
A TIME-SPACE TRADEOFF FOR UNDIRECTED GRAPH
TRAVERSAL BY WALKING AUTOMATA∗

PAUL BEAME† , ALLAN BORODIN‡ , PRABHAKAR RAGHAVAN§ , WALTER L. RUZZO† ,
AND MARTIN TOMPA†

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 3, pp. 1051–1072

Abstract. We prove a time-space tradeoff for traversing undirected graphs, using a structured
model that is a nonjumping variant of Cook and Rackoff’s “jumping automata for graphs.”

Key words. graph connectivity, graph reachability, time-space tradeoff, walking automaton,
jumping automaton, JAG

AMS subject classifications. 05C40, 68Q05, 68Q10, 68Q15, 68Q20, 68Q25

PII. S0097539793282947

1. The complexity of graph traversal. Graph traversal is a fundamental
problem in computing, since it is the natural abstraction of many search processes. In
computational complexity theory, graph traversal (or, more precisely, st-connectivity)
is a fundamental problem for an additional reason: understanding the complexity of
directed versus undirected graph traversal seems to be the key to understanding the
relationships among deterministic, probabilistic, and nondeterministic space-bounded
algorithms. For instance, although directed graphs can be traversed nondetermin-
istically in polynomial time and logarithmic space simultaneously, it is not widely
believed that they can be traversed deterministically in polynomial time and small
space simultaneously. (See Tompa [32] and Edmonds and Poon [22] for lower bounds
and Barnes et al. [5] for an upper bound.) In contrast, undirected graphs can be tra-
versed in polynomial time and logarithmic space probabilistically by using a random
walk (Aleliunas et al. [2], Borodin et al. [15]); this implies similar resource bounds
on (nonuniform) deterministic algorithms (Aleliunas et al. [2]). More recent work
presents uniform deterministic polynomial time algorithms for the undirected case
using sublinear space (Barnes and Ruzzo [8]), and even O(log2 n) space (Nisan [28]),
as well as a deterministic algorithm using O(log1.5 n) space, but more than polynomial
time (Nisan, Szemerédi, and Wigderson [29]).

In this paper we concentrate on the undirected case. The simultaneous time
and space requirements of the best-known algorithms for undirected graph traversal
are as follows. Depth-first or breadth-first search can traverse any n vertex, m edge
undirected graph in O(m + n) time, but requires Ω(n) space. Alternatively, a ran-
dom walk can traverse an undirected graph using only O(logn) space, but requires
Θ(mn) expected time (Aleliunas et al. [2]). In fact, Feige [23], based on earlier work

∗Received by the editors March 5, 1993; accepted for publication (in revised form) February 7,
1997; published electronically January 29, 1999. This material is based upon work supported in
part by the Natural Sciences and Engineering Research Council of Canada, by the National Science
Foundation under grants CCR-8703196, CCR-8858799, CCR-8907960, and CCR-9002891, and by
IBM under Research Contract 16980043. A portion of this work was performed while the fourth
author was visiting the University of Toronto, whose hospitality is gratefully acknowledged.

http://www.siam.org/journals/sicomp/28-3/28294.html
†Department of Computer Science and Engineering, University of Washington, Box 352350, Seat-

tle, WA 98195 (beame@cs.washington.edu, ruzzo@cs.washington.edu, tompa@cs.washington.edu).
‡Department of Computer Science, University of Toronto, Toronto, ON, Canada M5S 1A4

(bor@cs.toronto.edu).
§IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120

(pragh@almaden.ibm.com).

1051

1052 P. BEAME, A. BORODIN, P. RAGHAVAN, W. RUZZO, AND M. TOMPA

of Broder et al. [18] and Barnes and Feige [7], has shown that there is a spectrum of
compromises between time and space for this problem: any graph can be traversed
in space S and expected time T , where ST ≤ mn(log n)O(1). This raises the intrigu-
ing prospect of proving that logarithmic space and linear time are not simultaneously
achievable or, more generally, proving a time-space tradeoff that closely matches these
upper bounds.

Although it would be desirable to show a tradeoff for a general model of computa-
tion such as a random access machine, obtaining such a tradeoff is beyond the reach of
current techniques. Thus it is natural to consider a “structured” model (Borodin [14]),
that is, one whose basic move is based on the adjacencies of the graph, as opposed to
one whose basic move is based on the bits in the graph’s encoding. An appropriate
structured model for proving such a tradeoff is some variant of the JAG (“jumping
automaton for graphs”) of Cook and Rackoff [20]. Such an automaton has a set of
states, and a limited supply of pebbles that it can move from vertex to adjacent vertex
(“walk”) or directly to a vertex containing another pebble (“jump”). The purpose
of its pebbles is to mark certain vertices temporarily, so that they are recognizable
when some other pebble reaches them. The pebbles represent vertex names that a
structured algorithm might record in its workspace. Walking represents replacing a
vertex name by some adjacent vertex found in the input. Jumping represents copying
a previously recorded vertex name.

Rabin (see [20]), Savitch [31], Blum and Sakoda [13], Blum and Kozen [12], Hem-
merling [24], and others have considered similar models; see Hemmerling’s monograph
for an extensive bibliography (going back over a century) emphasizing results for
“labyrinths”: graphs embedded in two- or three-dimensional Euclidean space.

The JAG is a structured model, but not a weak one. In particular, it is general
enough to encompass in a natural way most known algorithms for graph traversal.
For instance, a JAG can execute a depth-first or breadth-first search, provided it has
one pebble for each vertex, by leaving a pebble on each visited vertex in order to avoid
revisiting it, and keeping the stack or queue of pebble names in its state. Furthermore,
as Savitch [31] shows, a JAG with the additional power to move a pebble from vertex
i to vertex i+ 1 can simulate an arbitrary Turing machine on directed graphs. Even
without this extra feature, we have shown [10] that JAGs are as powerful as Turing
machines for the purposes of solving undirected graph problems (our main focus).

