+ �

�

2

�

(19)

< 1 + h�+ (1� �)

�

1

�� h

�

h+ �

�

2

�

(20)

= 1 + h�+

h

2

(1� �)

�

2

(�� h)

: (21)

Now, substitutingh = �

3 in (21) we get (22), while (23) follows from� � 1 > (�+ 1)

�1.

E(exp(�

3

T)) < 1 + �

3

�+

�

3

�+ 1

(22)

< 1 + 2�

3

� : (23)

Note now that, by (15) and (16), for allh > 0,

Pr[Q > (2 + �)E(Q)℄ �

�

E(exp(hT))

exp((2 + �)hE(T))

�

2(1+�)t

�

�

E(exp(hT))

exp(2hE(T))

�

2(1+�)t

� exp(�2h��t) : (24)

Takingh = �

3, (23) implies that the ratio in (24) is bounded by 1. Thus, since� � 1, if � = 2�

3, then

Pr[Q > (2 + �)E(Q)℄ � exp(���t) :

7 Implications for Satisfiability Algorithms

A number of algorithms for finding satisfying assignments for CNF formulas operate by building a partial
assignment step by step. These algorithms commit to the assignments made at each step and operate on a
residual formula, in which clauses already satisfied have been removed, whilethe remaining clauses have
been shortened by the removal of their falsified literals. Wecall such algorithmsforward searchalgorithms
and they include the myopic algorithmsUC andGUC mentioned in the introduction, as well as several more
sophisticated variants [13, 14, 2, 5]. During the executionof any such algorithm a partial assignment may
produce clauses of size 1 (unit clauses) in the residual formula which in turn create additionalforcedchoices
in the partial assignment, since the variables appearing inunit clauses have only one possible assignment

21

if the formula is to be satisfied. The choices made by a forwardsearch algorithm when no unit clauses are
present are calledfree. As we saw, inUC a free choice amounts to assigning a random value to a random
unassigned variable; inGUC a random literal in a random clause of smallest size in the residual formula is
satisfied; the branching rule ofORDERED-DLL amounts to assigning 0 to the smallest-numbered unassigned
variable (which makes a simple forward search version ofORDERED-DLL probabilistically equivalent toUC

for randomk-CNF).
We are interested in extensions of forward search algorithms to complete algorithms via backtracking. In

any such extension, if a path in the search tree leads to a contradiction, the algorithm must begin backtracking
by undoing all the (forced) choices up to the last free choiceand flipping the assignment to that variable.
From there, perhaps the simplest option would be for the algorithm to act as if it had reached this point
without backtracking and apply the original heuristic to decide which variable(s) to set next. An alternative
heuristic which we call FS-backtracking (inspired by [22])is the following: When a contradiction is reached,
record the portion of the assignment between the last free choice and the contradiction; these literals become
hot. After flipping the value of the last free choice, instead of making the choice that the original heuristic
would suggest, give priority to the complements of the hot literals in the order that they appeared; once the
hot literals are exhausted continue as with the original heuristic. FS-backtracking is quite natural in that this
last part of the partial assignment got us into trouble in thefirst place.

A key property of FS-backtracking that is useful in our analysis, as in that of [22], is that as long as
the value of each variable in a partial assignment has been flipped at most once, the residual formula is
uniformly random conditional on the number of clauses of each size. This property will be very useful
for us as it would allow us to apply Theorem 1.1 to residual formulas generated after some backtracking
has already occurred. We emphasize that while the original motivation for introducing FS-backtracking is
technical convenience, FS-backtracking is also in fact a genuinely good algorithmic idea. Specifically, given
a forward search algorithmA, let us writeA-SIMPLE to denote its extension using simple backtracking
andA-FS for its extension using FS-backtracking. Initial experiments comparingORDERED-DLL -FS to
ORDERED-DLL (which uses simple backtracking) on random formulas at ratios between 3.8 and 4.0 show
that the histogram of run-times of FS-backtracking issignificantly betterthan that of simple backtracking
throughout the range.

Any DPLL algorithmA has the property that for any residual subformulaF

0 created byA, eitherA
satisfiesF 0 orA produces a resolution refutation ofF 0. Thus, to prove lower bounds for DPLL algorithms,
our plan is to prove that each such algorithm is likely to arrive at a point during its execution in which the
residual formulaF 0 is unsatisfiable but any resolution refutation ofF

0 must have exponential size, implying
thatA must run for exponential time beyond that point.

Let us say that a DPLL algorithm is at at-stageif preciselyt variables have been set.

