SIAM J. COMPUT. © 1986 Society for Industrial and Applied Mathematics
Vol. 15, No. 4, November 1986 008

LOG DEPTH CIRCUITS FOR DIVISION AND RELATED PROBLEMS*

PAUL W. BEAMEt, STEPHEN A. COOK?f AND H. JAMES HOOVERfY

Abstract. We present optimal depth Boolean circuits (depth O(log n)) for integer division, powering,
and multiple products. We also show that these three problems are of equivalent uniform depth and space
complexity. In addition, we describe an algorithm for testing divisibility that is optimal for both depth and
space.

Key words. integer division, circuit depth, circuit complexity, depth complexity, space complexity

AMS(MOS) subject classification. 68Q

1. Introduction. It is a well-known fact that addition, subtraction and multiplica-
tion on modern computers are significantly faster operations than division. Circuit
designers have been unable to match the efficiency of the circuits for addition and
multiplication in division circuits. Until recently there seemed to be some theoretical
justification for this inability since the best known circuits for the first three problems
have O(log n) depth but division appeared to have only O((log n)?) depth circuits.

Reif [8] reduced the division depth to O(log n(loglog n)*) using a circuit for
computing the product of n°" n-bit integers mod 2" + 1, based on Fourier interpolation
and evaluation. This circuit had slightly more than polynomial size, but a revised
version of the result [9] yields polynomial size and O(log n loglog n) depth circuits
for the same problem.

We present simple circuits of depth O(log n) and polynomial size, using Chinese
remaindering, for the division of two n-bit integers and for the product of n n-bit
integers. Since the circuits we consider allow gates with fan-in at most two, our division
and iterated product circuits are optimal in depth up to a constant factor.

Besides circuit depth complexity we are also interested in the deterministic space
complexity of division. Borodin [3] showed that if for all n a problem can be solved
for n input bits by a circuit of depth O(D(n)) then it can be solved in Turing machine
space O(D(n)), provided the circuits are “log-space uniform” (i.e. some Turing
machine, given any n on its input tape, can generate a description of the circuit for n
inputs in log n space). Since Reif’s circuits mentioned above are log-space uniform,
it follows that integer division has space complexity O(log n log log n). Unfortunately
our circuits for division may not quite be log-space uniform, and it remains an open
question whether division has space complexity log n.

Motivated by this question, we prove a number of results. First we show that the
three problems division, powering, and iterated product are each strongly reducible
to either of the others. Thus all three have the same uniform depth complexity and
the same space complexity. Next we give a simple sufficient condition (that some
“good modulus sequence” {M,} be log-space generable) for the three problems to
have space complexity log n. Finally we show that the problem of testing whether an

* Received by the editors September 12, 1984, and in revised form July 3, 1985. A preliminary version
of this paper appeared in the Proceedings of the 25th IEEE Symposium on the Foundations of Computer
Science, 1984.

+ Department of Computer Science, University of Toronto, Toronto, Canada M5S 1A4.
994

LOG DEPTH CIRCUITS FOR DIVISION 995

n-bit integer is divisible by another does indeed have uniform depth complexity
O(log n) and hence space complexity O(log n).

2. Circuits and uniformity. We adopt the usual definition of fan-in two Boolean
circuit families in which the nth circuit has g(n) inputs and h(n) outputs where g and
h are nondecreasing polynomially bounded functions. With this definition depth
O(log n) implies polynomial size. Using the notion of uniformity (see the Introduction)
we can define a basic complexity class:

DEeFINITION [10]. The class NC' consists of all functions f computable by a
log-space uniform circuit family of depth O(log n).

Thus every function in NC' has deterministic space complexity O(log n) [3].
Using standard methods [11] it is easy to see that multiplication of two n-bit integers
and addition of n n-bit integers are each in NC'. It remains an open question whether
division of two n-bit integers is in NC'.

Although log-space uniformity is desirable for theoretical reasons, there is a weaker
kind of uniformity which provides a natural condition on circuit families. The builder
of computer hardware may simply want to have fast circuits which are easy to construct.
Once a circuit has been constructed, it will be used over and over again. We thus
propose the following definition:

DEFINITION. A family («,) of circuits is P-uniform provided some deterministic
Turing machine can compute the transformation 1" - &, in time n°‘" where @, is the
standard encoding [10] of a,.

