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THE EFFICIENCY OF RESOLUTION AND
DAVIS-PUTNAM PROCEDURES*

PAUL BEAME!, RICHARD KARP!, TONIANN PITASSI}, AND MICHAEL SAKSY

Abstract. We consider several problems related to the use of resolution-based methods for
determining whether a given boolean formula in conjunctive normal form is satisfiable. First, building
on the work of Clegg, Edmonds, and Impagliazzo in [Proceedings of the Twenty-FEighth Annual ACM
Symposium on Theory of Computing, Philadelphia, PA, 1996, ACM, New York, 1996, pp. 174—
183], we give an algorithm for unsatisfiability that when given an unsatisfiable formula of F' finds
a resolution proof of F'. The runtime of our algorithm is subexponential in the size of the shortest
resolution proof of F. Next, we investigate a class of backtrack search algorithms for producing
resolution refutations of unsatisfiability, commonly known as Davis—Putnam procedures, and provide
the first asymptotically tight average-case complexity analysis for their behavior on random formulas.
In particular, for a simple algorithm in this class, called ordered DLL, we prove that the running
time of the algorithm on a randomly generated k-CNF formula with n variables and m clauses
is 20(n(n/m)t/ =2y iy probability 1 — o(1). Finally, we give new lower bounds on res(F’), the
size of the smallest resolution refutation of F', for a class of formulas representing the pigeonhole
principle and for randomly generated formulas. For random formulas, Chvatal and Szemerédi [J.
ACM, 35 (1988), pp. 759-768] had shown that random 3-CNF formulas with a linear number of
clauses require exponential size resolution proofs, and Fu [On the Complexity of Proof Systems,
Ph.D. thesis, University of Toronto, Toronto, ON, Canada, 1995] extended their results to k-CNF
formulas. These proofs apply only when the number of clauses is Q(nlogn). We show that a lower
bound of the form 27" holds with high probability even when the number of clauses is n(k+2)/4—c
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1. Introduction. The satisfiability problem for boolean formulas in conjunctive
normal form (CNF' formulas) plays a central role in computer science. Historically, it
was the “first” NP-complete problem. It is the natural setting in which to formulate
a wide variety of constraint satisfaction problems. Its companion problem, finding a
proof of unsatisfiability of a given unsatisfiable formula, plays an important role in
artificial intelligence, where it is referred to as propositional theorem proving, and also
in circuit testing.
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In the last three decades, a tremendous amount of research has been directed
towards understanding the mathematical structure of the satisfiability problem and
developing algorithms for satisfiability testing and propositional theorem proving.
Much of this research has centered around the method of resolution. The resolution
principle says that if C' and D are clauses and x is a variable, then any assignment that
satisfies both of the clauses C'Vx and DV = x also satisfies CV D. The clause C'V D is
said to be a resolvent of the clauses C'Vz and DV — x on the variable x. A resolution
refutation for a CNF formula F' consists of a sequence of clauses C1, Cs, ..., Cs where
(i) each clause C; is either a clause of F', or is a resolvent of two previous clauses, and
(ii) C; is the empty clause, denoted by A. We can represent the proof as an acyclic
directed graph on vertices C1, ..., Cs where each clause of F' has in-degree 0, and any
other clause has in-degree 2 with its two in-arcs from the two clauses that produced it.
It is well known that resolution is a sound and complete propositional proof system;
i.e., a formula F' is unsatisfiable if and only if there is a resolution refutation for F'.
Resolution is the most widely studied approach to propositional theorem proving, and
there is a large body of research exploring resolution algorithms, i.e., algorithms that
on input an unsatisfiable formula F, output a resolution refutation of F'.

Any resolution algorithm can be used trivially to test satisfiability of an arbitrary
(satisfiable or unsatisfiable) formula F', since F' is satisfiable if and only if the algorithm
finds no refutation. Nearly all satisfiability testers that have been studied in the
literature can be derived in this way from resolution algorithms, and we say that such
satisfiability testers are resolution-based.

One fundamental approach to satisfiability testing is to use backtrack search to
look for a satisfying assignment. Algorithms that use this approach are commonly
called Davis—Putnam procedures, but we will refer to them as DLL algorithms af-
ter Davis, Logemann, and Loveland, who first considered them [DLL62]. A DLL
algorithm can be described recursively as follows. First check whether F is trivially
satisfiable (has no clauses) or is trivially unsatisfiable (contains an empty clause) and
if so, stop. Otherwise, select a literal I; (a variable or the complement of a variable)
and apply the search algorithm recursively to search for a satisfying assignment for
the formula F'[;,—¢ obtained by setting [; = 0 in F. If the search succeeds, then we
have an assignment for F'. Otherwise, repeat the search with the formula F[;,—;. If
neither of these searches finds a satisfying assignment, then F is not satisfiable.

A particular DLL algorithm is specified by a splitting rule, which is a subroutine
that for each recursively constructed formula determines the next splitter (literal
to recurse on) and the assignment to try first. In general, the splitting rule may
depend on the details of the structure of the original formula and on the results of the
computation in other recursive calls. For a particular formula F, different splitting
rules may result in vastly different running times.

If the splitter for some given formula F' is a literal [ such that [ is contained in
a unit clause (a clause C of size one), then the [ = 0 branch falsifies C' and thus
terminates immediately. Effectively, the algorithm fixes [ = 1. A splitting rule is
said to use unit propagation if, for any formula F that has a unit clause (clause of
size one), the splitter is chosen to be a literal in such a clause. Virtually all splitting
rules considered in the literature use unit propagation, and it can be shown that any
splitting rule can be modified so that it uses unit propagation at the cost of a factor
of at most O(n) in the running time of the algorithm, where n is the number of
underlying variables. We will consider only algorithms that use unit propagation.

The simplest such splitting rule is as follows: fix an ordering of the variables
Z1,...,%y. For a subformula F’ obtained by fixing some variables, if there is a unit
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clause, the splitter is the first literal belonging to such a clause. Otherwise, select the
first unfixed variable. The algorithm obtained from this splitting rule is called ordered
DLL.

The execution of a DLL algorithm A on formula F' can be represented by a
labeled rooted binary tree, denoted T4 (F), in the usual way. Each node corresponds
to a recursive call. Each internal node is labeled by its splitter, and the two out-edges
correspond to the possible assignments. For any node, the path from the root to that
node defines a partial assignment (restriction) of the variables, and the recursive call
at that node is applied to the subformula obtained by applying the restriction to the
original formula. Each leaf is either a success leaf, i.e., all of the original clauses are
satisfied by the associated restriction, or a failure leaf, i.e., at least one original clause
is falsified by the restriction. Each failure leaf is labeled by one of the original clauses
that if falsifies. F' is unsatisfiable if and only if all leaves are failure leaves, in which
case the tree as labeled above (with internal nodes labeled by splitters and leaves
labeled by falsified clauses) is called a DLL refutation of F. The size of the refutation
is defined to be the number of nodes of the tree. It is easy to see that a formula F
has a DLL refutation if and only if it is unsatisfiable. Thus DLL refutations form a
complete and soundproof system.

Given a DLL refutation, it is not hard to show by induction that if we start
from the clauses labeling the leaves, and work towards the root, we can label each
internal node by a clause which is a resolvent of the clauses labeling its two children,
and the root will be labeled by the empty clause. This tree is now the directed
graph representation of a resolution refutation, and thus the DLL proof system can
be viewed naturally as a restricted version of resolution.

This paper focuses on some problems concerning resolution refutations, DLL refu-
tations, and algorithms for satisfiability. Of central importance are two parameters
defined for any unsatisfiable formula F":

(i) res(F'), the size of the smallest resolution refutation of F,
(ii) DLL(F), the size of the smallest DLL refutation of F'.

We define res(F') = DLL(F) = oo for satisfiable formulas. It follows from the
above discussion that DLL(F) > res(F') for all formulas F'. Furthermore, for any
DLL-procedure for satisfiability, DLL(F’) is a lower bound for its running time on F'.

Our results fall into three groups. The first group of results shows that the
resolution and DLL proof systems are, to some extent, automatizable in the sense
that for each of these systems, there is an algorithm that on input an unsatisfiable
formula F', finds a refutation of F' within the proof system in time that can be upper
bounded nontrivially in terms of the size of the optimal refutation within that system.
In particular, we show that for any formula F' in n variables and m clauses that has
a DLL refutation of size at most S, there is an algorithm running in n°°8%)m,
time that finds a DLL refutation of F. The analogous algorithm for resolution uses
20(vnlogSlogn)yy time to find a resolution refutation for a formula F' possessing one of
size S. Clegg, Edmonds, and Impagliazzo [CEI96] have given algorithms to determine
unsatisfiability within these time bounds, but they do not produce resolution or DLL
refutations.

The second group of results concerns lower bounds for general resolution proofs.
We develop simpler methods for obtaining resolution lower bounds than previously
used. We illustrate this by first showing a very simple lower bound on the resolu-
tion proof complexity of the pigeonhole principle which also significantly improves
on the best previous lower bounds for this problem. Our main object of study for
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resolution, however, is that of randomly chosen k-CNF formulas, and we use our
technique to obtain much stronger lower bounds on the resolution proof complexity
of such formulas.

Our third group of results analyzes the complexity of proving unsatisfiability
for random formulas (above the threshold) using DLL algorithms, the algorithms
that are used most commonly in practice for satisfiability testing. We obtain the
first nontrivial upper bound for resolution proofs of unsatisfiability of random for-
mulas by showing that one of the simplest of all DLL algorithms, ordered DLL, has
a running time that is qualitatively similar to the size of the best possible resolu-
tion proofs. There is still a gap between our upper bounds for DLL and the lower
bounds for resolution, but we show that our analysis for ordered DLL is tight. We
also make progress towards showing that our upper bound is tight for all DLL al-
gorithms by extending our lower bound for ordered DLL to a broader class of DLL
algorithms.

Our techniques result in significant simplifications and improvements of previous
algorithms and lower bounds. A preliminary version of this work [BP96] pointed out
that further simplification could be obtained by finding a direct relationship between
res(F) and the minimum b for which F' has a proof with all clauses at most b. Re-
cently, Ben-Sasson and Wigderson [BSW99] have developed such a characterization
of res(F) and DLL(F'). Using this characterization, one can derive some of our gen-
eral resolution bounds more simply. We conclude our paper with a discussion of this
improvement and other directions for further research.

Because our bounds for random formulas for both DLL and general resolution
are our most significant results, but are necessarily spread over several sections of the
paper, we discuss them now in more detail.

Random k-CNF formulas. We consider the usual random k-CNF model,
which is defined in terms of three integer parameters n,k, and m. A formula is
generated by selecting m clauses of size k independently and uniformly from the set
of all clauses of size k on n variables. We denote this distribution by %" and write
F ~ FF™ to mean that F is selected from this distribution. The ratio A = m/n is
referred to as the clause density.

