
Approximating AC0 by Small Height Decision Trees and a
Deterministic Algorithm for #AC0SAT

Paul Beame∗

Institute for Advanced Study
and the University of Washington
beame@cs.washington.edu

Russell Impagliazzo†

Institute for Advanced Study
and the University of California, San Diego

russell@cs.ucsd.edu

Srikanth Srinivasan‡

DIMACS, Rutgers University
srikanth@dimacs.rutgers.edu

December 8, 2011

Abstract

We show how to approximate any function in AC0 by decision trees of much smaller height than
its number of variables. More precisely, we show that any function in n variables computable by an
unbounded fan-in circuit of AND, OR, and NOT gates that has size S and depth d can be approximated
by a decision tree of height n − βn to within error exp(−βn), where β = β(S, d) = 2−O(d log4/5 S).
Our proof is constructive and we use its constructivity to derive a deterministic algorithm for #AC0SAT
with multiplicative factor savings over the naive 2nS algorithm of 2−Ω(βn), when applied to any n-input
AC0 circuit of size S and depth d. Indeed, in the same running time we can deterministically construct a
decision tree of size at most 2n−βn that exactly computes the function given by such a circuit. Recently,
Impagliazzo, Matthews, and Paturi derived an algorithm for #AC0SAT with greater savings over the
naive algorithm but their algorithm is only randomized rather than deterministic.

The main technical result we prove to show the above is that for every family F of k-DNF formulas
in n variables and every 1 < C = C(n) ≤ logpoly(k) |F|, one can construct a distribution on restrictions
that each set at most n/C variables such that, except with probability at most 2−n/(2

O(k)C log |F|), after
application of the restriction, all formulas in F simultaneously reduce to logpoly(k) |F|-juntas where an
s-junta is a function whose value depends on only s of its inputs. Previously, Ajtai showed simultaneous
approximations for k-DNF formulas by juntas related to the one we show but with a dependence on
exp(k) rather than poly(k), resulting in a weaker height-approximation tradeoff than ours.

∗Research supported by NSF grants CCF-0830626 and DMS-0835373 and by the Ellentuck Fund
†Research supported by NSF grants DMS-0835373, CNS-0716790, CCF-0832797, etc.
‡Research supported by NSF grants CCF-0832797 and DMS-0835373.

1

1 Introduction
Williams has given a formal connection between circuit lower bounds for a circuit class and improved
algorithms for the satisfiability of circuits from that class ([8, 9]). In light of this work, it is natural to
consider using lower bound techniques to develop improved Satisfiability algorithms. One of the greatest
success stories for circuit lower bounds are those for the class AC0 of constant-depth, unbounded fan-in,
Boolean circuits. A sequence of papers [1, 3, 10, 4] has proved strong lower bounds for computing natural
functions like Parity with such circuits.

Santhanam ([7]) has given a template for such improved algorithms. Many of the circuit lower bounds
are based on showing that the circuit can be simulated or approximated by another type of representation,
such as a decision tree or a low-degree polynomial. In particular, for many of these representations, Satisfia-
bility is trivial or at least relatively easy. Santhanam used a decision tree representation to give an improved
algorithm for the satisfiability of formulas over the De Morgan basis. One can also think of Williams’
Satisfiability algorithm for ACC0 ([9]) as following this template, with the representation being low-degree
polynomials.

This raises the question of what size of each representation is required for different classes of circuits.
Interestingly, the question of size of decision tree needed to represent AC0 circuits was considered early in
the study of this class. Ajtai, in his original paper [1] which, independently of Furst, Saxe and Sipser [3],
showed that Parity is not in AC0, also showed that for any ε > 0 and for sufficiently large n, AC0 circuits
have a correlation at most 2−n

1−ε
with parity. The main tool used in the proof of this correlation bound is a

result on approximating AC0 circuits by decision trees that are much less than full height. More precisely,
Ajtai shows that the value of the AC0 circuit is exactly that of the decision tree on all but an exponentially
small fraction of branches of the tree. Until very recently, this gave the best known such correlation bound
for polynomial-size constant depth circuits.

Decision trees are a very natural, well-studied model of computation, with applications in many areas
of Computer Science, including machine learning, proof complexity, circuit lower bounds, and the general
study of the combinatorics of Boolean functions. In many cases, it is desirable to have a decision tree
representation of a given boolean function since many properties of boolean functions that are hard to verify
for Boolean functions represented by other means become easy to check in the decision tree model. Thus,
this question of the minimal decision tree representation of classes of circuits is interesting in its own right.

Here, we revisit Ajtai’s approximation technique, simplifying and strengthening it considerably. We then
show how to use it to give a deterministic improved algorithm for Satisfiability of constant-depth circuits.
We can also improve Ajtai’s correlation bound.

In simultanenous recent work [6], Impagliazzo, Matthews and Paturi use a related representation, as a
disjoint union of sub-cubes where the function is constant, to devise a zero-error randomized algorithm for
#AC0SAT . The running time of this algorithm is considerably better than ours, but it seems inherently
probabilistic. Their representations also give a tight correlation bound for approximating parity in AC0.
Hastad [5] also proved this correlation bound using similar techniques.

Like the simpler arguments in [3, 1], Ajtai’s decision tree construction is based on iteratively converting
the sub-circuits in the circuit to k-juntas (functions that depend on only k variables) and hence k-DNF
formulas for constant k. However, instead of choosing a random set R of variables that are then queried
obliviously, Ajtai’s construction chooses the variables to query adaptively based on how setting a constant
number of variables simultaneously simplifies the sets of k-DNF formulas that describe these sub-circuits.
In particular Ajtai shows that when k isO(1) one can choose a decision tree T of height n/ logO(1) n so that
at all but 2−n/ logO(1) n fraction of leaves of T all formulas in a given polynomial-size collection of k-DNF
formulas reduce to logO(1) n-juntas. Such a statement, which involves setting only a minority of variables,

1

would not be possible using random restriction over a fixed set. In Ajtai’s construction, the constant in the
exponent of log n in the conversion of sets of k-DNF formulas to logO(1) n-juntas grow exponentially in k.