Cook and Rackoff define the time T used by a JAG to be the number of pebble
moves, and the space to be S = P log2 n+log2Q, where P is the number of pebbles and
Q the number of states of the automaton. (Keeping track of the location of each pebble
requires log2 n bits of memory, and keeping track of the state requires log2Q.) It is well
known that st-connectivity for directed graphs can be solved by a deterministic Turing
machine in O(log2 n) space, by applying Savitch’s theorem [30] to the obvious O(logn)
space nondeterministic algorithm for the problem. Cook and Rackoff show that the
same O(log2 n) space upper bound holds for deterministic JAGs by direct construction
of an O(logn) pebble, nO(1) state deterministic JAG for directed st-connectivity.
More interestingly, they also prove a lower bound of Ω(log2 n/ log log n) on the space
required by JAGs solving this problem, nearly matching the upper bound. Standard
techniques (Adleman [1], Aleliunas et al. [2]) extend this result to any randomized
JAG whose time bound is at most exponential in its space bound. Berman and
Simon [11] extend this space lower bound to probabilistic JAGs with even larger time

bounds, namely, exponential in logO(1) n.
In this paper we use a variant of the JAG to study the tradeoff between time and

space for the problem of undirected graph traversal. The JAG variant we consider is

A TIME-SPACE TRADEOFF FOR GRAPH TRAVERSAL 1053

more restricted than the model introduced by Cook and Rackoff, because the pebbles
are not permitted to jump. This nonjumping model is closer to the one studied
by Blum and Sakoda [13], Blum and Kozen [12], and Hemmerling [24]. We will
distinguish this nonjumping variant by referring to it as a WAG: “walking automaton
for graphs.”

Several authors have considered traversal of undirected regular graphs by a WAG
with an unlimited number of states but only the minimum number (one) of pebbles, a
model better known as a universal traversal sequence (Aleliunas et al. [2], Alon, Azar,
and Ravid [3], Bar-Noy et al. [4], Borodin, Ruzzo, and Tompa [16], Bridgland [17],
Buss and Tompa [19], Istrail [25], Karloff, Paturi, and Simon [26], Tompa [33]). A
result of Borodin, Ruzzo, and Tompa [16] shows that such an automaton requires
Ω(m2) time (on regular graphs with 3n/2 ≤ m ≤ n2/6−n). Thus, for the particularly
weak version of logarithmic space corresponding to the case P = 1, a quadratic lower
bound on time is known.

The known algorithms and the lower bounds for universal traversal sequences sug-
gest that the true time-space product for undirected graph traversal is approximately
quadratic, perhaps Θ(mn). The result of this paper is a lower bound that provides
progress toward proving this conjecture. More specifically, we prove lower bounds
on time that are nonlinear in m for a wide range of values of P . In particular, for
any WAG M solving st-connectivity in logarithmic space, there is a family of regu-
lar graphs on which M requires time m1+Ω(1). Near the other extreme, if M uses a
number of pebbles that is sublinear in m, there is a family of regular graphs on which
M requires time superlinear in m. Although these give the desired quadratic lower
bound only at the extreme of linear time, they each at least establish that logarithmic
space and linear time are not simultaneously achievable on the nonjumping model
when m = ω(n). (They do not settle the question of simultaneous achievability of
logarithmic space and linear time when m = O(n) since the families of regular graphs
mentioned above have degree d = ω(1) and hence m = ω(n); see sections 3 and 4.)

We prove upper and lower bounds for undirected graph problems on other variants
of the JAG in a companion paper [10]. Following the preliminary appearance of these
results, Edmonds [21] proved a much stronger result for traversing undirected graphs,
and Barnes and Edmonds [6] and Edmonds and Poon [22] proved even more dramatic
tradeoffs for traversing directed graphs.

2. Walking automata for graphs. The problem we will be considering is
“undirected st-connectivity”: given an undirected graph G and two distinguished
vertices s and t, determine if there is a path from s to t.

Consider the set of all n-vertex, edge-labeled, undirected graphs G = (V,E) with
maximum degree d. For this definition, edges are labeled as follows. For every edge
{u, v} ∈ E there are two labels λu,v, λv,u ∈ {0, 1, . . . , d − 1} with the property that,
for every pair of distinct edges {u, v} and {u,w}, λu,v 6= λu,w. It will sometimes be
convenient to treat an undirected edge as a pair of directed half-edges, each labeled
by a single label. For example, the half-edge directed from u to v is labeled λu,v.

Following Cook and Rackoff [20], a WAG is an automaton with Q states and
P distinguishable pebbles, where both P and Q may depend on n and d. For the
st-connectivity problem, two vertices s and t of its input graph are distinguished.
The P pebbles are initially placed on s. Each move of the WAG depends on the
current state, which pebbles coincide on vertices, which pebbles are on t, and the
edge labels emanating from the pebbled vertices. Based on this information, the
automaton changes state and selects some pebble p and some i ∈ {0, 1, . . . , d − 1}.

1054 P. BEAME, A. BORODIN, P. RAGHAVAN, W. RUZZO, AND M. TOMPA

The selected i must be an edge label emanating from the vertex currently pebbled by
p, and p is moved to the other endpoint of the edge with label i. (The decision to
make t “visible” to the WAG but s “invisible” was made simply to render one-pebble
WAGs on regular graphs equivalent to universal traversal sequences.) A WAG that
determines st-connectivity is required to enter an accepting state if and only if there
is a path from s to t. Note that WAGs are nonuniform models.