Definition 7.1. Let � = 10

�4. A t-stage of a DPLL algorithm isbadif the residual formula at that stage is
the union of a random 3-CNF formula with(2:281 � �)(n � t) clauses and a random 2-CNF formula with
(0:999 � �)(n� t) 2-clauses, wheret � n=2.

Recall from our discussion in the introduction that formulas as in Definition 7.1 above are w.h.p. unsat-
isfiable while, by our Theorem 1.1, w.h.p. all their resolution refutations have exponential size.

Lemma 7.2. Let�UC = �ORDERED-DLL = 3:81 and let�GUC = 3:98.

1. For eachA 2 fUC,ORDERED-DLL ,GUCg, an execution ofany backtracking extension ofA on a
random 3-CNF formula with�

A

n clauses reaches abadt-stage with constant probability.

2. For eachA 2 fUC,ORDERED-DLL ,GUCg, an execution of algorithmA-FS on a random 3-CNF
formula with�

A

n clauses reaches abadt-stage w.h.p.

22

Corollary 7.3. Let�UC = �ORDERED-DLL = 3:81 and let�GUC = 3:98.

1. For eachA 2 fUC,ORDERED-DLL ,GUCg, an execution ofany backtracking extension ofA on a
random 3-CNF formula with�

A

n clauses takes time2
(n) with constant probability.

2. For eachA 2 fUC,ORDERED-DLL ,GUCg, an execution of algorithmA-FS on a random 3-CNF
formula with�

A

n clauses takes time2
(n) w.h.p.

Note that in Lemma 7.2 and Corollary 7.3 when we refer toORDERED-DLL we consideranyalgorithm
that extends the first branch of the standard version ofORDERED-DLL that does simple backtracking.

Proof of Lemma 7.2.The lemma follows from results in [13, 3, 22]. Below we outline these results and show
how they can be combined. The original analyses in these papers were largely geared towards understanding
the ratios between clauses and variables at which randomk-CNF formulas remain satisfiable almost surely,
particularly in the case thatk = 3. In fact, virtually the only method known for determining lower bounds
on the satisfiability threshold for 3-CNF formulas is based on analyzing such algorithms. These analyses
apply primarily to forward search algorithms, such asUC andGUC.

A forward search algorithm is a prefix of any of its backtracking extensions — it corresponds to the
first path explored in the backtracking search tree: We will show that our full DPLL algorithms reach bad
t-stages by proving that the corresponding prefixes of those executions reach such badt-stages.

We restate the previous analyses of some of the forward search algorithms on random 3-CNF formulas.
The key property shown in all of these analyses is that when they are run on uniformly random formulas, the
residual formula at each stage in these prefixes remains uniformly random conditional only on the number
of clauses of each length. To state this more precisely, letV(t) denote the set of variables not assigned a
value aftert steps and letC

j

(t) denote the number of clauses in the residual formula with length j after t
steps. Then, for eacht, the set ofj-clauses in the residual formula is distributed as a set ofC

j

(t) clauses
drawn uniformly, with replacement among all2

j

�

jV(t)j

j

�

j-clauses on the variables inV(t).
Given the above claim, to prove the lemma it suffices to prove that starting with a random 3-SAT formula

with �n clauses, with suitable probability there existst such that the residual formula aftert steps has the
appropriate number ofj-clauses for each0 � j � 3; i.e., it remains now to analyze the values ofC

j

(t)

as a function oft for the various algorithms. As is usual in such analyses, although the forward search
algorithm would stop precisely when a 0-clause in the residual formula is created, we first do the analysis
of the evolution of the residual formula without taking intoaccount this stopping condition and then prove
that with appropriate probability no 0-clause is created.

For j = 2; 3, it can be shown that the number ofj-clauses at timet can be approximated by the scaled
solution to a pair of differential equations. In particular, the following claims were proved in [13, 3] for
UC,ORDERED-DLL and in [22] forGUC.

UC,ORDERED-DLL : For anyÆ > 0, w.h.p. for all0 � t � (1� Æ)n,

C

3

(t) = �(1� t=n)

3

� n+ o(n) ; (25)

C

2

(t) =

3�

2

(t=n)(1� t=n)

2

� n+ o(n) : (26)

For any� > 2=3 let � be the unique solution to6�x� 3�x

2

+ 4 ln(1� x) = 0.
GUC: For anyÆ > 0, w.h.p. for all0 � t � (�� Æ)n,

C

3

(t) = �(1� t=n)

3

� n+ o(n) ; (27)

C

2

(t) =

�

3�

2

t=n�

3�

4

(t=n)

2

+ ln(1� t=n)

�

(1� t=n) � n+ o(n) : (28)