The random k-CNF model has been widely studied for several good reasons. First,
it is an intrinsically natural model, analogous to the random graph model, that sheds
light on fundamental structural properties of the satisfiability problem. Second, for
appropriate choice of parameters, randomly chosen formulas are empirically difficult
for satisfiability and are a commonly used benchmark for testing satisfiability algo-
rithms. (See, for example, the encyclopedic survey of the SAT problem in [GPFW97].)
Last, it is a useful model for evaluating the effectiveness of a particular propositional
proof system: strong lower bounds on proof size for random k-CNF formulas attest
to the fact that the proof system in question is ineffective on average.

A fundamental conjecture about the random k-CNF formula model (see [CS88,
BFU93, CF90, CR92, FS96, KKKS98]) says that there is a constant 6y, the satisfi-
ability threshold, such that a random k-CNF formula of clause density A is almost
certainly satisfiable for A bounded below 65 (as n gets large) and almost certainly
unsatisfiable if A is bounded above 6. There is considerable empirical and ana-
lytic evidence for this. Recently, Friedgut [Fri99] showed that for each n and k there
is a threshold 6y(n) such that for any € > 0, random k-CNF formulas with clause
density A < 6(n) — € are almost certainly satisfiable and those with clause density
A > 0i(n) + € are almost certainly unsatisfiable. However, he does not rule out the
possibility that 0 (n) fails to converge to a constant. It is known that 6y = 1 is
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independent of n [CR92, Goe96] and that for each k, 0 (n) is bounded between two
constants, by and dj, that are independent of n; e.g., 3.26 < 03(n) < 4.596 [AS00,
JSVo00].

The threshold indicates three distinct ranges of clause density for investigating
complexity. For A at the threshold, an effective algorithm must be able to distinguish
between unsatisfiable and satisfiable instances. Below the threshold, a random for-
mula is almost certainly satisfiable, and the problem of interest is to find a satisfying
assignment quickly.

Above the threshold, the formula is almost certainly unsatisfiable, and we have the
two closely related questions, (i) What is the typical size of the smallest unsatisfiability
proof? and (ii) How quickly can an algorithm find a proof?

Several empirical studies of DLL procedures on random k-CNF formulas have
been done, e.g., by Selman, Mitchell, and Levesque [SML96] and Crawford and Au-
ton [CA96]. The former applies ordered DLL (defined earlier) to random k-CNF for-
mulas for various values of A. The curves in [SML96, CA96] show very low complexity
for A below the threshold, a precipitous increase in complexity at the threshold, and
a speedy decline to low complexity above the threshold.

Much has been made of the analogy with statistical physics [KS94], and there
has been a suggestion that the computational complexity at the threshold is evidence
of a critical phenomenon in complex systems and based on underlying edge-of-chaos
behavior present only near the threshold. The empirical observation that satisfiability
is easy below the threshold is supported by analytical work. The proofs of the afore-
mentioned lower bounds on 6 were obtained by analyzing some DLL algorithm and
showing that it almost certainly finds a satisfying assignment in linear time, provided
that A is below some specified constant.

In their seminal paper, Chvétal and Szemerédi [CS88] showed that for any fixed
A above the threshold there is a constant ka > 0 such that res(F) > 28a™ al-
most certainly if F' is a random k-CNF formula of clause density A. (This result
substantially improved the previous work of Franco and Paull [FP83] which showed
subexponential time lower bounds for refuting the same class of formulas using par-
ticular DLL algorithms.) On the other hand, Fu [Fu95] showed that res(F') is almost
certainly polynomial in n for m = Q(n*~!). These results together with the em-
pirical work motivate the problem of determining the best constant ka for which
res(F) > 2%a™ with prob 1 — o(1) for random k-CNF formulas F of density A. The
lower bound in [CS88] as presented does not give bounds on the dependence of ka
on A, but rough estimates show that for 3-CNF formulas the bound decreases as
1/ AQAY | This implies that the lower bound declines extremely quickly and be-
comes trivial when the number of clauses grows above nlogl/ “n. For larger clause
size k Fu [Fu95] obtained better bounds but with a similar exponential drop-off.
Is there really such a sharp decline in complexity for random formulas above the
threshold?

Our new lower bounds show that the drop-off in kKA is at most polynomial in
A. We show that for any constant € > 0 there is a constant a. > 0 such that
for random 3-CNF formulas the complexity of resolution proofs is almost certainly
at least 27<("/A"™) and obtain similar results for random k-CNF formulas having
larger values of k. In particular, our results imply that even random formulas with
moderately large clause densities require proofs of weakly exponential size. More
precisely, for any k > 3 and ¢ > 0, we show that there is a v > 0 such that almost
all k-CNF formulas in n variables with at most n(¥+2)/4=¢ clauses require resolution
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refutations of size at least 2" . For example, a random 3-CNF formula with n5/4—¢
clauses requires exponentially large resolution proofs.

Although these resolution bounds show that the decline in kA is at most inverse
polynomial in A, it is not immediately clear that even a polynomial decline with A
is achievable. There seem to be no previously known nontrivial upper bounds on the
running time of algorithms on random instances above the threshold. We prove the
first such nontrivial upper bound by showing that for F' ~ F¥"  the size of the DLL

refutation of F' produced by ordered DLL is 20(n/AVT2) n0(1) | Thys ka does indeed
decline as a fixed power of A.

At the upper end, our result shows that when m = Q(n¥=1/ logh—2 n), the algo-
rithm runs in polynomial time, improving on Fu’s ©(n¥~1) bound on the number of
clauses needed for polynomial-size resolution proofs but also giving an algorithm to
find such proofs.

There is a gap between the exponents on A given by our lower bounds for general
resolution and our upper bound for ordered DLL. What is the optimal exponent for
general resolution or for DLL, which is more interesting since such bounds would have
implications for practical satisfiability testing? We show that our upper bound for
ordered DLL is indeed tight in that ordered DLL requires proofs of 20 (n/AY T2 e

Can a different splitting rule achieve a better exponent than ordered DLL on
random formulas? We expand our understanding of DLL algorithms by showing that
in the case k = 3, for m = Q(n*/?log® n), the lower bound for ordered DLL extends
to a larger class of algorithms, whose splitting rule (aside from unit propagation) is
independent of the formula. The key step in proving this lower bound is Lemma 6.7,
which applies to any DLL splitting rule and therefore may be of independent interest.
It shows that with high probability, along every path of a DLL tree that is “not too
long,” the number of unit clauses generated cannot be very large. While Lemma 6.7 is
general, the remainder of the proof of the lower bound unfortunately depends heavily
on the independence of the splitting rule from the formula.

Overall, our results show that for F' ~ }"Z’: , log, res(F') decays as a fixed power
of A, suggesting that there is not an isolated point of complexity at the threshold but
rather a slow and gradual decline in complexity as A increases.

2. Preliminary definitions. Let X = {z1,...,z,} be a set of boolean vari-
ables. Following usual parlance, an assignment p of 0-1 values to some subset of the
variables is called a restriction. We will abuse notation and identify p with the set of
literals set to 1 by p. We write v(p) for the set of variables that are assigned values
by p.

Similarly, a clause C' over the variables X can be viewed as a set of literals, and
we write v(C) for the underlying set of variables. If C is a set of clauses, or F is a
CNF formula, we write v(C) or v(F) for the underlying sets of variables.

If C is a clause and p is a restriction, then p satisfies C' if it sets some literal of C'
to 1. If p does not satisfy C, we define C,, the restriction of C' by p, to be the clause
obtained from C by deleting all literals set to 0 by p. For a formula F the restriction
of F by p, F[,, is the formula obtained by removing all clauses satisfied by p and
replacing any other clause C of F by CT,.

If P=(Cy,...,C,) is a resolution refutation of a formula F and p is a restriction
we can construct a refutation of F'[,, denoted P[,= (D1,...,D,), as follows. For ease
of description, we allow the proof to contain clauses that are identically 1. For ¢ € [r]
having defined Dy, ..., D;_1, if p satisfies C;, then let D; be the identically 1 clause.
Otherwise, (i) if C; is a clause of F, let D; = C;[,, and (ii) if C; is the resolvent of C;
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and C} on variable x, then if either D; or Dy, is 1, then let D; equal the other one,
and otherwise let D; be the resolvent of D; and Dy, on x. It is not hard to show that
after deleting the 1-clauses, the result is a resolution proof of F[,.

A resolution refutation P is said to be b-bounded if all of the clauses appearing in
it have size at most b.

For the purpose of generating test formulas, the most natural model of a random
k-CNF formula on n variables with clause density A is to choose m = An clauses
independently with replacement. This distribution, which we denote F%™, is the one
analyzed in [CS88]. Another model, which is used in [Fri99], is to choose each of the
possible clauses independently with probability p = m/ (Z) 2F; call this F*"(p). An
easy argument shows that when considering properties of formulas that are monotone
(or antimonotone) with respect to sets of clauses, the almost certain properties under
both distributions are the same up to a change from m to m =+ o(m). This is just a
natural extension of the similar (and more precise) equivalences for the random graph
model as shown, for example, in [AV79]. We generally assume the distribution F%.".
We write F' ~ F to mean F' is a random formula selected according to distribution F.

We make frequent use of two well-known tail bounds for the binomial distribution
(see [ASE92, Appendix A]).

PROPOSITION 2.1. IfY is a random variable distributed according to the binomial
distribution B(n,p), then

1. PrlY < np/4] < 2-(w)/2,
2. PrlY > Cnp] < (&)~ “"r.

3. Automatizability of DLL and resolution. The quantity res(F') (resp.,
DLL(F)) tells us the size of the smallest resolution refutation (resp., DLL refutation)
of F. A fundamental problem is to find effective algorithms for constructing reso-
lution refutations and DLL refutations whose size is “close” to optimal. This is the
automatizibility problem for proof systems, which was formalized in [BPR97].

DEFINITION 3.1. Let S be an arbitrary propositional proof system.' For the
unsatisfiable formula F, let s(F) denote the size of the smallest refutation of F in
S. Then S is said to be automatizable if there exists a deterministic algorithm that
takes as input an unsatisfiable formula F on n variables and m clauses, and outputs
an S-refutation of f in time polynomial in s(F) and n and m. More generally S
is q(s,n, m)-automatizable if there exists a deterministic algorithm that runs in time
q(s(F),n,m) and outputs an S-refutation of F (whose size is necessarily also bounded
by Q(S(F)v n, m))

THEOREM 3.2.