We have defined WAGs running on arbitrary graphs, but our lower bounds apply
even to WAGs that are only required to operate correctly on regular graphs. The
restriction to regular graphs, in addition to strengthening the results, provides com-
parability to the known results about universal traversal sequences. A technicality
that must be considered in the case of regular graphs is that they do not exist for all
choices of degree d and number of vertices n, as is seen from the following proposition.

Proposition 1. d-regular, n-vertex graphs exist if and only if dn is even and
d ≤ n− 1.

(See [16, Proposition 1], for example, for a proof.) To allow use of Ω-notation in
expressing our lower bounds, however, the “time” used by a WAG must be defined
for all sufficiently large n. To this end, we consider the time used by a WAG on
d-regular, n-vertex graphs where dn is odd to be the same as its running time on
d-regular, (n+ 1)-vertex graphs.

3. The tradeoff. In this section we prove time lower bounds for WAGs with
P pebbles. The proof generalizes an unpublished construction of Szemerédi (com-
municated to us by Sipser) that proved an Ω(n logn) lower bound on the length of
universal traversal sequences for 3-regular graphs.

Theorem 2. Let P and d be fixed functions of n with dn even, P ≥ 1, d ≥ 6,
and d2 + Pd = o(n). Let m = dn/2, ε = 1/(3 ln(6e)), and

d0 = (2P/e)3P/(3P+2) n1/(3P+2).

Let M be any (deterministic) WAG with P pebbles that determines st-connectivity for
all d-regular, n-vertex graphs. Then M requires time

(a) Ω
(
m(logn) d/P

log(d/P)

)
, if P ≤ ε ln(n/d2) and 6P ≤ d ≤ d0,

(b) Ω
(
mP

(
n
d2

) 1
3P

)
, if P ≤ ε ln(n/d2) and d0 < d, and

(c) Ω
(
mmin

(
d, log n

(d2+Pd)

))
, otherwise.

Before proving the theorem, we will make a few observations about it. Perhaps
the most noteworthy is that these bounds are nonlinear whenever either d = ω(1) or
d ≥ 6P .

It is obvious that the regions (i.e., the sets of (P, d) pairs) where the three cases
apply are pairwise disjoint. It is also true that all three regions are nonempty for all
sufficiently large n, although we will not justify this statement.

Although they have very different forms, the three bounds meet “smoothly,”
except along the line segment d = 6P, 1 ≤ P ≤ ε ln(n/d2). Specifically, we will show
that where any pair of the three bounds meet along the curve P = ε ln(n/d2), d ≥
6P , both are Θ(m log(n/d2)), and where bounds (a) and (b) meet along the curve
d = d0, 1 ≤ P ≤ ε ln(n/d2), both are Θ(md0).

A TIME-SPACE TRADEOFF FOR GRAPH TRAVERSAL 1055

All three bounds are increasing functions of d (recall m = dn/2). The ratio of
the lower bounds to m is also an interesting quantity. Note that the ratio of bound
(a) to m is an increasing function of d, while that of bound (b) is decreasing. Since
they are equal (within constant factors) at d = d0, the two could be combined into
the single expression Ω(mmin((logn)(d/P)/ log(d/P), P (n/d2)1/(3P))), as was done
in bound (c).

It seems likely that the decrease in bound (b) is an artifact of the proof technique
rather than an intrinsic reduction in the complexity of the problem, since intuitively
higher degree would seem to make the search more difficult. On the other hand,
higher degree reduces the graph’s maximum possible diameter, which perhaps helps.
It is known that the length of universal traversal sequences is not monotonic in d,
although it may be monotonic up to some large threshold, perhaps d = bn/2c − 1.
(See Borodin, Ruzzo, and Tompa [16] for a discussion.) Similarly, the complexity of
st-connectivity is not monotone in d, since regular graphs of degree d > bn/2c− 1 are
necessarily connected, but it is plausibly monotone for d up to cn, for some constant
0 < c < 1/2.

Two special cases of the theorem are of particular interest. Namely, the following
two corollaries show that logarithmic space implies time m1+Ω(1) and that sublinear
space implies superlinear time.

Corollary 3. Let M be a WAG with P pebbles that determines st-connectivity
for all regular n-vertex graphs. If P = O(1), then there is a family of regular graphs
on which M requires time Ω(m1+1/(3P+3)).

Proof. Consider the family of regular graphs with degree d = d0 = Θ(n1/(3P+2)).
Theorem 2 applies, specifically case (a). This gives a time lower bound of Ω(md) =
Ω(m1+1/(3P+3)).

For P = 1 the Ω(m7/6) bound given above is not as strong as the Ω(m2) bound
given by Borodin, Ruzzo, and Tompa [16] but is included for comparative purposes.
Also, the Ω(m2) lower bound for universal traversal sequences holds for degree up to
n/3 − 2, so the decrease in the ratio of bound (b) to m noted above certainly is an
artifact of our proof when P = 1.

Corollary 4. Let M be a WAG with P pebbles that determines st-connectivity
for all regular n-vertex graphs. If P = o(n), then there is a family of regular graphs
on which M requires time Ω(m log(n/P)) = ω(m).

Proof. Suppose P ≥ n1/3. Consider the family of regular graphs with degree
d =

√
n/P = ω(1). Then d2 +Pd ≤ 2

√
Pn = o(n), so Theorem 2 applies, specifically

case (c). This gives a lower bound of Ω(m log d) = Ω(m log(n/P)) on time. When
P < n1/3, a similar analysis suffices, choosing d = logn.