23

For the number of 1- and 0-clauses we will use another key claim which, intuitively, amounts to saying
that if the density of the residual 2-CNF subformula remainsbounded away from 1, then 1-clauses do not
accumulate and with positive probability no 0-clauses are ever generated. More precisely, if for a givent

0

there existÆ; � > 0 such thatt
0

� (1� Æ)n and w.h.p. for all0 � t � t

0

, C
2

(t) � (1� �)(n� t), then with
probability � = �(Æ; �) > 0, C

1

(t

0

) + C

0

(t

0

) = 0. (Note that since 0-clauses are never removed from the
residual formula, havingC

0

(t

0

) = 0 means that no 0-clauses were generated during the firstt

0

steps.)
To gain some intuition for the last claim we observe that for all of the algorithmsA we consider and all

t = 0; : : : ; n � 1, the expected number of unit clauses generated in stept is C
2

(t)=(n � t) + o(1). Since
each algorithm can satisfy (and thus remove) one unit clausein each step, unit clauses will not accumulate
as long as this rate is bounded above by1 � � for some� > 0. In fact, under this condition,C

1

(t) behaves
very much like the queue size in a stable server system. In particular, there exist constantsM = M(Æ)

andk > 0 such that w.h.p.C
1

(t) < log

k

n for all t, and w.h.p.
P

t

C

1

(t) < Mn. This implies, that the
number of 0-clauses generated is dominated by a Poisson random variable with constant mean (the constant
depending onM). Moreover, there is aǹ> 0 such that w.h.p. there is no period oflog

`

n consecutive steps
in whichC

1

is strictly positive.
Now, by substituting the given values for�; � in equations (25)–(28) we see that indeed there exists

t � n=2 such that at timet w.h.p. we have the right number of 2- and 3-clauses for a bad configuration.
Moreover, up to thatt, w.h.p. the density of 2-clauses stays uniformly below 1 and, therefore, with positive
probability we indeed get a bad configuration. In particular, for UC,ORDERED-DLL , if � = �UC = 3:81,
this occurs whent � :22625n. For GUC, if � = �GUC = 3:98, this occurs whent � :243n. This yields
our positive probability results for arbitrary backtracking versions ofUC, ORDERED-DLL , andGUC.

FS-Backtracking. As we saw above, as long as the density of the residual 2-CNF subformula is bounded
below 1, the number of 1-clauses in one of the forward search algorithms behaves like a random walk with
negative drift and a barrier at 0. As a result, it is natural todivide an algorithm’s execution intoepochs,
where a stept ends an epoch ifC

1

(t) = 0. From our discussion above, each epoch has constant expected
length and w.h.p. no epoch lasts more than a polylogarithmicnumber of steps.

Frieze and Suen [22] developed a method for improving the success probability of the above forward
search algorithms with a small amount of backtracking usingthe notion of epoch. This limited backtracking
allows one to backtrack to the beginning of the current epoch(but not further into the past). This epoch
begins with a free choice followed by a sequence of forced choices. As in the usual backtracking algorithms,
in Frieze and Suen’s method one flips the value of the assignment made by the last free choice but, unlike
usual backtracking algorithms, in their method one also flips the value of the assignment toall variables set
so far during the current epoch. After all these values are flipped, if there are any unit clauses remaining
then these propagations are done to finish the epoch. If a 0-clause is generated during this epoch after the
flip then the algorithms fails. After the epoch is complete then all assignments are fixed and the algorithm
continues as before.

Frieze and Suen’s method does not do full backtracking and therefore, like the forward search algo-
rithms, is an incomplete search procedure. It is easy to check that our modification, FS-backtracking, ex-
tends it to a complete backtracking search in such a way that the residual formulas that occur in their limited
backtracking algorithms at the end of each epoch also appearas residual formulas using FS-backtracking.
Although Frieze and Suen applied their method only toGUC, creating a procedure they calledGUCB, it is
clear that it can be used and analyzed in exactly the same manner for any algorithm having the property that
the residual formula is uniformly random conditioned on thenumber of clauses of each length.