1. The DLL proof system is q(s,n, m)-automatizable for q(s,n,m) = n©U°gs)m,
2. The resolution proof system is q(s,n,m)-automatizable for q(s,m,m) =
20(\/Wlog n)m'

These results, especially the second, fall short of the desired polynomial autom-
atizability. Nevertheless, even the second is strong enough that if res(F') is subexpo-
nential, 2°(")| then our algorithm finds a subexponential size resolution refutation in
subexponential time. The results are closely related to, and motivated by, previous
results of Clegg, Edmonds, and Impagliazzo. Their results concern the polynomial
calculus proof system (called Groebner in [CEI96]), which is more general than the

IWe will not provide a general definition of propositional proof system, since we are focusing
exclusively on the two concrete systems, resolution and DLL, that we have defined above. The
interested reader can readily formulate a general definition or consult [CR77].
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resolution system. In their paper, they proposed and analyzed satisfiability testing
algorithms based on the Groebner basis algorithm from commutative algebra. When
run on an unsatisfiable formula F', their algorithm produces a refutation in the poly-
nomial calculus proof system (but not necessarily a resolution refutation). They give
two algorithms for this, the first of which finds a refutation in time bounded above
by O((DLL(F))'°¢™), and the second finds a refutation in time bounded above by

O(2VrrestF)logny 1 other words, provided that F has a short DLL refutation (resp.,
resolution refutation), their first (resp., second) algorithm finds a refutation that is
“not too big” but in the stronger polynomial calculus proof system. Our two algo-
rithms, which closely parallel theirs, achieve comparable running times, but produce,
respectively, a DLL refutation and a resolution refutation.

Proof of Theorem 3.2. The theorem asserts the existence of two algorithms, which
on input an unsatisfiable formula F', find, respectively, a DLL refutation and a reso-
lution refutation within a specified time bound. The two algorithms are most easily
described together.

First, we need a subroutine, called Bounded-search, which takes as input F' and
an integer parameter b and finds a b-bounded resolution refutation of F' if one exists.
It is not hard to implement this subroutine in time Ty(n,m,b) = nC®)+Ompoly(n)
e.g., by listing the b-bounded clauses of F' and, for each clause on the list, resolve it
with each clause preceding it (if possible) and add the resolvent to the end of the list,
if it is of size at most b and does not duplicate anything on the list. If the algorithm
constructs the empty clause, we have the desired refutation; otherwise, there is no
such refutation.

The main algorithm called Resolution-search also takes as input F' and an
auxiliary parameter b. First we use Bounded-search(F,b) to find a b-bounded res-
olution refutation for F' if it exists. If not, then for each of the 2v(F) literals I, apply
Resolution-search to the formula F'[;—; in order to identify the literal { for which
Resolution-search(F'[;—1) terminates fastest. These 2n calls to Resolution-search
are executed in a sequence of parallel rounds; in round i the ith step of each of the
2n calls is performed. As soon as the first of the calls terminates, say for literal [*, all
of the other calls are aborted, except the call corresponding to — [*, which is run to
completion. The output of Resolution-search(F,b) consists of the derivation of the
singleton clause [*, followed by the derivation of the singleton clause — I* followed by
(. (Note that the parallel search for the literal I* described above can be replaced by
a more space efficient “doubling search” which in iteration 4 runs each of the recursive
calls one by one from the beginning for 2 steps, stopping the first time that one of the
calls terminates. The time analysis below can be modified to apply to this variant.)

The analysis of the algorithm will rely on the following technical fact, which is
easily proved by induction.

PROPOSITION 3.3. Suppose that T(n,s) is a function defined for nonnegative
integers m and s > 0 that satisfies, for some positive increasing function h(n), positive
constant C' and A > 1:

T(0,s) < h(0),
T(n,s) < h(n) if s <1,
T(n,s) < hn)+CnT(n—1,3)+T(n—1,5) ifn>1ands>1.

Then T(n,s) < h(n)(1 + C08xsp2losss),
We now prove the first part of the automatization theorem. Here we use the above
algorithm with b = 0. It is not hard to see that in this case, the output by Resolution-
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search can be viewed as a DLL refutation, since the DAG associated to the proof
is a tree. We upper bound the running time of the algorithm in terms of DLL(F).
Let Ty (n, s;m) denote the maximum running time of Resolution-search(F,0) over
all formulas F with at most n variables and m clauses and for which DLL(F) < s.
Consider a DLL refutation of size at most s and let x; be the splitting variable at the
root. The left and right branches of the tree give refutations for F'[,, and F[,,, and
the smaller of these is of size at most s/2. Hence at least one of the recursive calls
terminates after at most T1(n — 1, s/2;m) steps, and so the literal {* is found after
at most that number of rounds. The time for each round can be bounded above by
Cn for some constant C. Once [* is found, it takes at most Ty (n — 1, s;m) steps to
complete the call to Resolution-search(F[ ;«). Thus, we conclude that for fixed m,
T (n, s;m) satisfies the recurrence of the above proposition with h(n) = Ty(n,m,b)
and A\ = 2. We conclude that Ty (n, s;m) = n®1°89)0(m) as required to prove the
first automatization result.

For the second result, first define, for a set P of clauses, P[b] to be the subset
of clauses of size greater than b. For a formula F, let res(F,b) denote the minimum
of |P[b]| over all resolution refutations of F' (so that for b < 0, res(F) = res(F,b)).
Let T5(n, s;m,b) denote the maximum time needed by Resolution-search(F,b) on
(n,m)-formulas F' satisfying res(F,b) < s. Note that Ts(n,s;m,b) < Ty(n,b) if
s < 1 and T5(0,s;m,b) = O(1). Suppose n and s are both at least 1. Let F
be an (n,m)-formula and let P be a resolution refutation of F' with |P[b]| < s.
For a literal I, let ¢(b,l) be the number of clauses of P[b] containing I. The aver-
age of ¢(b,1) over literals is greater than |P[b]|b/2n, and hence there exists a literal
I with ¢(b,l) > b|P[b]|/2n. Note that the refutation P[;—; of F[;—; has at most
IP[B]|(1 — &) clauses, and hence T(n,s;m,b) satisfies the recurrence for 7' in the
proposition with A\ = 272137 and h(n) = Ty(n,b). Applying the proposition, we con-
clude that Ty (n,b) < Ty(n,b)nC(%1°89) Choosing b = \/nlog s yields an upper bound
of 20(Vnlogslogn) ) (m) to complete the proof of the theorem. 0

Remark. The result of Ben-Sasson and Wigderson mentioned in the introduction
implies that the Bounded-search routine is sufficient to automatize resolution. More
specifically, they show that for any formula F, if DLL(F) < s, then Bounded-search
with b = O(log s) finds a resolution refutation of F', and if res(F') < s, then Bounded-
search with b = O(y/nlog s) finds a resolution refutation of F.

4. Lower bounding resolution proof complexity. For any unsatisfiable for-
mula on n variables, res(F) < DLL(F) < 2" 4 1, since a DLL proof of an n-variable
formula is a binary tree of maximum depth n. Unless coN P = N P one would expect
that there are formulas where res(F") is superpolynomial in |F|, but it is not obvious
how to prove such lower bounds. In a breakthrough paper, Haken [Hak85] proved the
first exponential lower bounds in general resolution for a class of formulas related to
the pigeonhole principle. Haken obtained his bounds using an elegant new technique
called “bottleneck counting.” The technique was developed further in [Urq87] to give
more general bounds on resolution refutations. Building on Haken’s and Urquhart’s
arguments, Chvatal and Szemerédi [CS88] used the bottleneck counting method to
show that for a sufficiently large constant ¢, almost certainly a random 3-CNF for-
mula with en clauses requires an exponential length resolution refutation. Fu [Fu95]
recently extended this bound to apply when the number of clauses is larger, but for
3-CNF formulas it gives no improvement on [CS88].

All of these proofs have the same general structure. To prove a lower bound
on res(F) for all F belonging to some specified class of formulas F, the first step
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is to prove a result of the following type: for some larger class F’ of formulas, any
resolution refutation of G € 7 must have a “large” clause.

In the second step, which is typically the more involved part, an arbitrary reso-
lution refutation of F' is considered. Each clause in the proof is viewed as allowing
certain truth assignments to flow through it, namely those that it falsifies. Using the
result of the first step, one shows that every truth assignment must flow through some
“complex” or “large” clause that permits only a small number of truth assignments
to pass (thus the term “bottleneck counting”). Therefore, the number of clauses in
the refutation must be large. The complications in the argument come in making the
association between complex clauses and truth assignments.

Our method uses something very much like the first step but replaces the second
step by an argument that leads to stronger results with simpler arguments. We assume
for contradiction that F' € F has a small proof. We use this assumption to show that
F can be modified to a formula F’ € F’ that has a proof with no large clauses,
contradicting the first step.

We consider two methods for modifying the formula F to get F’. The first is
to apply a restriction, i.e., fix a small set of variables. The second is to augment F,
i.e., add some additional clauses to F. The restriction method is equivalent to the
special case of the augmentation method where the clauses that are added are all unit
clauses.

4.1. Lower bounds for the pigeonhole principle. We illustrate our approach
to lower bounds for general resolution proofs by giving a very simple proof of the
exponential lower bounds for the class {—= PHP™ : m > n} of pigeonhole principle
formulas considered by Haken. The variables of the formula = PH P correspond to
the entries P; j of an m x n boolean matrix. (We think of the rows as corresponding
to“pigeons” and the columns as corresponding to “holes”.) Its clauses are (1) P;q V
PioV---V P, for each i < m (each row has at least one 1, or every pigeon goes
into a hole) and (2) =P, V =P for each 4,5 < m, k < n, i # j (each column has
at most one 1, or every hole gets at most one pigeon). Since m > n, this is trivially
unsatisfiable. Note that the number of clauses in - PHP" is m + (?)n < m3. We
prove the following theorem.

THEOREM 4.1. For n > 2, any resolution refutation of ~PHP)' | has size at
least 27/20,

Proof. As in the lower bound proof of Haken [Hak85], a truth assignment to the
underlying variables P; ; is critical if it defines a one-to-one, onto map from n —1 rows
(pigeons) to n — 1 columns (pigeonholes), with the remaining pigeon not mapped to
any hole. A critical assignment where 7 is the pigeon left out is called i-critical. In
what follows we will be interested only in critical truth assignments.

Let C be a clause. The monotone clause M (C) associated to C' is obtained by
replacing each occurrence of a negative literal = P, ;, by the set of literals { P, 5 | [ # ¢}.
It is easy to check that C and M (C) are satisfied by precisely the same set of critical
assignments.