Corollary 4 is tight: time O(m) is possible with O(n) pebbles [10, Theorem 15].
Note also that, when P = Θ(n), the time is still Ω(m log(n/P)) [10, Theorem 3].

Various constants in the theorem can be improved by slight modification to the
construction and/or its analysis, but in the interest of clarity we will not present these
refinements.

Proof of Theorem 2. The idea underlying the proof is to build a graph with many
copies of some fixed gadgets, each with many “entry points.” Since M does not have
enough pebbles to mark all the gadgets it has explored, it must spend time reexploring
each gadget from different entry points, or it risks the possibility that one of them
might never be fully explored. The crux of the argument is to choose the right gadgets
and to interconnect them so that we can be sure this happens. We use an “adversary”
argument to show this. We begin by giving an overview of the argument, followed

1056 P. BEAME, A. BORODIN, P. RAGHAVAN, W. RUZZO, AND M. TOMPA

by more detailed descriptions of the gadgets and adversary strategy, and finally the
analysis.

Overview. Imagine the adversary “growing” the graph as follows. At a general
point in the construction, the graph consists of some gadgets that are fully specified
except for the interconnections among their “entry point” vertices. The adversary
simulates M on this partial graph until M attempts to move some pebble p out of an
entry point using a label for which no edge is yet defined. Our main freedom in the
construction is the choice of the gadget at the other endpoint of this interconnecting
edge f . The adversary will pick it so that M will spend a nonnegligible number of
steps τ “exploring” the gadget reached through f . The adversary can achieve this
for most of the Ω(m) interconnecting edges, yielding an Ω(mτ) lower bound on time.
The parameter τ will vary depending on n, P, and d, giving the three lower bounds
quoted in the statement of the theorem.

The interconnecting edge f is chosen as follows. Note that no single labeled gadget
γ will suffice to keep p “busy” for τ steps. For example, M ’s very next move of p, say
by label a, might be an exit from γ. On the other hand, if the adversary can learn
that M ’s next move of p will be on label a, it can choose some gadget in which label
a moves from an entry point into the gadget, rather than exiting from it. Similarly,
if it can learn the next τ moves by p (and/or other pebbles following p across f), the
adversary can choose a gadget in which this whole sequence of moves avoids exiting
from the gadget. A key point is that M can sense only very limited facts about the
gadget that p enters when it crosses f . Suppose p has just crossed f , arriving at a
vertex v. M can sense (i) the degree of v, (ii) whether v is the target vertex t, and (iii)
whether there are other pebbles on v. Thus, in general M has several possible next
moves for p, based on which of these conditions hold. The adversary avoids having
to consider these alternative futures by assuming, respectively, (1) that the graph is
d-regular, (2) that M does not reach t (within Ω(mτ) steps), and (3) that f connects
to a gadget that contains no other pebbles when p enters it, and that remains free of
other pebbles (except perhaps ones that follow p across f) for τ moves. Given these
assumptions, the adversary will be able to deterministically simulate the next several
moves by M so that it can decide which labeled gadget can host those moves without
allowing a pebble to exit. Of course, the adversary must also ensure that assumptions
(1)–(3) are ultimately justified. Building a d-regular graph requires some care but is
not too difficult. Assumption (2) will follow easily if each connecting edge accounts
for τ moves. Assumption (3) is slightly trickier; we will return to it below.

We view the overall adversary strategy as a two-phase process. A local phase
determines the internal (“local”) structure required of a gadget hosting the next sev-
eral moves of p so that no pebble will exit this gadget until at least τ moves have
been charged to it, starting after p’s entry. The basic idea is to use a “lazy, greedy”
definition: lazy in that the adversary will not define a labeled half-edge in the gadget
until just before M needs to move a pebble across it, and greedy in that when such
a half-edge is defined, it will be defined to stay within the gadget. Of course, this
cannot continue indefinitely, but it will be possible for at least the first τ moves within
the gadget. Thus, pebble motion across half-edges exiting the gadget is deferred for
at least this long.

The adversary’s simulation of M is now “rolled back” to the point at which p
crossed f . The global phase of the adversary’s strategy is to choose a gadget already
present in the graph and to connect f to it. Recall that our goal is to reuse each gadget
many times, so that the total time spent in it asymptotically exceeds its number of

A TIME-SPACE TRADEOFF FOR GRAPH TRAVERSAL 1057

edges. (Occasionally, when all entry points of suitable gadgets have been used, a new
copy of the needed gadget will be added. This process terminates when the number
of vertices in the graph approaches n.) The gadget chosen for f must match the
gadget determined by the local phase, must have an unused entry point to which to
connect f , and (before f was connected to it) must have remained free of pebbles
from the time when p crossed f until τ moves were charged to it. The “pebble-free”
condition ensures assumption (3) above. Such a condition is necessary since, if it
were violated, M might encounter “unexpected” pebbles in the chosen gadget, i.e.,
pebbles not encountered during the simulation in the local phase. This could cause M
to deviate from the sequence of moves predicted by the local phase, and so possibly
allow p or one of the pebbles that followed it across f to exit from the gadget in fewer
than τ moves.

A point we slighted above is that the “τ steps” under discussion are not neces-
sarily consecutive and are not necessarily all made by p or by pebbles that followed p
across f . For example, p’s moves after crossing f might be interleaved with moves by
some other pebble p′ after crossing another undefined edge f ′ and/or many previously
defined connecting edges. In general, the adversary keeps track of these many inter-
leaved activities by charging pebble moves to connecting edges, with the “local phase”
for an undefined connecting edge f being the interval between its charge reaching 1
(at the first crossing of f by some pebble) and its charge reaching τ .