Some of our circuits require internal constants which are polynomial-time compu-
table but do not appear to be log-space computable, and thus are only P-uniform.
However, even though they may not be log-space uniform they almost are, in that the
only parts of the circuits which are not log-space constructible may be generated in
O(log n log log n) space using Reif’s powering algorithm [9].

A useful notion of reducibility for circuits is the following definition [4].

DEFINITION. fis NC' reducible to g if and only if there exists a log-space uniform
circuit family (a,) which computes f with depth (a,) = O(log n) where, in addition to
the usual nodes, oracle nodes for g are allowed. An oracle node is a node which has
some sequence y;, - * +, y, of input edges and z,, - - -, z, of output edges with associated
function (zy,- -, z,)=g(y,"**,). For the purpose of defining depth, the oracle
node counts as depth [log (r+s)].

An important consequence of this definition is that if f is NC' reducible to g and
g is computable by depth O(log*n) uniform circuits then f is also computable by
depth O(log" n) uniform circuits. This applies whether “uniform” means “log-space
uniform” or ‘‘ P-uniform”.

3. Powering and division are equivalent. Let X, y be n-bit positive integers. The
DIVISION problem is to compute the n-bit representation of |x/y]. The POWERING
problem is to compute the n’-bit representation of x’ for i=0, - - -, n. The following
result is adapted from [5].

THEOREM 3.1. DIVISION is NC' reducible to POWERING.

Proof. For integers x, y where 0<x<2", 2=y <2" we wish to compute |x/y].
We first compute an under-approximation 7 of y ! with error <2™". Then we compute
t=xy ' which approximates x/y with error <1, and determine which one of |¢] or
Lt]+1is |x/y].

Let u=1-y27 where j=2 is an integer such that 2 '=y<2. Thus |u|=3.
Consider the series y'=27(1—-u)"'=27(1+u+u’+---). Set 3 '=27(1+u+---
+u""). Then y '—5 '=27Y._ 27'<2™"

i=n

996 P. W. BEAME, S. A. COOK AND H. J. HOOVER

The circuit computes |[x/y] using scaled arithmetic of n> bits of precision as
follows:

(1) Determine j=2 such that 2"'=y <2/ and compute u=1-y2~".

(2) Evaluate u’, i=0,---, n—1 using the n-bit powering circuit.

(3) Compute 3 '=271+u+---+u""").

(4) Compute t=xj ' and truncate to obtain |[t]. Note that xy '=xj
xy ' =27"x.

(5) Compute r=x—y|t] and determine whether |x/y]| is |¢] or |#]+1.

-1

v

All of these steps have depth O(log n) except possibly the powering in step (2). O
THEOREM 3.2. POWERING is NC' reducible to DIVISION.
Proof. Let x be an n-bit integer. We want to compute x°, - - -, x". We use a similar
identity to the one in the previous reduction but in reverse, choosing a scaling factor
so that none of the powers of x overlaps in the resulting binary representation.

1 o
— 2n3 - 2n2(n—i) i
7 T *

Note that ¥,_, 22" Ox! =272"x"*1y _ (x27") whichis «3¥,_, (27"Y <1.
The circuit for computing x°, - - - x" will implement the following procedure:

22n3+2n2

(1) Set u=22"*?"" and compute v =2>" —x.

(2) Evaluate y=|u/v| using the 2n*+2n>- bit division circuit. From the above
identity it follows that y =Y ,_,_, 22" " x',

(3) Read off x" ' as the bits in positions 2n”i to 2n*(i+1)—1 from the right in
y (position 0 contains the low order bit).

All of these steps have depth O(log n) except possibly the division in step (2). 0O

4. Arithmetic operations modulo small integers. The results of this section are due
to McKenzie and Cook [7].

For x and m integers we write x mod m for the unique integer y such that
y=xmodm and 0=sy<m.

LemMA 4.1. For inputs x of n bits and m = n the problems of computing x mod m,
|x/m|, or x " mod m (if an inverse exists) are all in NC'.