We will be interested in restrictions corresponding to partial matchings that one
obtains by repeatedly choosing an ¢, j, and setting P;; = 1, P, ;; = 0 for j' # j,
and Py ; = 0 for ¢/ # 4. Observe that if one begins with a resolution refutation of
—~PHP}_, and one chooses such a partial matching restriction that sets ¢ variables to
1, then the result is resolution refutation of =PHP""}! . Furthermore, the restric-
tion applied to the monotone conversion of each clause results in the same clause as
doing the monotone conversion of the clause first and then applying the restriction.
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(The transformation to monotone clauses, due to Buss, is not essential, but it will
make our argument slightly cleaner.)

So let C1,...,Cgs be a resolution refutation of “=PHP? | and My = M(C4), ...,
Mg = M(Cs) be its monotone conversion. Say that a clause M; is large if it has at
least n?/10 (positive) literals, i.e., at least one-tenth of all the variables. To show that
S > 2/20 we will show that the number L of large clauses is at least 2*/20. Assume for
contradiction that L < 27/20, Let d; ; denote the number of large clauses containing
P; ;. By averaging, there is an 4, j with d; ; > L/10. Choose such an i, j, and apply
the restriction P;; = 1, P,y = 0 for j/ # j, and Py ,; = 0 for ¢/ # i. Applying
this restriction we obtain a monotone conversion of a refutation of ~PHP" ") with at
most 9L/10 large clauses. Applying this argument iteratively log;, /9 L many times,
we are guaranteed to have knocked out all large clauses. Thus, we are left with a
refutation of ~PHP?,_, where

n' >n —logg9 L = (1 — (logyg/92)/20)n > 0.671n

and where no clause in the refutation is large. However, this contradicts the following
lemma (originally due to Haken [Hak85]) which states that such a refutation must
have a clause whose monotone conversion has size at least 2(n/)?/9 > n?/10. O
LEMMA 4.2. Any resolution refutation of ~PHP_, must contain a clause C
such that M(C) has at least 2n?/9 literals.
Proof. Given a clause C, let

badpigeons(C) = {i | there is some i-critical assignment « falsifying C'}.

Define the complexity comp(C') = |badpigeons(C)|.

Let P be a resolution refutation of ~PH P}, and consider the complexity of the
clauses that appear in P. The complexity of each initial clause is at most 1, and the
complexity of the final false clause is n.

Note that if we use the resolution rule to derive a clause C' from two previous
clauses C' and C”, we have that comp(C') < comp(C”) + comp(C"), since any assign-
ment falsifying C' must also falsify at least one of C' or C”. If C is the first clause in
the proof with comp(C) > n/3, we must have n/3 < comp(C') < 2n/3. We will show
that M (C) contains a large number of variables.

For comp(C) = t will now show that M (C) has at least (n —t)t > 2n2/9 distinct
literals mentioned. Fix some ¢ € badpigeons(C) and let « be an i-critical truth assign-
ment falsifying C. For each j & badpigeons(C), consider the j-critical assignment, o,
obtained from «a by replacing i by j, that is, by mapping ¢ to the place that j was
mapped to in «. This assignment satisfies C' and differs from « only in one place:
if @ mapped j to I, then o’ maps i to . Since C and M(C) agree on all critical
assignments and M (C) is monotone, it must contain the variable P, ;.

Running over all n — ¢ j’s not in badpigeons(C) (using the same «), it follows
that M(C') must contain at least n — ¢ distinct variables P, ;, | < n. Repeating the
argument for all i € badpigeons(C') shows that C' contains at least (n — t)¢ positive
literals. O

We note that Theorem 4.1 improves somewhat upon Haken’s bound of 27/577
although our major interest is in its simpler proof rather than in the better size
bound. Buss and Turdn [BT88] extend Haken’s argument to show that ~PHP"
requires superpolynomial size resolution lower bounds as long as m < n?/logn. Our
argument can be extended to rederive their result.
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5. Resolution lower bounds for random formulas. The previous section
gave a simple proof that res(F) is large for a specific class of formulas. Abstractly,
we can summarize the approach as follows. We assume for contradiction that F' has
a small proof. In particular, F' has a proof with a small number of large clauses. We
then modify F' (in the above case, restrict some variables) to obtain another formula
F’ having a proof with no large clauses. We then obtain a contradiction by showing
that any proof of F’ contains a large clause.

In this section we show how the same idea can be used to obtain simple and im-
proved lower bounds on res(F’) that hold with high probability when F' is a randomly
chosen formula of a given clause density.

5.1. Resolution refutations usually require big clauses. The first main
ingredient is a result (essentially from [CS88]) that provides a set of parameterized
conditions on a formula F' that imply that any resolution refutation of F' has at least
one large clause. We then show that when F' is a random formula of clause density A,
these conditions hold for certain values of the parameters. We need some definitions.

DEFINITION 5.1. For a real number o, a set of clauses C is o-sparse if |C| <
o|v(C)|, where v(C) is the set of variables appearing in C.

DEFINITION 5.2. If C is a set of clauses and | is a literal, we say that | is pure
in C if some clause of C contains | and no clause of C contains — [.

DEFINITION 5.3. For s > 1 and € € (0,1), the following properties are defined
for formulas F:

Property A(s): Every set of r < s clauses of F is 1-sparse.
Property Be(s): For r satisfying s/2 < r < s, every subset of r
clauses of F' has at least er pure literals.

The following result is essentially due to Chvétal and Szemerédi (and is closely
related to Haken’s argument in Lemma 4.2).

PROPOSITION 5.4. Let s > 0 be an integer and F be a CNF formula. If properties
A(s) and Be(s) both hold for F, then F has no es/2-bounded proof.

Proof. The result holds trivially if F' is satisfiable, so assume that F' is unsat-
isfiable. We say that a set S of clauses implies a clause C if every assignment that
satisfies all of the clauses in S satisfies C. Since F is unsatisfiable, F' implies any
clause C. The complexity of a clause C' with respect to F', comp(C') is the minimum
size of a set of clauses that implies C.

Let P be a resolution refutation of F.

Claim. If F satisfies A(s), then there is a clause C' € P for which s/2 <
comp(C) <'s.

It is easy to see that if S is a minimal set of clauses that implies C' and the literal
l is pure in S, then [ is in C. Hence for the C' given by the above claim, property
B(F) implies that |C| > ecomp(C) > es/2.

So it suffices to prove the claim. We first note that if C is a set of clauses such that
any subset is 1-sparse, then it is satisfiable. Indeed, the sparsity condition is equivalent
to the hypothesis of the Hall theorem on systems of distinct representatives, and the
conclusion of the theorem is that there is a one-to-one mapping sending each clause
C € C to a variable vo € C. We can thus satisfy each clause C' by appropriately
fixing ve.

Now if S implies A, then S is unsatisfiable, so A(s) implies comp(A) > s. Choose
C to be the first clause in P with comp(C) > s/2. Since C is the resolvent of
two previous clauses Cj, C; and comp(C) < comp(Cy) + comp(C;) we conclude that
comp(C) < s. O
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LEMMA 5.5. For each integer k > 3 and € > 0, there are constants C(k), cc(k) > 0
such that the following holds. Let m,n be integers with m = An for some A > 1. Let
F o~ Flin,

1. If s < C(k)n/AY*=2) then F satisfies A(s) probability 1 — o(1) in s.
2. If s < cc(k)n/ A2/ (F=2=) then F satisfies B.(s) with probability 1 —o(1) in s.

This lemma is proved by elementary combinatorial probability. We defer the
proof until section 5.3 where we state and prove a generalization (Lemma 5.11).

5.2. The formula augmentation method. Armed with these results we give
a very simple proof that a random k-CNF F' of density A satisfies res(F') > gn/A%®
with probability 1 — o(1). An augmentation of a formula F is a formula obtained
by adding additional clauses to F'. As we now describe, augmentations can simplify
proofs.

We say that a clause C' subsumes a clause D if C C D. Suppose that P is a proof
of F' and let G be a CNF formula. We can obtain a proof of the augmented formula
F A G, denoted PJg, as follows: For each clause D € P, if there is a clause C in G
such that C subsumes D replace D by C' and propagate this simplification forward
through the rest of the proof by (possibly) shortening clauses that were produced
using D.

Observe that in the case that G consists of clauses of size 1, G corresponds
naturally to a restriction p, and there is a close correspondence between the proofs
P[g and P|,.

Following our general approach, suppose we want to prove that res(F') is big.
Assuming for contradiction that F' has a small proof P, we show that for some integer
s and € > 0, there is a G such that (i) G subsumes all clauses of size es/2 of P and
such that (ii) F' A G satisfies A(s) and B.(s). This is a contradiction since (i) implies
that P[¢ is an es/2 bounded refutation of F'AG, while (ii) and Proposition 5.4 imply
that no such refutation is possible.

We will realize this approach by considering G chosen at random from some
distribution G. We say that the distribution G satisfies property g(b, M), for b, M > 0
if for any clause C' of size at least b, if G ~ G, then Pr[G does not subsume C| < 1/M.

ProprosITION 5.6. Let F' be a formula. Let s, M > 1 and ¢ > 0, and let G be a
distribution over formulas that satisfies g(es/2, M). Then

res(F) > M X Prg~g[F A G satisfies both A(s) and Be(s)].
Proof. The conclusion follows immediately from the chain of inequalities:

res(F)/M > Prgg[P|¢ is not es/2 bounded]
> Prg.g[F A G satisfies both A(s) and B.(s)].

The second inequality is immediate from Proposition 5.4. For the first inequality, if
P is a proof of F of size res(F'), it has at most res(F) clauses of size at least es/2,
and by property g(es/2, M) the probability that there is a clause not subsumed by G
is at most res(F)/M. a

The above is stated for a fixed formula F'. For distributions over formulae we
have the following theorem.

THEOREM 5.7. Let F be a distribution over formulas. Let s, M > 1 and ¢ > 0
and suppose that G is a distribution over formulas that satisfies g(es/2, M). Then

]

Prprlres(F) < M/2] < 2(Pre~r,g~glF NG does not satisfy A(s)
+ Pre~r.c~glF NG does not satisfy B(s)]).
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Proof. For a formula F', let
p(F) = Prg~g[F N G does not satisfy A(s)] + Pr,[F[, does not satisfy Be(s)].
By Proposition 5.6, res(F) > (1 — p(F))M. Thus
Prp.zlres(F) < M/2] < Prp[p(F) > 1/2] < 2Ep[p(F)],

where E[-] denotes expectation. This last quantity is equal to the right-hand side of
the claimed inequality. 0

We now use a form of self-reduction to obtain the following theorem.