The final issue to address is that we want to avoid adding a new copy of a gadget
until all entry points of most existing copies have been used. Specifically, we will have
at most a fixed number (P (τ + 2) + d, to be precise) of “open” copies of each gadget
at any time. As noted above, many steps may occur between the first and τth steps
charged to f . During this interval, other pebbles might touch all open copies of the
gadget needed for f , leaving no pebble-free open gadget to which to connect f . Our
solution to this problem is found in the adversary’s method of charging pebble moves
to edges. Moves in f ’s gadget are always charged to f . In addition, certain moves
touching other gadgets are charged to f also. With this scheme, we can bound both
the number of moves that occur in f ’s gadget and the number of other gadgets that
are touched by pebbles during f ’s local phase. Thus, no gadget is expected to absorb
too many moves, and there will be at least one suitable pebble-free open copy of the
needed gadget when f accumulates charge τ .

The construction will “waste” (i.e., not fully utilize the connecting edges of) up
to P (τ + 2) + d copies of each gadget. The main constraint that limits τ is that it
must be small enough that this waste is small, i.e., P (τ + 2) + d times the number of
distinct types of labeled gadgets times the number of connecting edges per gadget is
small compared to the total number of connecting edges.

We will now present the construction in more detail. We actually define a sequence
of graphs Gi,j , 0 ≤ i ≤ µ, 0 ≤ j, representing successive phases of the construction.
Like τ , the parameter µ varies slightly depending on n, p, and d, but will be Θ(m) in
each case. (The maximum value of j is unimportant, but turns out to be about Pτ .)
Each graph consists of the following:

1. A set of gadgets, each with the same size S and number L of entry vertices,
and a fully defined internal structure and labeling. Each vertex that is not an entry
vertex has degree d. There is a fixed d′ ≥ 1 such that each entry vertex has d′ edges to
neighbors in the same gadget, and up to d−d′ connecting edges joining it to the entry
vertices of other gadgets or protogadgets (see below). We will show that d− d′ ≥ d/2
and that L/S > 1/3, ensuring at termination that the number of connecting edges is
Θ(m).

1058 P. BEAME, A. BORODIN, P. RAGHAVAN, W. RUZZO, AND M. TOMPA

2. A set of labeled committed connecting edges joining entry vertices of gadgets.
Gi,j will have exactly i committed connecting edges.

3. A set of up to P partially labeled uncommitted connecting edges, each joining
an entry vertex u of some gadget to an entry vertex v of a protogadget (see below).
The uncommitted half-edge from u to v is labeled, but the half-edge from v to u is
unlabeled.

4. A set of up to P partially defined protogadgets. Like a gadget, a protogadget
has S vertices, including L entry vertices, but unlike the gadgets, the internal structure
of a protogadget is in general only partially defined; its vertices may have degree less
than d, and its half-edges may not be labeled. In particular, only one entry vertex
v of each protogadget will be incident to a connecting edge, say the uncommitted
connecting edge {u, v}, and, as indicated above, the half-edge from v to u will be
unlabeled. The protogadgets are the tools used in the local phases of the adversary’s
strategy.

In outline, the adversary’s strategy is as follows. The initial graph G0,0 consists
of one arbitrarily chosen gadget. The start vertex s is an arbitrary vertex in this
gadget. For any Gi,j , the initial configuration of M on Gi,j consists of M in its start
state and all P pebbles on Gi,j ’s copy of s. Associate with each connecting edge of
the graph Gi,j an integer charge, initially zero. The adversary will charge each pebble
motion to at most one connecting edge, according to a rule to be given later. It will
simulate M starting from M ’s initial configuration on Gi,j until one of the following
two things happens. (It simulates M as if all vertices in Gi,j were of degree d, even
though some are of smaller degree.)

1. Suppose M attempts to move a pebble from a vertex u across a half-edge
labeled a, where no such labeled half-edge exists. If u is an entry vertex in some
gadget, add a new uncommitted half-edge from u labeled a to the entry point v of
a new protogadget. More precisely, we define Gi,j+1 to be Gi,j plus that half-edge
and protogadget. If u is in some protogadget, choose some other vertex v in the same
protogadget (according to a rule to be given later) and add a half-edge from u to v
labeled a. More precisely, we define Gi,j+1 to be Gi,j plus that half-edge (plus a few
others, as we will see). The choice of v is not arbitrary; one point we must establish
is that there will always be a suitable vertex v when needed. The thrust of this step
in the adversary strategy is to keep pebbles “trapped” in protogadgets for as long as
possible. This portion of the adversary’s strategy is the “local” strategy introduced
above, so-called because of its focus on the structure within a gadget.

2. Suppose an uncommitted edge f in Gi,j accumulates a charge of τ . In this
case, we will convert f into a committed edge. More precisely, we will form Gi+1,0

from Gi,j by choosing an existing gadget “similar” to f ’s protogadget and committing
f to enter the chosen gadget. (This is described more fully below.) Again, f cannot
be committed arbitrarily; a second point that we must establish is that an appropriate
gadget (usually) exists when needed, and that M ’s behaviors on Gi,j and Gi+1,0 are
similar. The thrust of this step is that the size of Gi+1,0 is growing slowly with i,
since we are (usually) able to reuse existing gadgets, but the time M spends in Gi+1,0

is rising rapidly with i, since a lower bound on the total running time of M is τ times
the number of committed edges (i, which is ultimately µ = Θ(m)). This portion of
the adversary’s strategy is the “global” strategy, so-called because of its focus on the
interconnections among gadgets.

The adversary continues the simulation on Gi,j+1 or Gi+1,0 as appropriate, and
repeats this process until Gµ,0 is constructed.