The first observation of Frieze and Suen’s analysis is that the residual formula resulting after the flip
is uniformly random conditional on the number of clauses of each length. (This was the motivation for
the particular form of backtracking and would not be true if we did not flip all variables set so far during
the epoch.) To see this, we separate the clauses of the residual formula at the beginning of the last epoch

24

into volatile clauses, those containing a variable whose value is tentative in that may be flipped, and the
remaining non-volatile clauses. Clearly, and in every stepduring the epoch, the set of non-volatile clauses
remains uniformly random conditional on their size. Each volatile clause may contain literals that agree or
disagree with the tentative value assignment. If a volatileclause contains any variable that disagrees with
the tentative assignment then, when the assignment is flipped, the clause will be satisfied and therefore will
disappear from the residual formula. It remains to considerthe volatile clauses that only contain literals
that agree with the tentative assignment. After the flip, these clauses will be shortened by the removal of
the literals that agree with the tentative assignment. Before the tentative assignment was flipped, the only
thing “exposed” about such clauses is that they contained one of these literals (since they were immediately
satsified by it) and therefore the remaining literals in these clauses are uniformly random. Thus, the formula
as a whole is uniformly random conditional on the number of clauses of each length.

The other key observation is that the number of volatile clauses that re-enter the residual formula as
the result of a flip is at most polylogarithmic. This is because there are only a polylogarithmic number of
variables flipped (by the epoch-length argument) and no variable appears in more than, say,log

2

n clauses,
since we are dealing with sparse random formulas. As shown in[22], this implies that once the assignment
has been flipped the probability of a second 0-clause being generated by that flipped assignment (together
with its resulting unit propagation) is very small. In particular, this probability is so small that combined
with the fact that each epoch’s probability of requiring a flip isO(1=n), it implies that w.h.p. no 0-clause is
ever generated.

As a result, by considering epochs instead of individual steps, we get that w.h.p. at the end of each
epoch there are no 1- or 0-clauses. Furthermore, the number of j-clauses,j = 2; 3 aftert steps is still given
by equations (25)–(28) (theo(n) term absorbing the effect of any flips). Thus, aftert variables have been
set, wheret � :22625n for ORDERED-DLL -FS andUC-FS, andt � :243n for GUC-FS, we see that each
algorithm w.h.p. will be in a badt-stage.

8 Further Research

Our upper bounds on the number of 3-clauses needed to cause exponential behavior in satisfiability algo-
rithms will be readily improved with any improvement on the2:28n upper bound for unsatisfiability in
random(2 + p)-SAT. That is, if it is shown that for some� > 0 and2=3 � � < 2:28, random formulas
with (1 � �)n 2-clauses and�n 3-clauses are unsatisfiable w.h.p. then the bounds of 3.81 and 3.98 will be
immediately reduced. In fact, if� is reduced to2=3, to match the lower bound, then our results immedi-
ately imply the following remarkably sharp behavior: everycard-type algorithmA is such that it operates in
linear time with constant probability up to some threshold�

A

but any backtracking extension ofA requires
exponential time with constant probability for all ratios larger than�

A

. In fact, if A uses FS-backtracking
then it would work in linear time almost surely at ratios below �

A

and require exponential time almost surely
above�

A

.
It seems quite likely that one can extend our w.h.p. analysisto the simple backtracking versions ofUC,

GUC, ORDERED-DLL , and other card-type algorithms.

References

[1] D. Achlioptas. Threshold Phenomena in random graph coloring and satisfiability. PhD thesis, De-
partment of Computer Science, University of Toronto, 1999.

25

[2] D. Achlioptas. Setting 2 variables at a time yields a new lower bound for random 3-SAT. InPro-
ceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, pages 28–37, Port-
land,OR, May 2000.

[3] D. Achlioptas. A survey of lower bounds for random 3-SAT via differential equations.Theoretical
Computer Science, 265(1–2):159–185, 2001.

[4] D. Achlioptas, L. M. Kirousis, E. Kranakis, and D. Krizanc. Rigorous results for random(2+p)-SAT.
Theoretical Computer Science, 265(1–2):109–129, 2001.

[5] D. Achlioptas and G. B. Sorkin. Optimal myopic algorithms for random 3-SAT. In41st Annual
Symposium on Foundations of Computer Science (Redondo Beach, CA, 2000), pages 590–600. IEEE,
2000.

[6] Dimitris Achlioptas and Yuval Peres. The randomk-SAT threshold is2k ln 2�O(k). In 35th Annual
ACM Symposium on Theory of Computing, San Diego, CA, 2003. to appear.

[7] N. Alon, J. H. Spencer, and P. Erdös.The Probabilistic Method. John Wiley & Sons, 1992.

[8] P. Beame, R. Karp, T. Pitassi, and M. Saks. On the complexity of unsatisfiability of randomk-CNF
formulas. InProceedings of the Thirtieth Annual ACM Symposium on Theoryof Computing, pages
561–571, Dallas, TX, May 1998.

[9] E. Ben-Sasson and A. Wigderson. Short proofs are narrow –resolution made simple.Journal of the
ACM, 48(2):149–169, 2001.