THEOREM 5.8. For each p > 0, there exists a constant a, > 0 such that if
F ~ FE" for m = An with A > 1, then res(F) > gayn /AT ETIT i probability
1—o(1) in n. In particular, when k = 3 this reduces to res(F) > 20um/A7™

Proof. We apply Theorem 5.7 to the case F = F%™ by choosing G = F. Note
that F'AG has the distribution ]-"fn? , so Lemma 5.5 implies that for any € > 0 and for
some constant c.(k) > 0, if s < c.(k)n/(2A)%/(k=2=9) then F A G satisfies A(s) and
B.(s) with probability 1 — o(1). (Note that the requirement on s for B.(s) is more
stringent than that for A(s).) Next, we choose M as large as possible so that G satisfies
g(es/2, M). For a clause C of size at least €s/2, the probability that a single randomly
chosen clause subsumes C' is (esk/ 2) /(2F (Z) If G ~ G, then the probability that none
of its m clauses subsume C'is at most (1— (ESk/Q)/(Qk Nm™ < 2=dems"A/m ! fo1 some
constant d.. Substituting s = c.n/A%(¥=27¢) we have that, for sufficiently small e,
G satisfies g(es/2,2ecnA! T/ FTTO)
1 —o(1), res(F) > 2%/ for any a > 0. 0

COROLLARY 5.9. For any k > 3 and ¢ > 0, there is a constant vy such that almost
all k-CNF formulas in n variables with at most n?*/(¥+2)=¢ clauses require resolution
proofs of size at least 2 .

These results provide strong lower bounds on res(F') for random formulas. How-
ever, note that as k gets large, the exponent in the lower bound of res(F') tends
to n/A, while in the upper bound obtained by using ordered DLL, the exponent is
n/AY(#=2) We'd like to close this gap.

Observe that for property A(s), Lemma 5.5 requires s = O(n/A'(#=2)) while
for property B(s) it requires s < O(n/A?/(F=2=9)) Tt turns out that one way to
significantly close the above gap would be to show that the second part of Lemma 5.5
holds if we weaken the bound on s.

Problem. Ts it true that if F ~ F¥" then F satisfies B.(s) with probability near
1 for s < nAl/(k=2=¢)+o(1)?

If this were true, then the argument used in the above theorem would be improved

substantially to the following: for F' ~ FFm with probability near 1, res(F) >
2n/A2/(k7275)

for some constant e.. Hence with probability
A1+4/(k72)+a)

, which is very comparable to the upper bound. The corollary is improved
so that m can be as large as n(*=9/2_ We discuss this problem further in section 7.

Lacking an affirmative answer to the above problem, we look for other ways to
improve our result. In section 5.3, we will see that we can narrow the gap substantially
using random restrictions instead of augmentations.

5.3. The random restriction method. We now apply an approach analogous
to the above, using restrictions instead of augmentations. As mentioned above, ap-
plying a restriction can be viewed as applying an augmentation consisting of clauses
of size one, but we use the language of restrictions because it is more familiar and
natural.
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Specializing Theorem 5.7 to the case of restrictions yields the following. If R is a
probability distribution over the set of restrictions, we say that R has property R(b, M)
if for b, M > 0 for any clause C on X of size at least b, Pr[p does not satisfy C] < 1/M.
Then we have the following theorem.

THEOREM 5.10. Let F be a distribution over k-bounded formulae. Let s, M >
1 and € > 0 and suppose that R is a distribution over restrictions that satisfies

R(es/2,M). Then

Preglres(F) < M /2] < 2(Prp~F ,~r[F[, does not satisfy A(s)]
+ Prp~r p~r[F[, does not satisfy Be(s)]).

We will use this result to get a lower bound on res(F") for random k-CNF formulas,
using the distribution R, over restrictions where we first choose v(p) C X by selecting
each variable independently with probability ¢/n and then set the selected variables
uniformly at random.

Lemma 5.5 needs to be generalized to formulas obtained from a random k-CNF
by applying a random restriction.

LEMMA 5.11. For each integer k > 3 and ¢ > 0 there are constants C(k), c.(k) >
0 such that the following holds. Let m,n, s,t be integers with m = An for some A > 1.
Let F ~ FFE™ and p ~ Ry.

L Ift < C(k)n/m* and s < C(k)yn/AY =2 then F[, satisfies A(s) proba-
bility 1 — o(1) in s.

2. If s,t < c.(k)n/AY F=279) then F[, satisfies B.(s) with probability 1 — o(1)
in s.

The proofs of these lemmas require a preliminary result. Let F' and p be as in
the statements of the lemmas. Let M denote the event that F'[, contains an empty
clause. For r,q > 0, let Q(r, q) denote the event that there exists a set R of at most
r variables such that v(C) C R for at least ¢ nonempty clauses C of F'[,.

PROPOSITION 5.12. Let m > n >t >k > 3 be positive integers.

L Ift <n/mY =D then Pr{M] < m~1/(k=1),

2. Assume n> 202, For g > 1, PriQ(r,)] < (22)" (mstetn ™y,

r gqnk

Proof. For the first part, if C' is a fixed k-clause, then C[, is empty if and
only if p sets all literals in C to 0. Thus Prc[C[, is empty] = (¢/2n)*. Therefore,
Pr[M] is upper bounded by the expected number of empty clauses of [, which is
m(g )k < m= 1/,

For the second part, let R C X with |[R| = r > 1. Let C denote a randomly
chosen clause and I = v(C) N R. Let W(C') denote the event that C[, is nonempty
and its variables are contained in R. Then Pr[W (C)] = Zle Pr[|I| = i]Pr[v(C)—I C
v(p) : [I| = i]. Now Pr[v(C) —1 C v(p) : |I| = 4] = (t/n)k~%, while Pr[|I| = i] =
OG5 < (:)ﬁ(n — k)t < (f)(nik)Z < 2(’;)(%)1, where the last inequality
holds since we assume n > 2k2. Thus
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Calling this latter probability p, if F' is a random formula, the number of clauses
of F for which W(C') holds has the binomial distribution, B(m,p). The probability
that at least g clauses of F' are contained in S after p is applied is bounded above by

2ekmr(r + 1)1\ *
qn* '

(5.1) Pr{B(m,p) > ] < @p < (

Summing this over the (7) < (en/r)” subsets of X of size r we obtain the desired
upper bound on Pr[Q(r, q)]. d

Proof of Lemma 5.11. We begin with the first part. The probability that A(s)
fails is at most y_»_, Pr[Q(r,7 4+ 1)] + Pr[M]. By the first part of Proposition 5.12,
Pr[m] = o(1) in m and hence also in s. For r < s we have

(5.2) Qlrr+1) < (%)r (2ek7(7;rj_r14)rntk)k1)r+1
(5.3) Seil(W)TH.

For t < r < s, and for some constant Cy(k) > 0, if s < Cy(k)n/AY =2 the
quantity (5.3) is at most 5. Similarly, for 1 < r < ¢, the quantity (5.3) is at most
L (Co(k)ym(L)k=1)r+1 which is at most 5= for t < C5(k)n/m* =1 for some positive
constants Cy(k), C3(k). Thus the Y7 Q(r,r+1)is at most + 37 | = < 2/n which
is o(1) in n and hence in s.

Finally, in the hypothesis of the lemma, we take C(k) = min(C1(k), Ca(k)).

Now for the second part of the lemma. We first observe

Pr[— B(s)] < Z Pr[Q(r,or)] + Pr[M],

ls/20[<r<s/c

where 0 = 2/(k + €). To see this, suppose that Bc(s) fails. We want to show that
either M holds or Q(r,or) holds for some 7 in the given range. Assume M does not
hold. Since B.(s) fails, there is a collection C of w clauses that has at most ew pure
literals with s/2 < w <'s. We upper bound |v(C)|. The sum of the clause sizes is wk
and if u is the number of pure literals, the impure variables contribute at most wk —u
to this sum. Each impure variable appears in at least two clauses, so the number
of impure variables is at most “2=% and thus |v(C)| < 2E=u 4 ¢ = whiu < %
Extend the set v(C) to a set R of size r = L%J so that [5-] <r < 2 and R
contains at least or clauses. Thus Q(r,or) holds.
So it suffices to upper bound the sum of Q(r,or) for |5 | <7 < . We have

Qtron) < (1) (2t 0y

r onk
(&)Y Cim(r + )P 1\
- orl/onk

— _ or

(G
n — g

for appropriate constant Cy(k), provided that

Cymr=Y7 (r 4 t)k-1
nk—l/o

1
< -
-2
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For ¢ = 2/(k + €), this last condition is satisfied if both s and ¢ are at most
ce(k)n - (2)%/(h=2=9 for some constant c(k) > 0. Now the total failure probability
for property B.(s) is at most Zi:tiJ 277" 4+ Pr[M] which is clearly o(1) in s and
part 2 is proved. 0

Next, in order to apply Theorem 5.10, we determine as large an M as possible such
that the distribution R; satisfies R(es/2, M), where s and t are the largest numbers
satisfying the hypotheses of both parts of the previous lemma.

LEMMA 5.13. R; satisfies R(es/2,et/4m).

Proof. For a fixed clause C' and for p ~ R, a variable x that is in C' is fixed by p
to satisfy C' with probability ¢/2n, so the probability that p does not satisfy a given
clause C'is at most (1 —t/2n)ICl < ~IC1t/2n, O

Applying Theorem 5.10 using Lemmas 5.11 and 5.13 yields the following theorem.

THEOREM 5.14. For any integer k > 3 and € > 0 there is a constant ¢, > 0
such that the following holds. Let F ~ FE™ where m = An with A at least the
satisfiability threshold 6y,.

(1) If m < n2h=D/(E+0) then pes(F) > 22~/ E70/ AV EmDR/E=229) i,
probability 1 — o(1) in n.

(ii) If m > cn?B=D/+e) then res(F) > 2Qn/AYETET0) itk probability 1 —
o(1) in n.

Proof. Let C(k) and c.(k) be the constants from Lemma 5.11. Let s =
ce(k)n/A%/(k=2=¢)  The two cases of the theorem correspond to the two constraints
on t in Lemma 5.11. The constraint t < C(k)n/m'/*~1 is the more stringent
constraint if and only if m'/* =1 > (¢ (k)/C(k))(m/n)?/(¥=2=¢)  This holds if
and only if n > ¢’ (k)ym'~(=2-9/Ck=2) — o/ (E)m(k+)/(2k=2) for some constant
(k) > 0, ie., if m < Ink=2/(k+9) for some constant ¢, > 0. In this case, ap-
plying Lemma 5.13 yields the first bound. In the case that m > c’en(Qk_Q)/(k"‘e)7 the
constraint t < ccn(n/m)?/(F=2=9) is the more stringent and Lemmas 5.13 and 5.11
yield the second bound. 0

When k = 3, the maximal possible value of m which still yields a lower bound of
the form 2" is n%/°~¢, which matches the result obtained for k = 3 in Corollary 5.9.
For k > 4 we obtain the following corollary.

COROLLARY 5.15. For k > 4, and € > 0, there is a constant v > 0 such that
almost all k-CNF formulas with at most n+2/4=¢ clauses require resolution proofs
of size at least 2™ .