In this paper, we follow the same basic strategy as Ajtai, but derive a much stronger version of such
a construction in which the exponents depend only polynomially on k. Our key improvement over Ajtai’s
results is a much sharper and simpler lemma showing that with exponentially small failure probability one
can find small hitting sets for the sets of k-terms in collections of k-DNF formulas after setting only a small
fraction of variables. Moreover, our proof is substantially simpler.

We apply our new construction to show that any AC0 circuit can be approximated in error-free manner

by a decision tree of height n − n/2O(log4/5 n) that produces an output value on all but a 2−n/2
O(log4/5 n)

fraction of leaves. Our proofs are sufficiently constructive that they yield a deterministic algorithm running

in time 2n−n/2
O(log4/5 n)

nO(1) that, given an n-input AC0 circuit C, produces a decision tree that exactly

computes the value of C. This immediately yields a deterministic 2n−n/2
O(log4/5 n)

nO(1) time algorithm that

exactly counts the number of satisfying assignments of any AC0 circuit, a time savings of 2n/2
O(log4/5 n)

over
brute force.

We state our main theorem formally below:

Theorem 1.1. Let f : {0, 1}n → {0, 1} be computed by an unbounded fan-in circuit of size S = nc and
depth d where 4c4/5d ≤ log1/5

2 n. Then

(a) there is a decision tree Tf of height n − n/22d log
4/5
2 S such that for x chosen uniformly at random

from {0, 1}n, Pr[f(x) 6= Tf (x)] ≤ exp(−n/22d log
4/5
2 S).

(b) there is a decision tree T ′f of size 2n+1−n/22d log
4/5
2 S

that exactly computes f .

Moreover, both trees Tf and T ′f can be constructed from the circuit for f by an algorithm in time

2n−n/2
2d log

4/5
2 S

SO(1).

2 Preliminaries
For a set of formulas F , we use |F| to denote its size and ||F|| to denote the total number of literal
occurrences in F . Fix n Boolean variables x1, . . . , xn. A restriction on these variables is a function
π : {x1, . . . , xn} → {0, 1, ∗}. Intuitively, for b ∈ {0, 1}, π sets the values of variables in π−1(b) to b
and leaves the variables in π−1(∗) unset.

Recall that a decision tree T on n Boolean variables x1, . . . , xn is a full binary tree with internal nodes
labelled by the variables, the two out-edges of each internal node labelled 0 and 1, and leaves labelled by
Boolean values. The tree T defines a Boolean function in a natural way: we start at the root and at each
internal node, we query the variable x labelling the internal node and follow the edge corresponding to the
value of x. When a leaf is reached, we simply output the Boolean value that labels this leaf. The height of
T is the length of the longest root-to-leaf path in T and the size of T is the number of leaves in T .

A restriction decision tree T on n Boolean variables x1, . . . , xn is a full binary tree with internal nodes
labelled by the variables, and the two out-edges of an internal node labelled 0 and 1. (In contrast to the case
of a decision tree, we don’t require the leaves to output Boolean values.) Such a restriction defines a natural
probability distribution RT on restrictions: Choose a random root-to-leaf path in the tree by starting at the
root and choosing a random child at each node; set the variables according to the answers on this path. (A

2

path of length ` is chosen with probability 2−`.) The height and size of a restriction decision tree are defined
similarly to that of decision trees.

An important family of restrictions in the context of AC0 is the family of random restrictionsR`,n, where
we choose a random R ⊂ [n] of size ` and set the values of all variables outside R uniformly at random.
Note that this may be seen as choosing the random setR and then applying the tree restriction corresponding
to the complete decision tree on the variables outside R.

For a set S of input indices, a Boolean function or formula is an S-junta iff its value depends only on
inputs indexed by S. The S is called its deciding set. It is an s-junta iff it is an S-junta for some set S with
|S| = s. We will produce deciding sets for formulas by combining hitting sets for their terms. A set H of
variables is a hitting set for a collection of terms of a DNF formula iff it contains at least one variable from
each term.

Proposition 2.1 (Azuma-Hoeffding). Let X1 . . . Xi . . . XN be a difference sub-martingale with |Xi| ≤ M
for all i. Then Pr[

∑N
i=1Xi ≥ K] ≤ exp(−K2/(2M2N)).

Fix integers k, n ∈ N such that k ≤ n. Recall that a k-wise independent space over {0, 1}n is a multiset
S with elements from {0, 1}n such that for any subset A = {i1, i2, . . . , ik} of [n] and any Boolean values
b1, . . . , bk, we have Prx∈RS [xi1 = b1 ∧ · · · ∧ xik = bk] = 1

2k
. We will need efficient explicit constructions

of k-wise independent sample spaces. We use the construction due to Alon, Babai, and Itai [2].

Lemma 2.2. For any n, k such that k ≤ n, there is a k-wise independent space S over {0, 1}n with
|S| = O(nk/2). Moreover, S can be constructed by a deterministic algorithm running in time nO(k).

3 Simultaneous Simplification for Families of k-DNF formulas
In this section we prove our main technical result, namely that given any family F of k-DNF formulas, we
can construct a restriction decision tree TF of height corresponding to only a small fraction of number of
variables using time |TF | · ||F||O(1), such that, except with exponentially small probability, the restriction
given by a random root-leaf path in TF reduces every formula in F to a small junta, a function with a small
set of variables that determines its value.