Proof. Consider the mod computation first. In space O(log n) for each m=n we
may compute a;, =2 mod m for i=0,-- -, n—1 and hardwire them into the circuit.
Let x=Y7", x2" Then xmod m=Y'", x.a,, mod m. The circuit computes y=
Z:(: x;a;, and reduces the result mod m by subtracting off in parallel the multiples of
m—O0, m, - - -, (n—1)m—and choosing the appropriate difference. Since y has O(log n)
bits the circuit has O(log n) depth. In order to compute z= |x/m| use the above
circuit and apply an NC' reduction from division to mod computation given by Alt
and Blum [2]. Namely, for i =0, - - -, n bit z; is 1 if and only if 2(x,, - - - x;,; mod m)+
x; Z m. To compute x ' mod m, first compute y = x mod m and then in parallel multiply
y by each residue z modulo m and find the z for which the result is =1 mod m. 0O

THEOREM 4.2. Given integers x,,-+,x, and p'=n a prime power where 0=
Xy, X%, <p' the product [];_, x; mod p' can be computed in NC".

Proof. 1t is a known fact of number theory (e.g. [6]) that Z} is cyclic except when
p=2and I>2, in which case Z} is generated by 5 and 2'—1. The basic idea of the
algorithm is to hardwire in a table of discrete logarithms for each prime power <n
and then reduce the problem to one of computing iterated addition. In O(log n) space
it is possible to factor any number =n and so determine whether it is a prime power.

LOG DEPTH CIRCUITS FOR DIVISION 997

For each p'=n (p#2 or I=2) in O(log n) space one can find a generator g for Z

by brute force and then compute all powers of g up to p' —p'™*, the order of Z%, and

hardwire them into the circuit. For each 4<2'=n in O(log n) space one can compute

(=1)*5° mod 2' for a=0,1 and 0= b <2'"2? and hardwire them into the circuit. These

tables may be used in either direction as tables of powers or of discrete logarithms.
The algorithm then proceeds as follows:

(1) Compute the largest power, j;, of p which divides x; fori=1, - - -, n in parallel.
(2) Compute y;=x;/p" fori=1,---,n.
(3) Compute j= Y " ,Ji. Note that the y, are now in Z} and [[|_, x=
P'II;, yimod p.
(4) Testif p#2 or p' =2, 4. If either condition holds, perform A else perform B.
Part A
(5) Find each y; in the table for p' and read off its discrete logarithm, a;.
(6) Compute a=Y__, a.
(7) Compute @=a mod (p'—p'™).
(8) Read off [[]_, y;=g"mod p' from the table.
Part B
(5) Find each y; in the table for 2" and read off its representation as powers
of 2'—1 and 5, a; and b;.
(6) Compute a=Y, a,and b=Y_ b,
(7) Compute @ =a mod 2 and b=b mod 2"
(8) Read oft [[}_, yi=(—1)?5"mod 2' from the table.
(9) Compute [];_, x;=p’ [[\-, y; mod p".

The table look-ups can be computed in O(log n) depth using selector trees, the modulo
operations are computed as in Lemma 4.1, and the other steps can be computed using
fast iterated addition circuits [11] in O(log n) depth. 0O

McKenzie and Cook also show how the above circuits may be used to compute
iterated products for any small modulus by Chinese remaindering. It is interesting to
note the following:

THEOREM 4.3. For n-bit integers a and b, computing a® mod m where m=n is in
NC'.

Proof sketch. By Chinese remaindering the problem can be reduced to computing
a® mod p', for each prime power factor p' dividing m. This is solved by the same
technique as above, taking discrete logarithms, multiplying by b, and then exponentiat-
ing mod p'. O

5. Log depth circuits for division and iterated product. Let x,,- - -, x, be n bit
positive integers. The ITERATED PRODUCT problem is to compute [[;_, x;. It is
clear that POWERING is reducible to ITERATED PRODUCT (it is little more than
a special case) and so POWERING and DIVISION will be computable in small depth
if we can find small depth circuits for ITERATED PRODUCT. In order to solve this
problem we will make use of Chinese remaindering and the circuits for arithmetic
operations modulo small integers.

The Chinese remainder theorem yields a process for determining, given the values
of an integer modulo a sequence of relatively prime numbers, the result of taking that
integer modulo their product. More formally the CHINESE REMAINDERING prob-
lem for pairwise relatively prime integers ¢,, - - -, ¢, is: given inputs ¢, - - -, ¢,, and
xmod ¢, * -+, x mod c,, compute x mod I'[;;l G.