Proof. To see this, assume that m = n(*+2)/4=¢_ Since k > 4 if we take € = 4e,
then (k+2)/4—e=1+(k—2—¢€)/4 > 14+ (k—2—¢)/(k+€) = (2k—2)/(k+€). Thus
we can apply the second bound of Theorem 5.14 to derive that k-CNF formulas with
at most m clauses almost certainly require resolution proofs of size 29"/ At/ k=2

. . 2¢’ /(k—2+€')
which is 2 ). O

5.4. The deletion argument. In this subsection we sketch a variant of the
restriction approach, which, in a preliminary version of this work [BKPS98], was
shown to yield the following theorem.

THEOREM 5.16. For each v > 0, there exists a constant a, such that for all
m > n, if F is a 3-CNF formula chosen according to F3", then with probability
1—o0(1), res(F) > 9~ (n/AYTY),

Observing that this bound is nontrivial for m = o(n®“*+7) and combining with
Corollary 5.15 we obtain the following corollary.

COROLLARY 5.17. For k > 3, and € > 0, there is a constant v > 0 such that
almost all k-CNF formulas with at most n*+t2)/4=¢ clauses require resolution proofs
of size at least 2™ .
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The proof of Theorem 5.16 in [BKPS98] is rather technical. The recent work of
Ben-Sasson and Wigderson [BSW99] referred to earlier shows how one can derive the
same bound in a substantially simpler way given Proposition 5.4 and Lemma 5.5.
Therefore, we do not include our entire proof but instead give a short sketch.

The major bottleneck in the argument of section 5.1 is the upper bound on ¢
needed for Lemma 5.11. Indeed, for ¢ much larger than n/+/m, there is a substantial
probability that A(s) does not hold for F'[,. In particular, the bound computed in the
proof of Lemma 5.11 on the probability that a clause of a random F becomes empty
is nearly tight; an easy computation shows that the probability that no clause of a
random F becomes empty when p is applied is e=©(mt"/ ") and so, since the presence
of an empty clause in F'[, violates A(s), we have that t = o(n/m'/3). (The creation
of unit clauses under the restriction placed an even stronger limitation on ¢.)

To overcome this limitation, we want to avoid the creation of clauses of size 0
or 1 in F[,. To do this we modify the distribution on restrictions so that p may
depend on F. The general idea is to first choose a random restriction and then delete
any assignment that sets more than one variable in any clause of F'. For technical
reasons one must also delete assignments to variables that share some clause with too
many other variables. By careful arguments one can show appropriate analogues of
Theorem 5.10 and Lemma 5.11, allowing the condition ¢ < ¢n/y/m on the size of the
restriction to be eliminated.

6. The behavior of DLL on random formulas. We now analyze particular
DLL algorithms when applied to random formulas and show that we can obtain
quite good upper bounds using a very simple splitting rule and that even certain
generalizations of this splitting rule require much larger proofs than our current lower
bound for general resolution shows.

6.1. Ordered DLL on random formulas.

THEOREM 6.1. Let k > 3 and let m = An, where A is greater than the threshold
0x(n) and m = An. Suppose that F ~ FF™. Then with probability 1 — o(1) in n,
the size of the refutation of F' produced by ordered DLL is 20(m/AYET) px0() 1y
particular, when k = 3, the refutation has size 29"/ 2)pEO1)

The proof of this result has two parts, the upper bound, and lower bound, which
we prove separately. To analyze the upper bound, we first consider a variant of ordered
DLL that is easier to analyze.

Upper bound for ordered DLL. We first consider a variant of ordered DLL
which is bit more complicated to state but easier to analyze.

Algorithm A. Set t = 6k[n(n/m)/*~2)7; in particular, when k = 3 this is
18[n?/m]. Run ordered DLL, as long as the variables z1, ..., x; are not all assigned.
When reaching a partial assignment p in which z1, ..., z; are all assigned (and possibly
other variables by unit propagation), run the (polynomial-time) algorithm for 2-SAT
on the subset Ca(F), p) consisting of clauses of size at most 2 in the induced subformula
F[,. The algorithm succeeds (finds a resolution refutation of F') provided that for
each such p reached in the algorithm the subformula C5(F, p) is unsatisfiable.

To analyze Algorithm A we need the following lemma.

LEMMA 6.2. Let F' be a random 2-CNF formula chosen from .7:227?,, Then the
probability that F is satisfiable is o(27"'/9).

Proof.  Observe that the expected number of satisfying assignments for
a 2-CNF formula with m’ clauses and n/ variables is 2 (3/4)™ which is o(27"/9)
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for m’ > 2.678n’. (This bound can be reduced below 2 by using the techniques of
[KKKS98].) O

THEOREM 6.3. Let A be greater than the satisfiability threshold 0 (n) and m =
An. If F ~ FFEm then, with probability 1 — o(1) in n, Algorithm A produces a

20("/4\‘1/“72))710(1); in particular, if k = 3 Algorithm A

resolution refutation in time
produces a resolution refutation in time 20"/ 2)pOM)

Proof. Let t = 6k[n(n/m)"/ =27 and assume without loss of generality that ¢ <
n/10. Algorithm A clearly runs in time 20(n/AY72) 0(1) | Ty show that Algorithm
A finds a refutation of F' with probability 1 — o(1), it suffices to show that with
probability 1 — o(1), C2(F, p) is unsatisfiable for all assignments p to {x1,...,z:}.
(Note that the restrictions occurring in the algorithm may have additional variables
fixed by unit propagation, but this can only increase our probability of success.)

Fix p. Consider the set Cy(F, p) of clauses of size exactly 2. This size is a binomial
random variable B(m, q), where ¢ is equal to the probability, for a random k-clause
C, that C[, is a 2-clause:

Pr[C[, is a 2-clause] = -Pr[{z1,...,x:} Nou(C)| =k —2]
L ,((zt)(k;))
7=\
1 K\n—tn—t—1 t t—1 t—k+3
o 2k-2 2) n n-1 n—-2n-3 n—-k+1
N 1/ 2é * k—2
2k=2\2/) 5\ 2n
(YA (3R
25\ 2 m

> 8n/m.

Using the binomial tail bound of Proposition 2.1 (1), it follows that Pr[|Cy(F, p)| <
2n] < 274", By Lemma 6.2 and the fact that the clauses in Co(F,p) are distributed
uniformly at random on the remaining n’ = n — ¢ variables,

Pr[Cy(F, p) is satisfiable : |Co(F, p)| > 2n] = o(27™/9).

Since there are 2! choices for p, the total failure probability is 2¢ - (o(2~(*=/9) 42-7),
which is o(1) since (n —t)/9 > t for ¢ < n/10. O

Next we consider ordered DLL and prove the upper bound of Theorem 6.1. At a
point in the execution of DLL, say that a variable is critical if setting that variable
either to 0 or 1 and then applying unit propagation creates the empty clause. Thus,
if the splitting rule chooses that variable the current branch will terminate simply by
unit propagation.

A point in the execution of DLL corresponds to some restriction p. We give a
sufficient condition for a variable to be critical in terms of the set Cy(F, p) of induced
2-clauses on the remaining set of n’ variables. Define the standard directed graph
G(F,p) on 2n’ vertices, one for each literal, that has directed edges (—z,y), and
(—y, x) corresponding to each 2-clause (z V ) in Co(F,p). It is easy to see that a
sufficient condition for the variable x; to be critical is that there be directed paths
from x; to —x; and from —x; to xz;, i.e., that x; and —x; lie in the same strongly
connected component.
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LEMMA 6.4. For any k > 3, there exists a constant ¢ such that if F ~ FFn»
and p is a fized restriction of t variables with n/2 >t > c[n(n/m)Y/*=2)], then with
probability at least 1 — 27", for at least half of the n' = n — t unrestricted variables,
x; and —x; belong to the same strongly connected component of G(F, p).

Proof. Clearly, it suffices to show that with probability at least 1 — 27", G(F, p)
has a strongly connected component of size at least 3n'/2. Let Cy,Cs,...,Cyq be
the strongly connected components ordered so that all edges between components
go from lower to higher numbered components and consider the first j such that
|C1U---UC,| >n'/4. We will show that the probability that |C;| < 3n’/2 is at most
27" If |C5] < 3n'/2, then the set S = Cy U---UCj satisfies n//4 < |S| < Tn'/4, and
there is no edge from S to S.

So to upper bound the probability that |C;| < 3n'/2 it suffices to upper bound
the probability that there is a set S with n’/4 < |S| < 7n’/4 which is bad in the sense
that there is no edge from S to S. Fix S of size s, with n//4 < s < Tn//4. The
probability that a randomly chosen k-clause C, when restricted by p, gives an edge
from S to S is at least s(n' — s —1)(,*,)/2%(}) > B'(t/n)*=2 > B[n/m] for some
constants 3,3’ > 0 depending only on k. Hence the probability that none of the m
clauses of F' gives such an edge is at most (1 — fn/m)™ < e~#°" < 273" for ¢ chosen
greater than 3/(5. There are at most 221" such sets S , so the probability that there is
a bad set S of size between n’/4 and 7n’/4 is at most 27", 0

Proof of the upper bound of Theorem 6.1. Without loss of generality we may
assume that m > (4¢)*~2n where c is the constant of the previous lemma, and let
t = en(n/m)Y*=2) so that t < n/4.

Fix a restriction p of the first ¢ variables. We claim that the probability that there
is a branch of the DLL tree consistent with p that is still active (not terminated) after
the first 4¢ variables are set and the resulting unit propagations are processed is at
most 272!, Since there are 2¢ choices for p, this will imply that with probability
1—27% every branch of ordered DLL is completed after at most the first 4t variables
are fixed and all resulting unit propagations are done, and so the tree has at most
n2% nodes (including nodes from unit propagation).

To prove the claim, condition on the size r of the set of critical variables for
F[,. By Lemma 6.4, the probability that » < n’/2 is at most 27" < 274 0 we
assume r > n'/2. The set of critical variables is equally likely to be any r-subset
of the n’ = n — t unset variables, and so the probability that none of the next 3¢
variables in order are critical is at most ("/;:“)/(7;,) < (1-3t/n")" < e 3/2. Hence
the probability that some branch consistent with p is unfinished after fixing the next
3t variables is at most 274 4 ¢=3t/2 < 92t

Note that in order to obtain the claimed upper bound with probability 1 —o(1) in
n, we can assume without loss of generality that ¢ is at least logn. (If m, the number
of clauses, is large enough so that ¢ is less than logn, we can carry out the analysis
with fewer clauses since the complexity of ordered DLL decreases monotonically with
the number of clauses.) 0

Lower bound for ordered DLL. We now complete the proof of Theorem 6.1
by proving the lower bound.