Usually, arguments for random restrictions apply the probabilistic method by showing that a restriction
chosen from a simple distribution given a priori will work, because with positive probability it satisfies
all the conditions required to simplify a given family of formulas. Instead, we build our distribution of
restrictions constructively as a restriction decision tree based on the detailed properties of the family of
formulas. Though we will find it convenient to express aspects of our construction using probabilities over
paths in the restriction decision tree, there is actually no randomness required in its construction.

The high-level structure of our argument is similar to that of [1]. In section 3.1 we first show construc-
tively how to produce a restriction decision tree for which the restrictions given by all but an exponentially
small fraction of all root-leaf paths “reduce” each formula either by satisfying it or by yielding a small hit-
ting set for its k-terms. The small hitting set property is useful for simplification because, for each choice
of values for the variables in such a hitting set, the remaining formula would be reduced from a k-DNF to
a (k − 1)-DNF. Indeed, one can assign the variables in such a hitting set and take the union with all the
small juntas found for the recursive application of the hitting set property to each of the resulting families
of (k − 1)-DNFs in order to obtain a small junta for each formula, an approach taken in [3] and the simple
argument in [1]. Instead, in section 3.2 we use a more sophisticated argument from [1] which combines
all the different (k − 1)-DNF formulas produced from the k-DNF formulas into a single larger family of
(k − 1)-DNF formulas that we can recursively convert into small juntas use the union of all of these to
produce the final junta.

3

3.1 Finding Small Hitting Sets for the k-Terms in Families of k-DNF Formulas

We first state out main lemma on hitting sets which shows how to find a restriction decision tree for a family
of k-DNF formulas that on almost all of its branches yields either satisfying assignments or small hitting
sets for the k-terms of all the formulas in the family.

Lemma 3.1. Let C ≥ 1 be such that C log2m is a non-negative integer multiple of 2−k. If F is
a set of k-DNF formulas on {0, 1}n with |F| < m, then there is a restriction decision tree TF on
{0, 1}n of height n/C such that for π chosen according to a random root-leaf path in TF , the proba-
bility that for all formulas F ∈ F , either F |π = 1 or the k-terms of F |π have a hitting set of size
at most h(k,C,m) = 2k

2+5k+3k3k(C log2m)k is at least 1 − p(k,C,m, n) where p(k,C,m, n) =
k log2m exp(−2−2k−3k−2n/(C log2m)). Moreover, there is an algorithm with running time 2n/C ||F||O(1)

that constructs TF given F as input.

The tree TF in this lemma is constructed in stages. We will think of a formula as being successfully
handled if it is either satisfied or has a small hitting set for its k-terms. In each stage we make sure that at
almost all leaves of the restriction decision tree we will have successfully handled at least half the formulas
in the family that were not handled at the previous stages. Since there are fewer than m formulas in the
family, it will take at most log2m stages to handle all formulas. The construction for each stage is given by
the lemma below; this is the heart of the argument.

Lemma 3.2. Let k be a non-negative integer and C ≥ 1 be an integer multiple of 2−k. If F is a set of
k-DNF formulas on {0, 1}n, then there is a restriction decision tree TF on {0, 1}n of height n/C such
that for π chosen according to a random root-leaf path in TF , the probability that for fewer than |F|/2
formulas F ∈ F , F |π = 1 or the k-terms of F |π have a hitting set of size at most 2k

2+5k+3k3kCk, is at most
k exp(−2−2k−3k−2n/C). Moreover, there is an algorithm with running time 2n/C ||F||O(1) that constructs
TF given F as input.

Before we prove this lemma we apply it in the obvious way to prove our main lemma.

Proof of Lemma 3.1. Repeatedly apply Lemma 3.2 with C log2m in place of C, replacing F at each leaf by
the set of formulas F ′ ⊂ F|π that are not satisfied and do not have small hitting sets for their k-terms. Each
application reduces |F| by at least a factor of 2. After log2m steps, all formulas will have been removed
and at most n/C variables will have been assigned. The failure probability is a union bound over the steps.
The constructivity follows from that in Lemma 3.2.

The proof of Lemma 3.2 is quite subtle, though the basic ideas are relatively simple. Any k-DNF formula
either has a small set of variables that hits all its k-terms or a large number of disjoint k-terms and in the
latter case, it has many different ways of being satisfied. Indeed, this idea together with random restrictions
that set most variables is how the argument in [3] and the simple argument in [1] both work. In order to set
only a minority of variables we have to balance choices of assignments that satisfy one formula against the
terms (and hence potential satisfying assignments) that they remove from other formulas.

In order to make this argument work, we need to orchestrate a careful march towards satisfaction (or
small hitting sets) for all the formulas. To do so, we maintain a collection of disjoint, partially satisfied
k-terms for each formula in the family. If all members of a collection of variables occurs frequently enough
among these partially satisfied k-terms then setting those variables makes substantial progress towards satis-
fying many formulas (along at least some of its branches). There is also a cost incurred in doing so because
any term in which these variables are set incorrectly is removed from the disjoint collection for that formula.

4

We therefore apply a form of potential argument that keeps track of the number of partially satisfied k-terms
and how far they are from satisfaction. In order to argue that for a high fraction of branches, the wins will
dominate the losses, we need to maintain a bound on the sizes of the potential losses and hence we need to
also upper bound the number of occurrences of any particular collection of variables among these terms.