LEMmMmA 5.1. CHINESE REMAINDERING for pairwise relatively primec,, - - -, ¢,
where 1<¢,<---<c,=n’ is NC' reducible to the problem of computing c=[[]_, c..

998 P. W. BEAME, S. A. COOK AND H. J. HOOVER

Proof. The circuit performs:

n

(1) Call the oracle to obtain c=]];_, c;.

(2) Compute »; =[], ¢ by dividing ¢ by ¢; (by Lemma 4.1) for i=1,-- -, n in
parallel.

(3) Solve yw;=1 (mod ¢;) for wy, - - -, w, in parallel.

(4) Compute the interpolation constants, u;=v;w; for i=1, -, n. Note that
u;=1mod ¢; and u;=0mod ¢ for j# i

(5) Computey =Y, (x mod ¢;)u; by multiplying in parallel and then computing
a series sum. It is necessary to reduce y modulo ¢ to obtain the desired
result. The largest multiple of ¢ which is less than y can be estimated since

y=1Y (xmod ¢)vw,= Y, ():dei)wic.
i=1 i=1 Ci

(6) Compute r;=m(x mod ¢;)w; for i=1,--+,n where m=2"%"1 Thus y=
I, (r/me)e.

(7) Compute s;=|r/¢;] fori=1, -, n.

(8) Compute s=Y1_, s;.

(9) Compute t=|s/m], i.e. truncate the right [log, n] bits of s. Note that
0=y—(s/m)c=Y]_, ((r/mc)—(1/m)|r/c])e<¥;_,(1/m)c=c Thus 0=
y—tc<2c

(10) Set x mod c to y—tc if 0=y — tc < c; otherwise set it to y—(t+1)c.

Since each c; is small, representable in O(log n) bits, step (2) may be computed in
depth O(log n); similarly step (3) can be computed by brute force. Steps (4), (5), (6),
and (8) can be computed by multiplying in parallel and then using multiple addition.
Step (7) involves divisions of O(log n)-bit integers by O(log n)-bit integers and can
be done using any reasonable division circuit (even linear depth would not hurt here).
Step (10) requires simple multiplication, comparison and subtraction in parallel. Each
of these steps is of depth O(log n). 0O

If we can compute [[;_, x; mod ¢; for a set of relatively prime c,, - - -, ¢, such that
H;=, ¢;>[1;, x:, then the result of the interpolation process of Chinese remaindering
will give the value of [];_, x; exactly. This fact and the above lemma motivate the
following definition.

DEFINITION. A sequence M,, M,, - - - is a good modulus sequence if and only if
there are polynomials g(n) and r(n) such that for all n:

(i) 2"=M, =27™,

(ii) For any prime p, p'| M, implies that p' = r(n).

THEOREM 5.2. ITERATED PRODUCT is NC' reducible to the problem of comput-
ing any good modulus sequence {M,}.

Proof. From the definition of good modulus sequence it is clear that M,2=2"" >
[T xa-

We obtain the following algorithm:

(1) Call the good modulus sequence oracle to obtain M,:.

(2) Factor M,: to obtain prime power factors ¢;=pi fori=1,---,s.

(3) Compute in parallel b;=x,mod ¢; fori=1,---,nand j=1,---,s

(4) Compute b;=[];_, bymod ¢; for j=1, - -, 5. Note that b;=[]|_, x; mod .

(5) Compute []i_, x; mod M,> using the Chinese remaindering circuit for
¢, ", Cs to obtain the iterated product exactly.

LOG DEPTH CIRCUITS FOR DIVISION 999

Step (2) is brute force because the prime power factors are small and step (3) follows
from Lemma 4.1. Using Theorem 4.2 for step (4) the entire circuit has depth
O(logn). O

The computational problem is now reduced to finding a good modulus sequence
efficiently. The next theorem shows how this can be done.

THEOREM 5.3. ITERATED PRODUCT is computable by P-uniform Boolean circuits
of depth O(log n).

Proof. In polynomial time we can find the first n primes, p,, - - -, p, and compute
their product. By the prime number theorem, p, = O(n log n), so [[;_, p; =2°""&".
Also trivially 2" =[[;_, p:. Thus I}, piforn=1,2,- - - forms a good modulus sequence.
We can compute this good modulus sequence in polynomial time, hardwire the values
into the circuit and then apply Theorem 5.2 to get the desired result. 0

Using the previous reductions, we have:

CoroLLARY 5.4. DIVISION and POWERING are computable by P-uniform
Boolean circuits of depth O(log n).