A TIME-SPACE TRADEOFF FOR GRAPH TRAVERSAL 1059

(a) (b)
d = 10, k = 4, q = 2, r = 1 d = 8, k = 1, q = 2, r = 1

For clarity, only half of the forward
edges are shown.

Fig. 1. Examples of the funnel gadgets.

Gadgets. Before describing the adversary strategy in more detail, we will describe
the gadgets and protogadgets. The gadgets are called “funnels.” An example is shown
in Fig. 1a. The entry vertices are those on the “rim” of the funnel. Intuitively, the
adversary will try to “trap” pebbles in a funnel for a while by assigning edge labels
so that the moves taken by pebbles in the gadget in the near future (i.e., the next τ
moves in the gadget) either stay on the same layer or drop to the next deeper layer.
The “cone” portion of the funnel (near the top of Fig. 1a) allows many entry vertices
to share vertices in the narrower portion near the bottom of Fig. 1a. An example of
a two-layer funnel is shown in Fig. 1b.

Four interrelated parameters k, q, g, and r, which in turn depend on n, P, and d,
characterize the gadgets. All four are positive integers. Each gadget has k+ 1 layers,
numbered 0 through k. Layer l, 0 ≤ l ≤ k, has

nl = (d+ 1) ·max(1, 2dlog2 ke−l)

vertices, designated vli, 0 ≤ i ≤ nl−1. The entry vertices are those on layer 0. Hence,
the number of entry vertices is

L = (d+ 1) · 2dlog2 ke,

and the total number of vertices per gadget is

S = (d+ 1)(2dlog2 ke+1 − 1 + k − dlog2 ke).

1060 P. BEAME, A. BORODIN, P. RAGHAVAN, W. RUZZO, AND M. TOMPA

Note that

L

S
=

(d+ 1) · 2dlog2 ke

(d+ 1)(2dlog2 ke+1 − 1 + k − dlog2 ke)
>

2dlog2 ke

2dlog2 ke+1 + k
≥ 1

3
,(1)

as promised, and that

S ≤ (1 + 1/d) d (2 · 2dlog2 ke + k) ≤ (7/6) d (5k) < 6dk.(2)

The parameter q is an even integer, 2 ≤ q. The d edge labels {0, 1, . . . , d − 1}
are partitioned into g = bd/qc “full” blocks, each of size q, plus perhaps one “partial”
block of size d mod q in case q does not evenly divide d. The same fixed partition is
used for all gadgets and is arbitrary, except that for each a ∈ {0, 1, . . . , d − 1}, we
place both a and its mate in the same block, where the mate of label a is d− 1− a.
Note that if d is odd, then (d− 1)/2 is its own mate and will be in the partial block.

The remaining gadget parameter r is an integer satisfying 1 ≤ r ≤ g/3. Note
that the existence of such an r implies that g ≥ 3, and hence

q ≤ d/3.(3)

Intuitively, r denotes an upper bound on the number of pebbles that we attempt to
trap in a given gadget.

The edges within a gadget always connect vertices on the same or adjacent layers.
A half-edge is called a “forward” half-edge if it goes from layer l to layer l + 1,
“backward” if it goes to layer l − 1, and “cross” if it goes to layer l. For each layer
l and each block B of labels, there is a t ∈ {forward,backward, cross} such that all
half-edges with labels in B leaving vertices on layer l will be of type t. Thus it is
natural to refer to the labels and the blocks of labels at a layer as forward, backward,
or cross, as well as the half-edges. For i ∈ N, a ∈ {0, 1, . . . , d − 1}, and 0 ≤ l ≤ k,
define

χ(i, a, l) =

 (i+ a+ 1) mod nl if a < (d− 1)/2,
(i+ nl/2) mod nl if a = (d− 1)/2,
(i− (d− 1− a)− 1) mod nl if a > (d− 1)/2.

If a ∈ {0, 1, . . . , d−1} is a forward label at layer l, then for 0 ≤ i ≤ nl−1, a will label
the half-edge from vertex vli to vertex vl+1

χ(i,a,l+1). Similarly, if a is a cross label it will

go to vlχ(i,a,l). Notice that a cross edge labeled a will be labeled by a’s mate in the
reverse direction. No parallel edges arise since nl ≥ d+ 1. As an example, if all edges
are cross edges (a case that does not arise in our constructions) and if nl = d + 1,
then layer l would be a (d+1)-clique. As another example, whenever label 0 is a cross
label at layer l, the half-edges labeled 0 will form a Hamiltonian cycle through the
layer l vertices, and those edges will be labeled d−1 (0’s mate) in the other direction.
Note that the backward labels are not constrained by χ.

The set of gadgets is defined as follows. For 0 ≤ l ≤ k let

bl =

{
g − r if l = 0,
r(nl−1/nl) otherwise,

fl =

{
0 if l = k,
r otherwise.

See Table 1. If q does not evenly divide d, then the labels in the partial block will
be cross labels at each layer 0 ≤ l ≤ k. For each layer 0 ≤ l ≤ k, choose fl of

A TIME-SPACE TRADEOFF FOR GRAPH TRAVERSAL 1061

Table 1
Number of edge blocks of each type per layer.

Layer 0 1 · · · dlog2 ke dlog2 ke+ 1 · · · k − 1 k
fl r r · · · r r · · · r 0
bl g − r 2r · · · 2r r · · · r r

Cross 0 g − 3r · · · g − 3r g − 2r · · · g − 2r g − r

the remaining g blocks as forward labels and bl as backward labels (connecting edge
labels, if l = 0). All blocks not selected above will be cross labels. Note that the rules
in the previous paragraph define the forward and cross half-edges, given their labels,
but not the backward half-edges. The chosen backward labels are assigned to these
half-edges in an arbitrary but fixed way. Note that there are just enough backward
labels: each of the nl−1 vertices on level 0 ≤ l − 1 < k has exactly qr forward labels,
with destinations evenly distributed over the nl vertices on layer l, so each vertex on
layer l is incident to exactly qr(nl−1/nl) = q · bl edges from layer l − 1.