Intuitively, as terms get closer to being satisfied, their “likelihood” of being eventually satisfied increases
exponentially. We handle this by having the threshold for the frequency required to choose a collection
of variables depend exponentially on the distance from satisfaction that setting them would produce. (In
general, setting some variables might create terms of many lengths but we only count the benefit from one
particular length.) If one of a formula’s k-terms does become satisfied then all of its other partially satisfied
k-terms are useless and must be removed from our counts, hence we “freeze” the formula by limiting the
terms we take into account to a number at which we can safely bet that the formula will eventually be
satisfied. We now give the proof.

Proof of Lemma 3.2. Let F = {F1, . . . , Fm}. We can assume without loss of generality that each Fi con-
sists only of exactly k-terms, since if either condition holds for the pure k-term part of Fi then it holds for
Fi. Let V = 2k+5k3C, let Cj = V j+1 for j = 0, . . . , k − 1, and let Dj = 12kCj−1 for j = 0, . . . , k − 1.

Though the tree TF will depend deterministically on the set F , we find it convenient to describe TF by
defining how we follow a random path in TF .

At any point t in the process, for each unsatisfied Fi, and each 1 ≤ j ≤ k, we will have a set Sti,j
of j-terms and a restriction πt given by the assignment along the path so far. We begin with S0

i,k being a
maximal set of disjoint k-terms for Fi, and all other S0

i,j empty. π0 will be the empty restriction. We will
maintain the invariants that, for any i, the terms in the union of the Sti,j are pairwise disjoint; that, for j < k,
|Sti,j | ≤ Dj ; and that Sti,k is a maximal set of k-terms from Fi|πt that are disjoint from each other and from
the other Sti,j . (Hence each variable appears in at most one term in each Sti,j .)

At each step, we determine the variables to branch on and how to maintain the sets Sti,j by repeating the
following sequence of steps until the process terminates.

Branching: For any ` ≥ 1 and {x1, . . . , x`} a set of variables, let the potential j-terms for {x1, . . . , x`} be
the set of terms in the various Sti,j+` containing all of x1, . . . , x` and exactly j variables not among
x1, . . . , x`. In other words, these are all terms of size j + ` that could become size j by restricting
x1, . . . , x`. Find the smallest j > 0 so that there is a set of 1 ≤ ` ≤ k − j variables {x1, . . . , x`}
so that the number of potential j-terms for {x1, . . . , x`} in the Sti,j+` is at least Cjm/n. If there is
no such j, terminate. Otherwise, add branches that assign x1, . . . , x` in all possible ways, choose a
random assignment σt to x1, . . . , x` and follow the branch corresponding to σt. Hence πt+1 = πtσt.

We now describe how to build the set of St+1
i,j based on the various Si,j = Sti,j .

Restricting: For any term T in Si,j+` that contains all of x1, . . . , x` such that T ′ = T |σt 6= 0 add T ′ to
Si,j . For any term T in Si,j′ containing any of x1, . . . , x`, remove T from Si,j′ .

Clean-up For any i, j with |Si,j | = Dj , set all Si,j′ for all j′ > j to ∅. Call such an i frozen at level j. In
particular, if any term becomes satisfied, Fi is frozen at level 0, and all Si,j with j > 0 are empty.
(Since after i is frozen at level j, we will never create any new terms of size j or larger, by Claim 3.3
below, this maintains the invariant that |St′i,j | ≤ Dj for all t′.)

Replacement: For any i that is not frozen at any level j < k, while there is a term of size k in Fi|πt+1

disjoint from all terms in Si,j for 1 ≤ j ≤ k, add it to Si,k.

Define each St+1
i,j to be the resulting set Si,j and increment t.

5

The above process repeats until it terminates. However, in our construction, we will prune all branches
of length greater than n/C. We need to show that it terminates before this bound with high probability and
we need to show that at termination at least half the formulas are either satisfied or have small hitting sets.

Claim 3.3. For any t, i, and j < k, |St+1
i,j | ≤ |Sti,j |+ 1.

Proof. New terms of length j < k can only be created in the Restricting step and this only happens if there
is a term in Sti,j+` that contains all of x1, . . . , x`. Since the terms in the sets Sti,j+` are disjoint from each
other, so at most one term can contain all of x1, . . . , x`. (Indeed, since all terms in Sti,j′ for various j′ < k

are disjoint, for each fixed i and t there is at most one term created in all the St+1
i,j .)

Claim 3.4. For any step t and any formula Fi that is not frozen at any level j < k at step t, the set of
variables in

⋃k
j=1 S

t
i,j is a hitting set for the set of k-terms of Fi|πt .

Proof. This is true initially by the maximality of S0
i,k. By the replacement rule, for t > 0 the set Sti,k is a

maximal disjoint set of k-terms in Fi|πt that is disjoint from
⋃k−1
j=1 S

t
i,j and hence the union of the variables

in all of these sets of terms intersects every k-term of Fi|πt .

Claim 3.5. For each t, each 1 ≤ j < k and ` ≤ k − 1 − j, no variables x1, . . . , x` appear together in a
term in Sti,j+` for more than 2Cjm/n formulas Fi.

Proof. We prove this by induction on the number of branching steps. Since we only consider j + ` < k, at
the start, all such S0

i,j+`’s are empty. Assume that the claim is true for j and x1, . . . , x` at the beginning of
step t + 1. Note that, in creating St+1

i,j+`, we only add terms to any Sti,j+` if we are creating terms at level
j+ `, branching on some y1, . . . , y`′ , `

′ ≤ k− j− `. Because such a step did not branch on x1, . . . , x`, there
were fewer than Cjm/n terms of size j+` containing x1, . . . , x` in all of the Sti,j+`. Therefore, if at the end
of step t + 1, we have 2Cjm/n terms of size j + ` including x1, . . . , x`, more than Cjm/n of these must
have also included all of y1, . . . , y`′ before restriction. That is, x1, . . . , x`, y1, . . . , y`′ appeared together in
terms in more than Cjm/n sets Sti,j+`+`′ . But then we would have created terms of size j rather than j + `.
From this contradiction, we still have at most 2Cjm/n terms including x1, . . . , x` among all the sets St+1

i,j+`

corresponding to all the formulas Fi at the end of step t+ 1. The lemma thus follows by induction.