6. Iterated product and powering are equivalent. As was previously stated POWER-
ING is easily NC' reducible to ITERATED PRODUCT but the reducibility in reverse
is far from obvious.

THEOREM 6.1. ITERATED PRODUCT is NC' reducible to POWERING.

Proof. We use the reduction of ITERATED PRODUCT to computing a good
modulus sequence.

The algorithm proceeds as follows:

(1) Set x=2°"+1.

(2) Use the powering circuit to compute y = x*". Note that y =Y 1", (3)22".

(3) Read off (%) as bits in positions 2n* to 2n*+2n — 1 from the right in y (position
0 contains the low order bit). Note that 2" > (¥") = 2".

By elementary arithmetic (e.g. [6]) the exponent of the largest power of prime p dividing
nlis ¥, , Ln/p‘]. Thus the largest power dividing (3) is

{5

Now each of these terms is =1 and the terms vanish when p’>2n so that the largest
power p' dividing (3") satisfies p' <2n. From this we see that (3) forn=1,2, - - - forms
a good modulus sequence and so the reduction is correct. [0

CoROLLARY 6.2. DIVISION, POWERING, and ITERATED PRODUCT are all
NC' equivalent.

7. Divisibility. Although the DIVISION problem has P-uniform O(log n) depth
circuits, it is still unclear whether or not it has log-space uniform O(log n) depth
circuits. Despite the fact that we are unable to answer this question it is possible to
find such circuits for a closely related problem, DIVISIBILITY.

Let x, y be n-bit integers. The output of the DIVISIBILITY problem is 1 if y|x,
0 otherwise.

THEOREM 7.1. DIVISIBILITY is in NC', and hence has deterministic space com-
plexity O(log n).

Proof. For each of n primes p, <- - - < p, not dividing y we can solve yz= x mod p;
to obtain z;. If we could compute M =[[;_, p; then, as in Lemma 5.1, we could find
the unique z such that 0=x <M and z= z; mod p; for each i. Such a z would be the

1000 P. W. BEAME, S. A. COOK AND H. J. HOOVER

only possible candidate for a solution to yz = x. If

— {1 mod pi,

= i
0 mod p;, J7

then z=Y | u;z; mod M. If, in addition, 0= u; < M then z = 2" for some t, 0=t < np,
where z(” =Y"_, uz;—tM. It follows that y|x if and only if 3¢, 0=t <np, such that
yz{¥ = x. It is not necessary, however, to compute z* explicitly. We merely need to
test the condition modulo sufficiently many primes. Since for any t, |yz'" —x|<
np,2" "' M, it suffices for the product of these primes to exceed np,2""' M. Note that
the equation always holds modulo each of the primes p,, - - -, p,, so that it suffices to
choose additional primes whose product exceeds np,2"*".
The resulting algorithm is:

(1) Find the first 3n primes.

(2) Compute y; =y mod p; for each of these primes.

(3) Select the first n primes from those found in (1) such that y; # 0. Note that
since y=2" it cannot have more than n different prime factors. In the
remainder of the algorithm we designate these primes as p,, - - -, p, and the
remaining primes among the first 3n as q,,- - -, qs,.

(4) Compute z;=xy; "' mod p; for each i=1, -+, n.

(5) Compute M, =[[;_, pimod g, for each k=1,---,2n Note that M,=
M mod g,.

(6) Compute vy =][][,., pymod g, (= M, p;' mod gq,) for each i=1,---,n and
k=1,---,2n

(7) Compute w; =1_[j;,é,.pj_1 mod p; for each i=1,-: -, n.

(8) Compute wy = w,; mod g, for each i=1,--+ ,nand k=1,---,2n

(9) Compute u; = vyw, mod g, for each i=1,---,n and k=1,---,2n. Note
that u; = u; mod qy.

(10) Compute zy = z; mod g, for each i=1,--- , nand k=1, --,2n.

(11) Compute z{’= ", UnZy—tM, mod g, for each k=1,---,2n and t=
1, -+, np,.

(12) Check if there exists a t such that for all k, y,z{’=x mod g. If such a ¢
exists output 1 else output 0.