For layer 0, the b0 blocks selected above will label connecting edges. Thus, each
entry vertex will be adjacent to exactly d′ = rq + (d mod q) other vertices in the
same gadget, and to d− d′ connecting edges. Note, since r ≤ g/3 and q ≤ d/3 (from
inequality (3)), that

d− d′ = gq − rq ≥ (2/3)gq = (2/3) bd/qc q ≥ (2/3)((3/4)(d/q))q = d/2,(4)

as claimed earlier. Also note that at most 3r blocks are chosen as forward and
backward at each layer, and that this is always possible since g ≥ 3r.

The number of distinct gadget types created by this process is(
g
r

)k (
g − r

2r

)dlog2 ke(
g − r
r

)k−dlog2 ke−1(
g
r

)1

≤
(
g
r

)2k−dlog2 ke(
g
2r

)dlog2 ke

≤
(eg
r

)r(2k−dlog2 ke) (eg
2r

)2rdlog2 ke

≤
(eg
r

)r(2k+dlog2 ke)
.(5)

Figure 1b fully shows a gadget with d = 8, k = 1, q = 2, g = 4, and r = 1, with
forward edges labeled 0 and 7 from layer 0 and backward edges labeled 3 and 4 from
layer 1. Figure 1a shows a gadget with d = 10, k = 4, q = 2, g = 5, and r = 1, with
forward edges labeled 0 from layers 0 through 3. In the interest of clarity, the forward
edges labeled 9 (0’s mate) are not shown in the figure.

Protogadgets and local strategy. The protogadgets are built incrementally by the
adversary. Initially, each consists of S vertices, denoted as in the gadgets, together
with the cross edges defined by the partial block of labels (if any) at each level. As
discussed previously, the adversary proceeds by simulating M from its initial config-
uration on Gi,j . Suppose during the tth step of this simulation that M attempts to
move some pebble p along the half-edge labeled a from some vertex u but no such
half-edge exists. As sketched earlier, if u is an entry vertex of some gadget, we create
a new protogadget into which p will move. If u is a vertex vli in some protogadget

1062 P. BEAME, A. BORODIN, P. RAGHAVAN, W. RUZZO, AND M. TOMPA

π, the adversary decides whether to make the block of labels containing a all forward
half-edges or all cross half-edges (see below). The graph Gi,j+1 is then defined to be
the same as Gi,j , except that at layer l in π, a’s block of half-edges is added. The
adversary restarts the simulation of M , starting from M ’s initial configuration on
Gi,j+1. It should be clear that during the first t − 1 steps of the simulation, M will
behave on Gi,j+1 exactly as it did on Gi,j , since Gi,j is a subgraph of Gi,j+1. The
tth step, of course, was impossible in Gi,j , but is possible in Gi,j+1. Note that p can
exit from π only at an entry vertex but is no nearer to such a vertex in Gi,j+1 after
the tth step than before. Thus we can view M as running on a dynamically growing
graph, one being built by the adversary so as to trap pebbles in protogadgets for some
number of moves. We will adopt this view when no confusion will arise and let Gi,∗
denote the last Gi,j built before Gi+1,0.

Let z be the number of free blocks at level l, i.e., blocks whose half-edges have
not yet been defined. The adversary chooses a’s block to label cross edges provided
z > bl + fl and forward edges provided bl < z ≤ bl + fl. If z ≤ bl, the adversary fails
(but see Claim 1 below).

Let

τ =

{
(k − dlog2 ke) bg/3c if P ≤ r,
r if P > r.

Note that (k − dlog2 ke) bg/3c ≥ r since k ≥ 1 and g/3 ≥ r, so in either case we have

(k − dlog2 ke) bg/3c ≥ τ.(6)

We prove three claims about the protogadgets. We will see later that the global
strategy prevents M from making more than τ moves in any protogadget, so Claim 1
below shows that the adversary will never fail.

Claim 1. The adversary will never fail, provided M makes at most τ moves in
any protogadget.

Proof. First, clearly at most min(P, τ) pebbles can enter a protogadget in τ steps,
and for the particular definition of τ chosen above, min(P, τ) ≤ r. Now, suppose the
claim is false. Suppose the adversary first fails during an attempted move at level l in
some protogadget π. Then at least g − bl moves were previously made by pebbles at
layer l. As noted, at most r pebbles can enter π in τ moves. It cannot be the case that
l < k, since for all such layers g− bl ≥ r = fl, so during the last r of the g− bl moves,
all r pebbles moved past layer l, leaving none to cause failure there. Thus, the failure
occurred in layer k. For a pebble to reach layer k, it must be that the maximum
number of cross edges, plus at least one forward edge, have been previously defined
at each layer less than k. Thus, the number of moves completed in this protogadget
prior to failure is at least

(g − bk) +
k−1∑
l=0

(g − bl − fl + 1)

= (g − r) + dlog2 ke (g − 3r + 1) + (k − dlog2 ke − 1)(g − 2r + 1)

≥ (k − dlog2 ke)(g − 2r + 1)

> (k − dlog2 ke) bg/3c
≥ τ.

The second inequality uses the assertion that r ≤ g/3, and the third uses inequal-
ity (6).

A TIME-SPACE TRADEOFF FOR GRAPH TRAVERSAL 1063

Claim 2. Each protogadget is a subgraph of some gadget.
Proof. The adversary chooses at most fl forward blocks and at most g− (fl + bl)

cross blocks at each layer. Thus there are enough unchosen blocks to select a total of
exactly fl forward and bl backward blocks, which precisely defines a gadget.