Let Ai,j = |
⋃
t S

t
i,j | be the number of terms that are ever in Sti,j throughout the process, and let Aj =∑

iAi,j .

Claim 3.6. For 0 ≤ j ≤ k − 1, Aj ≤ (1 + 1/(6k))Djm.

Proof. Let t∗ be the index of the final step. Consider any term that is ever in some Sti,j . This term is either
(1) in St

∗
i,j when the process terminates, (2) in Sti,j the first time step t that Fi is frozen at some level j′ < j,

or (3) is removed from Sti,j in some step t where it intersects with the branching variables x1, . . . , x`. Since
we have |Sti,j | ≤ Dj , for any formula Fi and time step t, its total contribution to types (1) or (2) is at
most Dj , the type of its contribution depending on whether it is frozen at some level j′ < j at termination.
Since, at any time t, each branching variable can be in at most 2Cj−1m/n terms in some Sti,j , and there
are at most n such variables, the number of terms of type (3) is at most 2Cj−1m. So the total is at most
Djm+ 2Cj−1m ≤ (1 + 1/(6k))Djm because Dj = 12kCj−1.

Claim 3.7. For any j with 0 < j < k, any run has at most m/(4k) formulas frozen at level j and not at any
level j′ < j.

6

Proof. If fjm formulas are frozen at level j, but not at any smaller level, they each had Dj terms in Sti,j
at the time t that they were frozen, for a total of Djfjm such terms. Going through the categories again,
none of these terms were removed for being frozen at smaller levels, by definition. At the end of the
process, there must be fewer than Cj−1m/j terms in all of the St

∗
i,j , since otherwise there would be a

variable that would appear in at least Cj−1m/n such St
∗
i,j and we would branch on it. Finally, as above, at

most 2Cj−1m of these terms are removed from some Sti,j because they include a branching variable. Thus
(Cj−1/j + 2Cj−1)m ≥ fjDjm and hence fj ≤ 3Cj−1/Dj ≤ 1/(4k).

Claim 3.8. Any run ends with at least m/2 formulas either satisfied or with a hitting set for its terms of size
at most 4

∑k
j=1Cj−1.

Proof. At the last step t of the process, no variable appears in more than Cj−1m/n terms in some Sti,j , or
else we would branch on that variable. Thus, at least 3m/4 of the formulas Fi|πt have a total number of
variables in

⋃k
j=1 S

t
i,j at most 4

∑k
j=1Cj−1. By Claim 3.4, if Fi is not frozen at any level, the variables in⋃k

j=1 S
t
i,j form a hitting set for Fi|πt . By Claim 3.7, at mostm/4 formulas end frozen at some level between

1 and k − 1. So 3m/4−m/4 ≥ m/2 formulas either have small hitting sets or are frozen at level 0, which
is the same as being satisfied.

So when the process terminates, we either have a constant fraction of formulas set to 1 or with small
covers. Finally, we need to show that the process terminates in small height with high probability.

Let Bj be the number of steps where we create terms of size j.

Claim 3.9. The probability that Bj ≥ n/(k2C) is at most exp(−2−2k−3k−2n/C).

Proof. Every time we create terms of size j, we expect to create at least 2−kCjm/n such terms. (More
precisely, if we branch on ` variables we expect to create at least 2−`Cjm/n such terms.) We have no
matching upper limit, but we can artificially restrict our attention to any subset of exactly Cjm/n potential
terms. Let Yi be the number of terms created from among these potential terms in the i-th step in which
we create terms of size j. Let Xi = 2−kCjm/n − Yi. Then the Xi form a difference sub-martingale
(E[Xi|X1 · · ·Xi−1] ≤ 0) and each |Xi| ≤ Cjm/n, so by the Azuma-Hoeffding inequality with M =
Cjm/n, for any fixed N such that 0 ≤ N ≤ Bj , setting K = 2−k−1CjmN/n = 2−k−1MN we have
Pr[
∑N

i=1Xi ≥ K] ≤ exp(−K2/(2M2N) = exp(−2−2k−3N). By our definitions,
∑N

i=1 Yi ≤ K implies
that

∑N
i=1Xi ≥ K so we have Pr[

∑N
i=1 Yi ≤ K] ≤ exp(−2−2k−3N). Assume that Bj ≥ N = n/(k2C).

In this case K = 2−k−1MN = 2k−1k−2Cjm/C and the probability that at most K terms of size j are
created is at most exp(−2−2k−3k−2n/C). We claim that this event must indeed happen on any branch.
For j = 0, at most m such 0-terms can be created on any branch, but since C0 = V = 2k+5k3C we
have K = 16km which is much larger than m. For 1 ≤ j ≤ k − 1 we have K = 2k−1k−2Cjm/C =
16kCj−1m = 4

3Djm and by Claim 3.6 at most 7
6Djm < 4

3Djm terms of size j can have been created
during the first N such steps.

Corollary 3.10. With all but probability k exp(−2−2k−3k−2n/C)). the number of variables queried is less
than n/C.

Proof. The height is at most k times the number of branching steps. Each branching step contributes to
Bj for some 0 ≤ j ≤ k − 1. Each branching step sets at most k variables. The bound then follows by
Claim3.9.