Proof of the lower bound for Theorem 6.1. Fix t < n(ﬁ)l/(k_g) and let S be the
first ¢ variables with respect to the given ordering and L(S) be the associated set of
2t literals. Let F’ denote the set of all clauses of F' that contain at least k — 1 literals
from L(S).

Claim. With probability 1 — o(1) in ¢, there is a partial assignment 7 to /2 of
the variables of S that satisfies all clauses in F”.



1068 P. BEAME, R. KARP, T. PITASSI, AND M. SAKS

Assuming the claim, we finish the proof by noting that for each of the at least
2t/2 restrictions p to S that are compatible with 7, all clauses of F' [, will have size at
least 2. This implies that when applying ordered DLL along the path specified by p,
no variables outside of S are fixed by unit propagation, and so there is a unique node
corresponding to p, and hence there are at least 2t/2 nodes in the tree. Without loss
of generality, we can assume that ¢ is at least logn; since ¢ < logn, our claimed lower
bound is just 1.

So we prove the claim. For each C' € F, the probability ¢ that it is in F’ is at
most k(L)1 < t%(%)k*2 < 4&. Construct a 2-CNF F” of size |F'| by replacing
each clause C' of F’ by a clause C” obtained by selecting two literals of C’ N L(.5)
uniformly at random. It is easy to see that F” is a randomly chosen 2-CNF whose
number of clauses is binomially distributed according to B(m,q). The tail bound of
Proposition 2.1 (2) implies that |F"| < ¢/2 with probability 1 —o(1). Conditioned on
|F"| < t/2, the probability that F” (and hence F’) is satisfiable is 1 — o(1) because
a random 2-CNF formula with (1 — €)t variables on a set of size ¢ is satisfiable with
probability 1 —o(1) [Goe96, CR92]. If F" is satisfiable, there is a setting 7 of at most
|F"| < t/2 variables of S that satisfies it. This completes the proof of the claim and
the theorem. |

6.2. Lower bounds for more general DLL procedures. Having analyzed
ordered DLL, we next turn to the problem of proving lower bounds for a wider class
of DLL procedures. In the following discussion it will be useful to introduce some
additional terminology. Let A be a DLL algorithm and F be a formula, and let
T4(F) denote the DLL tree associated to the execution of A on F. We classify the
nodes of T4(F) into two types: unit propagation nodes (those corresponding to a
variable in a unit clause) and branching nodes.

We will prove a lower bound for a class of algorithms called oblivious DLL al-
gorithms. Let B, denote the full binary tree of depth n and let A be a labeling of
the internal nodes by literals with the property that along each root-leaf path each
variable occurs in exactly one literal. The labeling A specifies an algorithm A = A,
as follows. On input F, A recursively traverses B, starting from the root. When
arriving at node v it has a formula G which is a restriction of F', and it performs a
procedure Test(G,v) defined as follows. While G has at least one unit clause but no
empty clause, choose a unit clause and fix its literal to true, simplifying G accordingly.
If the empty clause is produced, stop; the formula is unsatisfiable. If G ever has no
clauses, then stop; the formula is satisfiable. Otherwise, when G has no empty or
unit clauses, let vy and v; denote the left and right children of v. If the literal A(v)
is already assigned a value ¢ € {0,1}, move to v; and run Test(v;, G). Otherwise,
run Test(vo, G| x(v)=0) and Test(vi, F'[x)=1) and return unsatisfiable if both return
unsatisfiable, and satisfiable if at least one of them returns satisfiable.

In the special case that B, is labeled so that each node of distance i from the
root is labeled x; the above algorithm is ordered DLL. Another case of interest is that
of random DLL in which the labeling of B,, is chosen at random. In general, we call
such algorithms oblivious because (except for unit propagation) the choice of splitter
does not depend on the function F'.

It is worth emphasizing the distinction between the labeled tree (B,,A) (which
is independent of F') and the DLL tree T4, (F') associated to an execution of the
algorithm on F'.

It is not hard to show that if ' ~ F%m" then the expected running time of any
oblivious algorithm is the same. However, this does not rule out the possibility that
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some oblivious algorithm may run much faster than ordered DLL on most instances
by concentrating the bad behavior on a small set of instances. Here we show that
provided that m is big enough, no oblivious algorithm can do much better than ordered
DLL on most instances (see Theorem 6.8 below).

In the lower bound on ordered DLL, we showed that during the first ¢ steps, with
high probability unit propagation plays no role. We will prove something like this
for oblivious algorithms. The key step is a lemma that implies that for any DLL
procedure (oblivious or not) on a random formula, the number of variables fixed by
unit propagation along any path in the DLL tree is not much more than the number
of branching nodes along the path. For technical reasons, it is easier to consider a
generalization of unit propagation that ignores the sign of variables.

The general idea is as follows. Let F' be a formula and T a set of variables that
have been set so far. We want to describe a natural algorithm that defines a set
T, where T' will contain T plus the set of additional variables that are set by unit
propagation. The algorithm is as follows. Initially T = T. Given F, let S be the
corresponding set system, where each k-clause of F' corresponds to a k-set in S (over
a universe of size n.) Given F' (and hence S), and T, define S’ C S to be those clauses
that intersect 7" in exactly k — 1 elements. Add the elements occurring in S’ that are
not already in T to T and continue recursively until S’ is empty. Note that the set T
produced by this algorithm is a minimal set of variables that will be set by setting the
variables in T', plus the additional variables set by unit-clause propagation, assuming
that we ignore early termination as a result of the formula being set to 0 or 1. The
intuition behind the proof of Theorem 6.8 is that with high probability, the size of T
will be not much larger than the size of T. The proof of this fact will be a compression
argument showing that for each fixed T', if F' has the property that T is large, then
F can be encoded succinctly. Intuitively, if there are a lot of variables that become
unit clauses, then these clauses are not random with respect to T and therefore can
be described succinctly.

We need some definitions. Given a k-CNF formula F', a set T of variables is closed
with respect to F if no clause contains exactly k& — 1 variables of T' (either positively
or negatively). It is easy to see that the intersection of closed sets is closed, and hence
for any set T of variables the set T obtained by intersecting all closed sets containing
T yields the unique minimal closed set containing T. We call this the closure of T
(with respect to F). A clause is said to be threatened by (F,T) if it is contained in
T. Note that 7' =T U Upwv(D), where D ranges over all clauses of F' threatened by
(F,T). The following fact relates these notions to unit propagation.

PROPOSITION 6.5. Let A be any DLL algorithm and F be a k-CNF formula.
Suppose v is a node in the DLL tree of Ta(F). Let T be the variables that appear at
the branching nodes on the path to v. Then

1. the variables at the unit propagation nodes on the path to v are contained
in T';

2. the only clauses that can be empty upon reaching v are the clauses threatened
by (F,T).

Proof. For the first part, let vo,...,v; = v be the nodes on the path to v and let
x; be the variable whose literal [; appears at v;. Applying induction on i, we assume
that {zo,...,z;-1} C T. Then if v; is a branching node, then z; € T and otherwise,
if p is the restriction defined by the literals g, ...,l;_1, there is a clause C' of F such
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that C[, is the unit clause ;. If T does not contain z;, then C' contains exactly k — 1
variables of T', which contradicts that T is closed.
For the second part, a clause that becomes empty must have all its literals set to

0, which means that all of its variables are in T'. 0
We next present an algorithm for constructing 7' from T'; the details of this
algorithm are needed in what follows. Fix an ordering x1,...,x, of the variables.

The algorithm Close(F,T) takes as input a formula F' (viewed as a list C1,...,Cp,
of clauses) and subset T of variables with ¢ = |T'|, and outputs the following:

(i) A sequence Dq,...,D, of distinct clauses of F, consisting of the set of
clauses threatened by (F,T).

(ii) A sequence 21, ..., 214, of variables consisting of the variables of T (possibly
with repetition). Furthermore, T = {z1, ..., z: }, listed according to the global variable
ordering, and for i € [u], zi4; € v(D;) C {z1,..., 214i}-

(iii) A sequence j; < --- < j, of integers in the range 1 to t 4+ u, where j; is the
least index such that [{z1,...,2ze40} UD;| =k — 1.

We will build these three lists in a series of iterations, which we divide into two
phases. The initialization phase consists of the first ¢ iterations, where we place the
variables of T' on the list, constructing z1,...,2;. During the second (main) phase,
in iteration t + ¢, we determine z;4;, D;, and j;. During both phases, we maintain a
list of eligible clauses of F'. Each item on the list is a triple (D, j(D),y(D)), where D
is a clause that contains at least k — 1 variables on the list so far, j(D) is the least
index for which |[v(D) N {z1,...,2;p)}| = k — 1, and y(D) is the unique variable of
v(D) —{z1,...,2jpy}. At iteration j, after adding a variable z;, the eligible list is
updated by identifying all clauses Cs of F' that contain z; and that contain exactly
k — 2 distinct variables from z1,...,2;_1. For each such clause, let j(C;) = j and let
y(Cs) be the unique variable of C that does not appear in the list. Order the set of
all such triples (Cs, j, y(Cs)) according to the index s and append this to the list of
eligible clauses.

In the initialization phase, during iteration i, we choose z; to be the ith variable
of T according to the global variable ordering, and then we update the eligible list.
During iteration ¢ + ¢ of the main phase, if there are no eligible clauses, then the
algorithm terminates. Otherwise, remove the first triple (D, j,y) from the eligible list
and set z;4; =y, D; = D and j; = 7 and update the eligible list.

It is easy to show by induction on ¢ that {21, ..., 2z4:} C T and that at termination
the list {z1,..., 2144} is closed and hence is T. The other properties of the output
asserted above are similarly obvious.

We are now ready to state and prove the key lemma.

LEMMA 6.6. For k > 3 there is a constant c(k) such that the following holds.
Let n,m,t,w be positive integers and let A = m/n > 1. Suppose that t < w <
c(k)yn/AY =2 Let T be a set of variables of size t. Then for F ~ FFm the
probability that (F,T) threatens at least w clauses is at most 27%.

Proof. Fix n,m,w,t and T as in the hypothesis of the lemma. We view an
arbitrary formula F ~ FFm" as an ordered sequence C4,...,C,, of clauses. Thus
F' is uniformly chosen from (2%(}))™ possible formulas. Say that F is bad if (F,T)
threatens at least w clauses. We will upper bound the probability that F' is bad by
showing that each bad F' can be uniquely “encoded” in such a way that the number
of encodings is a 27" fraction of the number of formulas.

Now suppose that F' is bad, and thus the number u of threatened clauses is at
least w. In this case, will show how to encode F efficiently. Our encoding will first
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give enough information in order to recover the first w clauses, Dy,..., D,,, output
by the above algorithm, and then we will code more directly the remaining clauses of
F. The encoding of Dy, ..., D, refers to some of the output of the above algorithm
on F' and will include the following;:
(i) The list 2t 41, .., Zt4w-

(11) The list jl,jg,. . ,jw.