All the operations are computed modulo small primes in O(log n) depth and the
remaining computations are simple tests in parallel which also have O(log n) depth. 0O

8. P-uniform size bounds. Inobtainingthe O(log n) depth circuits for the problems
of the previous sections we have avoided using the full power of P-uniformity as much
as possible. This permitted us to focus on constructing “good modulus sequences” in
attempting to produce log-space uniform circuits for these problems. However, this
has made our circuits larger than necessary.

By making fuller use of polynomial time constructibility, the O(log n) depth
circuits can be simplified somewhat, yielding a reduction in their size. Since this
simplification is most dramatic for the POWERING circuits, we describe this case in
detail.

THeEOREM 8.1. POWERING can be computed by P-uniform circuits of depth
O(log n) and size O(n> log® n).

Proof. Precompute and hardwire into the circuit:

(a) Primes p,,- - -, p, such that]‘[;=1 D> 2",
(b) The n+1-bit under-approximations of the inverses of p;, p; ', forj=1,---,s.

LOG DEPTH CIRCUITS FOR DIVISION 1001

(c) Fori=1,---,n,j=1,---,s, tables of a' mod p; for each a, 0=a <p;.
(d) M=TI,_, p;- _

(e) The 2n2-bit under-approximation of the inverse of M, M "

(f) Interpolation constants 0= u; < M such that

_ {l mod p;,

i#j forj=1,---,s.
0 mod p;, J J

Y
The circuit performs:

(1) Compute t;=xp;' and truncate to obtain |t for j=1,---,s.

(2) Compute x mod p; forj=1, - - -, n as either z; = x — p; | ;] or z;— p; whichever
is between 0 and p;.

(3) Read y; =x'mod p; from the tables fori=1,---,nandj=1,---,s.

(4) Compute y; =Y _, yu; fori=1,---,n

(5) Compute t/=y,M " and truncate to obtain |t}] for i=1,- -, n.

(6) Compute x' for i=1,- -+, n as either z,=y,— M |t}| or zi— M whichever is
between 0 and M.

Certainly s < n? and thus by the Prime Number Theorem p, = O(n’log n). Since
multiplication of n-bit integers can be done in size O(nlognloglogn) [11] and
O(log n) depth, steps (1) and (2) can be computed in size O(n> log n log log n) as can
steps (5) and (6). Step (4) computes n sums of O(n?) terms which are each multiplica-
tions of O(log n)-bit integers by O(n?)-bit integers. The multiplications in (4) cost a
total of O(n®log n) size and the summations cost O(n®) in size. The table look-ups
in step (3) are computed separately for each value of i and for each value of j. It
follows that the circuit size for step (3) is dominated by the size of the tables, which
contain O(nsp,) = O(n> log n) entries of O(log n) bits each. Thus the total size of the
circuit is O(n’ log® n), as stated. 0

The circuits for ITERATED PRODUCT are somewhat more complicated but are
still the same size as the POWERING circuits.

THEOREM 8.2. ITERATED PRODUCT can be computed by P-uniform circuits of
depth O(log n) and size O(n®log’ n).

Proof sketch. These circuits are similar to the circuits in Theorem 8.1 above except
for the following:

(i) The steps corresponding to (1) and (2) are performed on each x; for
i=1,---,n

(ii) The steps corresponding to (4), (5) and (6) are performed so as to compute
only one n*-bit output.

(iii) The table look-ups in step (3) are replaced by circuits with tables of discrete
logarithms for each p; like the ones described in steps (5)-(8) of Part A in Theorem 4.2.

Applying changes (i) and (ii) to the arguments in Theorem 8.1, those portions of
the circuit may be computed in size O(n*log nloglogn) and O(log n) depth. The
tables of discrete logarithms required by this circuit have only O(sp,) entries of O(log n)
bits each, for a total size of O(n*log” n). However, the table for each p; is accessed
n different times in parallel (once for each x;) so the accessing hardware is of size
O(n’ log® n). The other computations are easily within this size bound and the theorem
follows. 0O

DIVISION circuits may be constructed, using the reduction circuits of Theorem
3.1 and the POWERING circuits in Theorem 8.1, of the same asymptotic size as those
for POWERING. By applying a trick suggested by Reif we obtain smaller, although
more complicated, DIVISION circuits.