7

Finally, we can complete the proof of Lemma 3.2. By Claim 3.8 at least m/2 formulas in F|π are either
satisfied or have hitting sets of size at most 4

∑k
j=1Cj−1 = 4

∑
j = 1kV j < 8V k = 2k

2+5k+3k3kCk.
Pruning all branches of the tree at level n/C gives the claimed restriction decision tree and the time to
construct it is immediate from the process we used to define it.

3.2 Converting k-DNF Families to Small Juntas

Using our substantially improved construction to achieve small hitting sets our argument now follows the
same lines as the argument in Ajtai’s original paper, though we make small changes to improve its con-
structivity. As noted earlier, the key idea is a recursive construction in which we use the hitting sets for the
k-terms to produce a much larger family of (k − 1)-DNF formulas for which we can recursively find small
deciding sets that can be combined with the hitting sets to produce a small deciding set for each formula in
the family.

Theorem 3.11. Let F be a set of k-DNF formulas on {0, 1}n with |F| < m for m ≥ n, let C > 1, and let
s = 2k

4/2k6k3
(C log2m)k

3/2. Then there is a restriction decision tree TF on {0, 1}n of height n/C such
that for π chosen according to a random root-leaf path in TF , the probability that for all formulas F ∈ F ,
F |π is not an s-junta is at most 4k log2m exp(−2−2k−4k−3n/(C log2m)).

Moreover, there is an algorithm with running time 2n/C ||F||O(1) that constructs TF given F as input
and computes for each formula F and successful root-leaf path π, a set S = SF,π of size s such that F |π is
an S-junta.

Proof. The proof is by induction on k. The base case k = 0 is immediate since all such formulas are
satisfied and hence do not depend on any inputs. In the inductive step we apply Lemma 3.1 with C replaced
by kC to find a tree TF so that for almost all restrictions π defined by TF , every formula F ∈ F either has
F |π = 1 or F has a hitting set for its k-terms of size at most h = h(k, kC,m) = 2k

2+5k+3k3k(kC log2m)k.
For each such good branch π, define the set of formulas Fπ as follows:

For each F ∈ F such that F |π 6= 1, let HF,π be the hitting set given by Lemma 3.1. Let AF,π be the
set of partial assignments σ defined on HF,π with |σ| = k − 1. Observe that |AF,π| =

(
h
k−1

)
2k−1. For each

σ ∈ AF,π define the formula F σπ to be the (k − 1)-DNF formula whose terms are all T |σ such that T is a
term of F |π and T |σ does not have any variables in HF,π. Fπ is the set of all such F σπ . The fact that F σπ is
a (k − 1)-DNF formula follows since every k-term of F |π has at least one variable in HF,π. We now apply
the inductive hypothesis with C replaced by kC/(k − 1) to Fπ which has at most m

(
h
k−1

)
2k−1 formulas

and obtain that for almost all extensions τ of π of , each of the formulas in Fπ is an s′-junta for some s′

given by the inductive statement for k − 1 with m replaced by m
(
h
k−1

)
2k−1. Assume that τ is such a good

extension. For each formula F σπ , let Sσ,τ be the set of size s′ such that F σπ |τ is an Sσ,τ -junta.

Claim 3.12. For S = HF,π ∪
⋃
σ∈AF,π Sσ,τ the formula F |τ is an S-junta.

Proof. To see that the claim holds, fix an assignment ρ to S that is consistent with τ . If F |τ is not falsified by
ρ then there is some term T of F |π that is consistent with ρ and τ . If the variables of T are entirely contained
in HF,π then ρ must satisfy T . It follows that ρ satisfies F |π and hence it also satisfies F |τ . Otherwise, T
has at most k−1 variables inHF,π. Let σ be any assignment to exactly k−1 variables ofHF,π that contains
the variables in T and is consistent with ρ. Then T |σ is a (non-zero) term in F σπ and hence ρ does not falsify
(F σπ)|τ . Since (F σπ)|τ is an Sσ,τ -junta and ρ assigns values to all of Sσ,τ , ρ must satisfy (F σπ)|τ . Therefore
there is some term T ′ of F |π such that (T ′|σ)|τ is satisfied by ρ. Since ρ extends σ, ρ also satisfies T ′|τ .
Therefore ρ satisfies F |τ . It follows that in either case ρ forces F |τ to a constant.

8

It remains to work out the parameters. For j = k, . . . , 1 define hk and mk recursively by mk =
m, let hj = h(j, kC,mj) = 2j

2+5j+3j3j(kC log2mj)j where hj = h(j, kC,mj) is the upper bound in
Lemma 3.1 on the size of the hitting set for the j-terms at most leaves of the tree of height n/(kC) for
sets F of j-DNF formulas with |F| < mj . and mj−1 =

(hj
j−1

)
2j−1 ∗ mj ≤ (2hJ)j−1mj . Let pj =

p(j, kC,mj , n) = j log2mj exp(−2−2j−3j−2n/(kC log2mj)) be the failure probability in that lemma.
For j = 0, . . . , k, define sj by s0 = 0 and sj = hj +

(hj
j−1

)
2j−1sj−1. Then, by our construction, the

probability that for a random path π in TF there is a formula F in F such that F |π is not an sk-junta is at
most

∑k
j=1 pj .

If (2hj)j−1 < n ≤ m ≤ mj then mj−1 ≤ m2
j and hence

hj−1 ≤ 2(j−1)2+5(j−1)+3(j − 1)3(j−1)(2kC log2mj)j−1 < hj/16.