(iii) For i € [w], the sequence d;(1) < --- < d;(k — 2), where d;(j) is the least
index such that in [v(D;) N {z1,..., 24,y }| = J-

(iv) For each i € [w], the vector a; € {+,—}*, where ;(j) is the sign of the
appearance of zg4,(;y in D;.

It is clear that this information is enough to reconstruct Ds,...,D,,. To recon-
struct the remaining clauses of F', C1, ..., C,,, along with their ordering, we need two
more things:

(i) The list hy, ha, ..., hy of indices such that D; = Cj,.
(ii) The ordered list of clauses (C; : ¢ € {h1,..., hy}).

Let us count the number of such encodings. There are at most m* ways to choose
hi,...,hy. There are (2k (Z))m_w ways to choose the sequence of clauses that are not
among the D;. There are at most n* ways to choose zi41,. .., 2t4w. Since the list
J1,- -, Juw satisfies j; < -+ < 7, the number of ways to choose this sequence is at most
("T2w1) < 2142w For each i the number of ways to choose d;(1),...,d;(k — 2) is at
most (t+w)*¥~2, and the number of ways to choose a; is at most 2¥. Multiplying these
together and dividing by (2%(}))™ we get that the probability that (F,T) threatens
at least w clauses is at most

mwnw2t+2w+kw (f + w)(k—Q)w mwkw2t+2w (t + w)(k—Q)w
(2* (Z))w < nE—Dw
8km(2w)*F—2\"
(et
For some constant c(k) > 0, if w < ¢(k)n(n/m)'/(*=2) the above expression is at most
27w, O

Before we use this to prove the theorem, we derive an immediate corollary which
we hope will be useful in analyzing other DLL algorithms. It says that for almost all
formulas F' every path in any DLL tree for F' contains not many more unit propagation
nodes than it does branching nodes.

LEMMA 6.7. For k > 3 there is a constant c(k) such that the following holds. Let
n,m,t be positive integers, € > 0 w = [(1+¢) max(t,log, (7))], and let A =m/n > 1.
Suppose that t < w < c(k)n/AY*#=2) . Then for F ~ F*" the probability that there
is a partial assignment of size t that generates at least w unit clauses is o(1) in t.

Proof. There are only (7;) sets of variables T of size t that can be the underlying
set of variables of the partial assignment. Furthermore, any unit clause generated by
such a partial assignment must be a clause threatened by (F,T). By Lemma 6.6, any
single set T threatens w clauses with probability only 27*. Summing over all possible
sets T yields the desired result. 0

THEOREM 6.8. Let k > 3 and let n,m be integers and A = m/n. Let A be any
oblivious DLL algorithm for k-CNF formulas on n variables and suppose F ~ FFk:m.

If m = w(n®/?), then with probability 1 — o(1) in n, the running time of A on F is
9Q(n/AM E=2))

Proof. Fix k and let n,m satisfy the hypotheses of the theorem. There are
two cases to consider, when F' is satisfiable and when F' is not satisfiable. Since
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m = w(n®/?), the probability that F is satisfiable is exponentially small in n. Thus,
we can assume without loss of generality that F' is unsatisfiable in what follows, and,
in particular, every leaf node in any DLL tree for F' is labeled by 0. Observe that
the conclusion of the theorem is trivial if m = Q(n*~1), so we may assume that
m = o(n*~1). Fix an oblivious DLL algorithm and let A be the associated labeling of
B,. Let t = c(k)n/AY =2 where c(k) is as in Lemma 6.6. The hypothesis and the
assumption m = o(n*~1) imply t = o(y/n) and t = w(1).

For a formula F', let R = R(F) be the set of vertices at level ¢ in B,, that are
visited by the traversal of B,, in the execution A)(F'). Note that v € R means that
no clause of F' becomes empty along the path to v. We will show that the probability
that |R| < 2! is o(1), and since |R| is a lower bound on the running time of Ay(F)
this will prove the theorem.

First, for a fixed vertex v at level ¢ in B,, we upper bound Pr[v € R]. Let T be
the set of variables labeling the nodes in B,, on the path to v. By the definition of
the algorithm and by Proposition 6.5 the variables set by unit propagation along the
path to v must be in 7', and any empty clause must be a clause threatened by (F,T).
Consider the output D1,...,D, and z1,..., zi4, of the algorithm Close(F,T). We
claim that if the variables z1,..., 244, are all distinct, then no clause of F' becomes
empty along the path to v, and since F' is unsatisfiable, this implies that Ay (F)
reaches v. For this, it suffices to show that for i € [u], if the variable z;1; is set
by unit propagation, then it can only be set because D; becomes a unit clause. So
assume for contradiction that z;y; is set because some clause D; with j # i becomes
a unit clause and that this is the first time that this happens. However, then since
Zt4+; € v(Dj), it must have been set before D; became a unit clause, which contradicts
the choice of z¢4;.

Thus we have

Pr[v € R] < Pr|z1,..., 2ty are not distinct]
< Prlu > t] + Pr[z1, ..., zt44 are not distinct : u < ¢].

Now Pru > t] < 27! by Lemma 6.6. We claim that the second term is bounded
above by 3t?/2n. To see this, note that by the definition of the algorithm Close the
triple (D;, ji, 2t+4) is the ith item placed on the eligible clause list. Think of this triple
as a random variable (which depends on the random formula F'). The key observation
is that at the time that we add (Dj, j;, zt44) to the eligible list (at the end of iteration
ji) the conditional distribution of z;y; is given by the uniform distribution over the
set {z1,...,xn} —{#1,...,25,}. Thus the probability that z;4; & {z1,...,2¢4i—1} is
1—(t+i—1—-4)/(n—4;) > 1—(t+i—1)/n, and the probability that there is
some i € [t] for which z¢4; € {21,..., 20441} is at most S0 (t +i —1)/n < %7 as
claimed.

We conclude that Prjv € R] < 27% + %, which is o(1) in n since t = o(y/n) and
t = w(1). Therefore, the expected number of vertices v € R is at most o(2'), which
under the assumption on t is o(2!). Thus, by Markov’s inequality, the probability
that more than 2!=1 vertices are not in R is o(1) and thus |R| > 2!~ with probability
1 —0(1), as required to complete the proof. ]

7. Related work and further research. The question of whether or not res-
olution is automatizable is still open. In particular, what is the fastest deterministic
or probabilistic search algorithm for resolution? The best that is known is presented
in section 3 which is essentially due to Clegg, Edmonds, and Impagliazzo. It can be
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shown that this is the best algorithm in the tree-like case, but we know of no negative
results of this kind for the general case.

A problem pertinent to our results in section 4 is to prove exponential lower
bounds for the weak pigeonhole principle, =P H P"*, where the number of pigeons, m,
is large (say n3). Buss and Pitassi [BP97] showed that there exists a resolution refu-
tation of ~PHP]"* when m > ovnlogn of gize 2Vnlogn 1t hag been conjectured that
when m is polynomial in n, any resolution refutation of ~PH P]" requires superpoly-
nomial size. Razborov has shown that such a lower bound would imply that proving
superpolynomial circuit lower bounds for an explicit function in NP is independent
of certain systems of bounded arithmetic.?

In a preliminary version of this paper ([BP96]) we asked:

Can one show that for any 3-CNF formula f, if f has a polynomial-
size resolution refutation, then f also has a resolution refutation with
maximum clause size \/n? Such a result would justify the simple and
natural deterministic simulation of resolution whereby we exhaus-
tively search for proofs of maximum clause length ¢, for increasing
i.

Based on the Clegg—Edmonds—Impagliazzo algorithm, a version of this clause-
width conjecture has recently been proven by Ben-Sasson and Wigderson [BSW99]—
in particular that size S resolution refutations can be made O(y/nlogS)-bounded
and size S DLL proofs can be converted to O(log S)-bounded resolution refutations.
As stated above, this simplifies the algorithm in section 3 and can be used to show
that random k-CNF formulas with n variables with clause density A > 0 (n) require
resolution proofs of size 22/A*%) and DLL proofs of size 227/ 7279 hig
size lower bound for general resolution refutations provides a simpler smooth tradeoff
between A and proof size than our results, but it does not improve the largest densities
for which exponential lower bounds for resolution are known to hold almost certainly.
The size lower bound for DLL proofs is not as large as our lower bounds in section
6.1 but applies to all DLL procedures, not just oblivious ones.

The problem posed at the end of section 5.2 is whether the hypothesis on s in
Lemma 5.5 needed for property Be(s) can be weakened. As mentioned, such a weaken-
ing would strengthen the lower bounds on res(F) for random formulas. Furthermore,
when combined with the Ben-Sasson-Wigderson approach for lower bounding DLL

9Q(n/ A =D HD) o wer bound

refutation size, this improvement would yield a tight
on DLL(F) for F a random formula.?

Examining the proof of Lemma 5.11 we see that a critical place to look for im-
provement is in the last step of the proof of Proposition 5.12, where we obtain an
upper bound on Pr[Q(r, ¢)] by multiplying Pr[B(m,p) > ¢| by (Z), which corresponds
to upper bounding the probability of the union of (Z) events by their sum. Can this
union bound be refined by a more careful analysis?

The essence of the question is captured by a natural question about random
hypergraphs. Given a collection H of subsets of [n], say that a subset A of [n] is
~v-crowded by H if A contains at least yn members of H. Let s(H,~y) be the largest s
for which there is no set of size s that is y-crowded by H. The question is, If H is a

2Following a proof of subexponential lower bounds for a restricted version of resolution [PRO1],
such lower bounds have indeed been proved for general resolution by Raz [Raz0la] and simplified
and strengthened by Razborov [Raz01b].

3Ben-Sasson and Galesi [BSG01] have recently shown just such a lower bound by replacing the
property Be(s) with a weaker expansion property of such formulas.
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random collection consisting of An subsets of [n] each of size k what is the best lower
bound on s(H,~y) that holds with probability 1 — o(1)? A calculation analogous to

that in Lemma 5.11 (using the union bound) shows that s(H,~y) > Q(n/Al/(]“Q*%)),
while it is also not hard to show that s(H, ) < O(n/A'Y*=2)). An argument that the
upper bound is tight could almost certainly be adapted to give an affirmative answer
to the problem at the end of section 5.2.

A final open problem is to produce a better algorithm for finding unsatisfiability
proofs for random formulas. In particular, is there a polynomial-time algorithm that
succeeds in finding a proof of unsatisfiability with high probability for random formu-
las with cn clauses for some ¢ > 07 We are not aware of any algorithm that provably
beats the very simple ones we analyzed in section 6, even if we consider more powerful
search methods that are not resolution-based.*
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