1002 P. W. BEAME, S. A. COOK AND H. J. HOOVER

THEOREM 8.3. DIVISION can be computed by P-uniform circuits of depth O(log n)
and size O(n*log’ n).

Proof sketch. In computing DIVISION, the hard part is computing the series,
1+u+u’+---, to at least n terms for a scaled n-bit u. Instead of computing each
term separately, apply the identity

k

I a+u®y=1+u+u+ - -+u*" -1

i=0
with k = |log, n]. The circuit then computes only O(log n) powers from the POWER-
ING circuit, adds 1 to each of the scaled results, and then computes the ITERATED
PRODUCT of the O(log n) resulting terms. The powering portion of the circuit uses
only O(n*log’ n) size because there are fewer powers to be computed, resulting in
smaller tables, and the iterated product portion of the circuit needs fewer simultaneous
table accesses and also uses size O(n*log’ n). 0O

9. Summary and open problems. From the O(log n) depth P-uniform circuits for
the problems presented here, using the results of Alt [1], a large class of natural
problems can now be shown to have O(log n) depth circuits. It is unknown whether
any of these circuits may be made log-space uniform, which would imply that the
problems are computable in deterministic log space.

An interesting problem related to powering is the conversion of integers from one
fixed base to another, e.g. base 3 to base 5, when the digits of integers in bases other
than 2 are represented by groups of bits. This problem can easily be seen to have
P-uniform O(log n) depth circuits even without the machinery presented here. In our
example all that is required is to precompute 3°, - - -, 3""! in base 5, hardwire them
into the circuit, and on input (b,_; - - - by); compute Z::(: Z;"’:l 3" in base 5. The base
5 summation circuits are simple modifications of standard fast binary summation
circuits [11]. It is an open question whether this problem, which is reducible to powering
for a fixed base, has O(log n) depth log-space uniform circuits when one base is not
a power of the other.

The class of problems which are reducible to the decision problem, DIVISIBILITY,
may be worth investigating since our results imply that such problems would have
log-space uniform O(log n) depth Boolean circuits.

Finally, there is a stronger and in some ways more natural definition of uniform
than log-space uniform. This stronger form was introduced by Ruzzo [10] and called
Ug+-uniform (see [4]). If this condition is used to define NC', then NC' can be
characterized simply as the class of problems computable in time O(logn) on an
alternating Turing machine. Unfortunately, it is not clear whether all the results shown
here still hold with the stronger condition. In particular, it would be interesting to
know whether DIVISIBILITY, iterated product modulo small prime powers, and the
reduction of iterated product to powering, have NC' circuits in this stronger sense.

REFERENCES

[1] H. ALT, Comparison of arithmetic functions with respect to Boolean circuit depth, Proc. 16th ACM
Symposium on Theory of Computing (1984), pp. 466-470.

[2] H. ALT AND N. BLUM, On the Boolean circuit depth of division related functions, Dept. Computer
Science, Pennsylvania State University, State College, PA, 1983.

[3] A. BORODIN, On relating time and space to size and depth, this Journal, 6 (1977), pp. 733-744.

[4] S. A. CoOK, The classification of problems which have fast parallel algorithms, Lecture Notes in Computer
Science 158, Springer-Verlag, Berlin, 1983.

LOG DEPTH CIRCUITS FOR DIVISION 1003

[5] H.J. HOOVER, Some topics in circuit complexity, M.Sc. thesis and TR-139/80, Dept. Computer Science,
University of Toronto, 1979.
[6] L. K. HUA, Introduction to Number Theory, Springer-Verlag, New York, 1982.
[7] P. MCKENZIE AND S. A. Cook, The parallel complexity of Abelian permutation group problems,
TR-181/85, Dept. Computer Science, University of Toronto, 1985.
[8] J. REIF, Logarithmic depth circuits for algebraic functions, Proc. 24th IEEE Symposium on Foundations
of Computer Science (1983), pp. 138-145.
[9] , Logarithmic depth circuits for algebraic functions, this Journal, 15 (1986), pp. 231-242.
[10] W. L. Ruzzo, On uniform circuit complexity, J. Comput. System Sci., 22 (1981), pp. 365-383.
[11] J. E. SAVAGE, The Complexity of Computing, John Wiley, New York, 1976.