Therefore (2hj−1)j−2 < n and hence inductively the hj are bounded by a geometric series with largest term
hk. In particular, this means that

sk ≤ (2hk)
Pk
j=1(j−1) = (2hk)(

k
2) ≤ 2k

4/2k6k3
(C log2m)k

3/2 < n1/k.

Also, by construction, for every j, mj ≤ (2hk)(
k
2)−(j2)m < nm Hence log2mj < 2logm and therefore

pj ≤ 2j log2m exp(−2−2j−4j−2n/(kC log2m)). Hence the total failure probability
∑k

j=1 pj ≤ 2pk ≤
4k log2m exp(−2−2k−4k−3n/(C log2m)). The constructivity follows from that in Lemma 3.1, the fact
that the sets SF,π are easily defined as the tree construction proceeds and, for each π and σ, the formulas
{F πσ | F ∈ F} are constructible in ||F||O(1) time given F .

4 A Deterministic Algorithm for #AC0SAT

In this section we derive our algorithm for #AC0SAT by deterministically constructing a decision tree of
size much less than 2n that exactly computes the function given by the input AC0 circuit and then simply
walking through that decision tree to compute the number of satisfying assignments. We produce that deci-
sion tree by iteratively combining restriction decision trees constructed in the previous section for families
of formulas corresponding to levels in the AC0 circuit. The combination of these trees will only determine
the value of the circuit on almost all branches. On any branch where the value is not determined so far, we
simply add a complete decision tree for assignments on that branch. This will be a rare enough occurrence
that it will not add much to the total size of the tree.

The basic idea in all restriction arguments for AC0 bounds is to find a simple representation for the input-
level subcircuits and then to propagate that simplification to make the next level of the circuit amenable to the
same simple representation. Unfortunately, if we apply Lemma 3.11 iteratively, if we start with a collection
ofmk-DNF formulas and use the junta property for the next level of the circuit, the resulting formula is only
an s-junta for s = logpoly(k)m which is much larger than k, and immediately would be too large to iterate.
For this iterative application we need to apply a further restriction which will set most of the variables. This
restriction will be chosen pseudorandomly which is sufficiently constructive for our needs. The argument is
given in the next subsection.

4.1 Reducing the Junta Size

Lemma 4.1. Let F be a set of k-DNF formulas on {0, 1}n with |F| < m and suppose that k ≤ k′ ≤
(log2m)1/5. Then there is a restriction decision tree TF on {0, 1}n of height n −m−2/k′n such that for π

9

chosen according to a random root-leaf path in TF , the probability that for some formula F ∈ F , F |π is not
a k′-junta is at most 4k log2m exp(−2−2k−5k−3n/ log2m). Moreover, there is an algorithm with running

time 2n−m
−2/k′nnO(k′)||F||O(1) that constructs TF given F as input.

Proof. We apply Theorem 3.11 with C = 2 to get a restriction decision tree T ′F of height n/2 for which on
at most a 4k log2m exp(−2−2k−5k−3n/ log2m) fraction of root-leaf paths π some formula F |π is not an
s-junta for s = 2k

4/2k6k3
(2 log2m)k

3/2. Let n′ = m−1/k′n/(2s). For each π such that all formulas become
s-juntas, we will choose a fixed set R = R(π) of n′ variables and add a complete restriction decision tree
on the variables not in R. Consider choosing R k′-wise independently and uniformly among all sets of
size n′ on the remaining n/2 variables. For a fixed set S of size s, Pr[|R ∩ S| > k′] <

(
s
k′

)
(2n′/n)k

′
/ ≤(

2n′s
n

)k′
< 1/m. Since this is less than 1/|F| we can fix a set R such that for all formulas F in F , R does

not intersect any of the sets S = SF,π such that F |π is an SF,π-junta in more than k elements.
Since k ≤ k′ ≤ (log2m)1/5 we have 2k

4 ≤ 2(k′)4 ≤ m1/k′ , and hence 2s < 2k
4/2(log2m)2k

3 ≤
m−1/k′ and so n′ = m−1/k′n/(2s) ≤ m−2/k′n.

For constructivity, we begin with the constructivity of Theorem 3.11. We then observe that since, by
Lemma 2.2, there are explicit k′-wise independent probability distributions on n-bit strings with support
only nO(k′) so we simply try all possibilities in the family. In order to test whether or not a givenR succeeds
we use each of the sets SF,π such that F |π is an SF,π-junta, given by the algorithm in Theorem 3.11. For
each leaf π, checking that R succeeds amounts to checking that |R∩SF,π| ≤ k′ for each such F ∈ F which
can be done in time ||F||O(1).

4.2 Converting AC0 circuits to Decision Trees and the #AC0SAT Algorithm

We now apply Lemma 4.1 iteratively to derive both small height approximations and small size exact repre-
sentations of AC0 as decision trees. The constructivity of both representations is an essential feature.

Proof sketch of Theorem 1.1. Without loss of generality we can assume that the circuit has alternating layers
of ∨ gates and ¬-gates. The bottom level of the circuit is a 1-DNF. The basic idea of the argument is to apply
Lemma 4.1 iteratively with k = k′(log2m)1/5 = c1/5 log1/5

2 n and m = S = nc to the set of formulas that
approximate a given level. When all those formulas become k-juntas they can be negated and plugged into
the ∨ gate at the next level to produce the new family of k-DNFs. The trees are built by appending the new
trees at each leaf of the tree for the previous level. The rest is working out parameters, and the full details
are given in the appendix.

We note that since any incomplete branch in a decision tree has no correlation with Parity, from The-
orem 1.1 (a), we immediately obtain that any AC0-circuit of size S and depth d has correlation at most

2−n/2
2d log

4/5
2 S

with Parity, though this is a much weaker bound than that shown in [6, 5].
Our main consequence of Theorem 1.1 is the following algorithm for #AC0SAT .