[10] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without BDDs. InProcceedings,
5th International Conference, TACAS’99, pages 193–207, Berlin, Germany, 1999. Springer-Verlag.

[11] B. Bollobás.Random graphs. Academic Press, London-New York, 1985.

[12] B. Bollobás, C. Borgs, J. T. Chayes, J. H. Kim, and D. B. Wilson. The scaling window of the 2-SAT
transition.Random Structures and Algorithms, 18(3):201–256, 2001.

[13] M.T. Chao and J. Franco. Probabilistic analysis of a generalization of the unit-clause literal selection
heuristics.Information Science, 51:289–314, 1990.

[14] V. Chvátal and B. Reed. Mick gets some (the odds are on his side). InProceedings 33rd Annual
Symposium on Foundations of Computer Science, pages 620–627, Pittsburgh, PA, October 1992. IEEE.

[15] V. Chvátal and Endre Szemerédi. Many hard examples for resolution.Journal of the ACM, 35(4):759–
768, 1988.

[16] C. Coarfa, D. D. Demopoulos, A. San Miguel Aguirre, D. Subramanian, and M. Y. Vardi. Random
3-SAT: The plot thickens. InProceedings 6th International Conference on Principles and Practice of
Constraint Programming, Singapore, September 2000.

[17] S. Cocco and R. Monasson. Trajectories in phase diagrams, growth processes and computational
complexity: how search algorithms solve the 3-Satisfiability problem. Phys. Rev. Lett., 86(8):1654–
1657, 2001.

[18] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.Communications
of the ACM, 5:394–397, 1962.

26

[19] M. Davis and H. Putnam. A computing procedure for quantification theory.Communications of the
ACM, 7:201–215, 1960.

[20] W. Fernandez de la Vega. On random2-SAT. Manuscript, 1992.

[21] E. Friedgut. Sharp thresholds of graph properties, andthe k-sat problem.Journal of the American
Mathematical Society, 12:1017–1054, 1999.

[22] A. Frieze and S. Suen. Analysis of two simple heuristicson a random instance of k- SAT.Journal of
Algorithms, 20(2):312–355, 1996.

[23] A. Goerdt. A threshold for unsatisfiability.Journal of Computer and System Sciences, 53:469–486,
1996.

[24] C. Gomes, B. Selman, and H. Kautz. Boosting combinatorial search through randomization. InPro-
ceedings Fifteenth National Conference on Artificial Intelligence (AAAI-98), pages 431–437, 1998.

[25] C. P. Gomes, B. Selman, N. Crato, and H. Kautz. Heavy-tailed phenomena in satisfiability and con-
straint satisfaction problems.J. Automat. Reason., 24(1-2):67–100, 2000.

[26] S. Janson, Y. C. Stamatiou, and M. Vamvakari. Bounding the unsatisfiability threshold of random
3-SAT. Random Structures Algorithms, 17(2):103–116, 2000.

[27] H. Kautz, D. McAllester, and B. Selman. Encoding plans in propositional logic. InPrinciples
of Knowledge Representation and Reasoning: Proceedings ofthe Fifth International Conference
(KR’96), pages 374–384, 1996.

[28] H. Kautz and B. Selman. Pushing the envelope: planning,propositional logic, and stochastic search.
In Proceedings of the 13th AAAI, pages 1194–2001, 1996.

[29] S. Kirkpatrick and B. Selman. Critical behavior in the satisfiability of random formulas.Science,
264:1297–1301, May 1994.

[30] C. J.H. McDiarmid. On the method of bounded differences. In Surveys in Combinatorics, Proceedings
of the 12th British Combinatorial Conference, pages 148–188. Cambridge University Press, 1989.

[31] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troyansky. Phase transition and search
cost in the(2 + p)-SAT problem. In4th Workshop on Physics and Computation, Boston, MA, 1996.

[32] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troyansky. 2 + p-SAT: relation of
typical-case complexity to the nature of the phase transition. Random Structures Algorithms, 15(3-
4):414–435, 1999.

[33] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troyansky. Determining computational
complexity from characteristic phase transitions.Nature, 400:133–137, 1999.

[34] B. Selman and H. Kautz. Domain-independent extensionsto GSAT: Solving large structured satisfia-
bility problems. InProceedings of the 13th IJCAI, pages 290–295, 1993.

[35] B. Selman, H. Levesque, and D. Mitchell. A new method forsolving hard satisfiability problems. In
Proceedings Tenth National Conference on Artificial Intelligence (AAAI-92), pages 440–446, 1992.

[36] B. Selman, D. Mitchell, and H. Levesque. Generating hard satisfiability problems.Artificial Intelli-
gence, 81:17–29, 1996.

27