Corollary 4.2. Given an unbounded fan-in circuitC on n inputs of size S = nc and depth d where 4c4/5d ≤

log1/5
2 n, we can errorlessly exactly compute |C−1(1)| by an algorithm in time 2n−n/2

2d log
4/5
2 S

SO(1).

Proof. Given a decision tree T we can visit the leaves of T to compute the size of T−1(1) in time propor-
tional to the size of T . The corollary is then immediate from Theorem 1.1 (b).

10

References
[1] M. Ajtai. Σ1

1-formulae on finite structures. Annals of Pure and Applied Logic, 24:1–48, 1983.

[2] Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel algorithm for the
maximal independent set problem. Journal of Algorithms, 7(4):567–583, December 1986.

[3] M. Furst, J. B. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time hierarchy. Mathematical
Systems Theory, 17(1):13–27, April 1984.

[4] J. Håstad. Almost optimal lower bounds for small depth circuits. In Proceedings of the Eighteenth
Annual ACM Symposium on Theory of Computing, pages 6–20, Berkeley, CA, May 1986.

[5] J. Håstad. On parity. Manuscript., 2011.

[6] R. Impagliazzo, M. Matthews, and R. Paturi. A satisfiability algorithm for AC0. In Proceedings of the
Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, Kyoto, Japan, January 2012.

[7] R. Santhanam. Fighting perebor: New and improved algorithms for formula and QBF satisfiability. In
Proceedings of the 51st Annual Symposium on Foundations of Computer Science, pages 183–192, Las
Vegas, NV, October 2010. IEEE.

[8] R. Williams. Improving exhaustive search implies superpolynomial lower bounds. In Proceedings of
the Forty-Second Annual ACM Symposium on Theory of Computing, pages 231–240, Cambridge, Ma,
June 2010.

[9] R. Williams. Non-uniform ACC circuit lower bounds. In Proceedings Twenty-Sixth Annual IEEE
Conference on Computational Complexity, pages 115–125, San Jose, CA, June 2011.

[10] A. C. Yao. Separating the polynomial hierarchy by oracles: Part I. In 26th Annual Symposium on
Foundations of Computer Science, pages 1–10, Portland, OR, October 1985. IEEE.

11

A Proof of Theorem 1.1
We give the full details of the proof sketched in Section 4:

Proof of Theorem 1.1. Without loss of generality the circuit consists of d layers, each of which consists of
alternating ¬ gates and unbounded fan-in ∨ gates. We write S = nc and iteratively apply Lemma 4.1 with
m = S and k = k′ = (log2m)1/5 = c1/5(log2 n)1/5 to sets of k-DNF formulas that approximate a given
level of ∨-gates in the circuit where we begin the levels starting with the inputs. Observe that each gate at the
first level of ∨ gates is given by a 1-DNF formula. Lemma 4.1 shows that there is a restriction decision tree
T1 of height n− n/S2/k such that for almost all root-leaf paths π of T1, after restriction by π, the functions
computed by all level-1 ∨-gates of the circuit depend on only k-variables. Therefore this also holds for their
negations and hence, after restriction by π, each level-2 ∨-gate of the circuit is a k-DNF formula. Therefore
we can apply Lemma 4.1 with a reduced number of variables (though the same k) to the set of level-2 gates
after this restriction to derive a new restriction decision tree T π2 . We say that a leaf of Ti (or a restriction
defined by that leaf) to be good iff all level-i ∨-gates reduce to k-juntas after the restriction. The tree T2

will be derived by taking all good π and appending the tree T π2 at the leaf of T1 reached by π. We repeat
this again for T2 and the level-2 ∨-gates and for each of the remaining levels up until we have built tree
Td−1. Since there is only one ∨-gate at level d, it suffices to apply Theorem 3.11 with m = 2 and C = 2
and append the complete decision tree on the variables of the s-junta (note here that this is a decision tree
and not a restriction decision tree) computing the one formula associated with each good leaf of Td−1 to
obtain a decision tree Td. Clearly, at each good leaf of Td the decision tree exactly computes the value of
the ∨-gate at level d. The probability that a branch in Td is in error is at most the sum of the probabilities of
error associated with each of the levels.

It remains to compute the values of the parameters for the construction. Let the height of Ti be n− ni.
Then n0 = n and ni = ni−1 · S−2/k for i ≤ d − 1. Then since 4cd ≤ c1/5(log2 n)1/5 = k, nd−1 =
n · S−2(d−1)/k ≥ n1/2. Since m = C = 2 and nd−1 replaces n in the application of Theorem 3.11 for
level d we have s = 2k

4/2k6k3
2k

3/2 < nc
4/5/ log

1/5
2 n < nd−1/4 and thus we can set nd > nd−1/2 − s ≥

nd−1/4 > n ·S−2d/k. Because the ni decrease rapidly, the probabilities that nodes are not good are bounded
above by a quickly increasing geometric series whose largest term is that associated with the constructions
of Td. The failure probability in that case is: is at most 4k exp(−2−2k−4k−3nd−1/2) and thus the overall
failure probability is at most exp(−n/S2d/k). The final bounds follow by observing that since k = log1/5

2 S,

S1/k = 2log
4/5
2 S .

The tree Tf is either Td or Td with its leaf values complemented, depending on the output gate of
the circuit. To build the tree T ′f we simply take the tree Tf and append a complete decision tree on all
leaves of Tf that are not good. The constructivity of Tf and T ′f follows from the constructivity given by
Lemma 4.1 and the fact that we have sufficient leeway in the error probability to absorb the nO(k) term in
other exponents.

12