Claim 3. All entry points of a protogadget are equivalent in the sense that if M
makes at most τ moves in a protogadget entered through vertex v0

h, then the resulting
configuration will be exactly the same as if it had entered through vertex v0

0, except
that positions of all pebbles in it on layer l will be shifted by h mod nl for 0 ≤ l ≤ k.

Proof. Intuitively, this reflects the rotational symmetry of the funnel. To make
this precise, we claim that for any h ∈ N and any protogadget π, the mapping φh(vli) =
vli′ , where i′ = (i + h) mod nl, is an automorphism on π, i.e., a surjection on the
vertices of π preserving labeled half-edges. Consider a forward edge labeled a at level
l in π, say (vli, v

l+1
j), where j = χ(i, a, l + 1). Note that for each fixed a and l, there

is a constant c (depending on a and l but independent of i) such that χ(i, a, l + 1) =
(i + c) mod nl+1. Now φh(vli) = vli′ , φh(vl+1

j) = vl+1
j′ , with i′ = (i + h) mod nl, and

j′ = (j + h) mod nl+1, so since nl+1 divides nl we have

χ(i′, a, l + 1) = (i′ + c) mod nl+1

= (((i+ h) mod nl) + c) mod nl+1

= (i+ h+ c) mod nl+1

= (((i+ c) mod nl+1) + h) mod nl+1

= (j + h) mod nl+1

= j′.

A similar argument applies to cross edges.
The analog of Claim 3 also holds for gadgets, provided the τ moves use only

forward and/or cross edges. The same may not be true if backward edge labels are
used.

Global strategy. We have now described the gadgets and protogadgets and the
adversary’s strategy for building them. We turn to the remaining part of its strategy:
charging and committing edges. Recall that the adversary associates a charge with
each connecting edge, in which it counts moves in Gi,∗. In addition, it associates with
each connecting edge a second integer, called a birthdate, recording the time at which
a pebble first crosses the edge.

The construction of Gi+1,0 from Gi,∗ proceeds as follows. The adversary begins
with M in its initial configuration in the current graph Gi,∗. The adversary simulates
successive moves of M on Gi,∗ until some uncommitted connecting edge accumulates
charge τ , where edge charges are determined by the following rules. During a move,
suppose M moves pebble p along

1. an edge internal to a gadget or protogadget. Let f be the connecting edge
most recently crossed by p. If f has charge less than τ , then charge the move to f ;
otherwise there is no charge.

2. a connecting edge f (committed or not). Charge the move to the oldest (i.e.,
least birthdate) connecting edge having charge less than τ . If this is the first step in
which a pebble has crossed edge f in either direction, define the birthdate of f to be
the current time.

As sketched in the overview, the second charging rule ensures that when an un-
committed connecting edge f , even one whose associated pebbles have moved infre-
quently, accumulates charge τ , only a few of the gadgets of the appropriate type can
have been touched by pebbles since the birth of f .

1064 P. BEAME, A. BORODIN, P. RAGHAVAN, W. RUZZO, AND M. TOMPA

When some uncommitted connecting edge f = {u, v} with label λu,v = a accu-
mulates charge τ we stop the simulation and construct from Gi,∗ a new graph Gi+1,0

defined as follows. Let πv be the protogadget entered through f , with v in πv. Note
that by the charging rules above, each move in πv has been charged to f , so there
have been at most τ such moves. Thus by Claim 1 the adversary did not fail while
building πv. By Claim 2, the protogadget πv is a subgraph of some gadget γv. We
say an entry vertex of a gadget is open if it has degree less than d. If possible, choose
an entry vertex x of a gadget in Gi,∗ such that

• x is open,
• x’s gadget is of the same type as γv,
• x and u are not adjacent, and
• x’s gadget has remained pebble free since the birthdate of the

uncommitted edge f .

(7)

Gi+1,0 is identical to Gi,∗, except that the protogadget πv is removed and the uncom-
mitted edge f = {u, v} is replaced by the committed edge {u, x} with labels λu,x = a
and λx,u = b, where b is any label not already present on an outgoing half-edge at x.
If there is no such x, or if using the only such x would result in Gi+1,0 having neither
uncommitted edges nor open entry vertices, we instead add one additional gadget of
type γv, choose as x any of the new gadget’s entry vertices, then proceed as described
above. The latter contingency avoids premature termination of the construction. The
requirement that x and u be nonadjacent avoids construction of parallel edges.

The behavior of M on Gi+1,0 is similar to its behavior on Gi,∗. Suppose in Gi,∗
that the uncommitted edge f was first crossed during the simulation of the bth move
of M (i.e., has birthdate b) and accumulates charge τ during move b′. When M is
simulated on Gi+1,0, it will behave exactly as on Gi,j for the first b− 1 moves, since
the portion of Gi+1,0 visited during that period is exactly the same as the portion
visited in Gi,∗. In particular, the charges and birthdates attached to edges will be
the same. (Thus, one can view the adversary as rolling back the simulation to step
b, committing f , and resuming.) Between steps b and b′ those pebbles that crossed
edge f in Gi,∗ will be in x’s gadget γx in Gi+1,0 instead of in the protogadget πv
entered through f as they were in Gi,∗, but since γx contains πv as a subgraph, their
motions in Gi+1,0 will exactly reflect their motions in Gi,∗. Note that by Claim 3
this is true regardless of which entry vertex x of γx was chosen. It is crucial that the
chosen gadget γx was pebble free between steps b and b′, so there is no possibility
that these pebbles will meet pebbles in γx in Gi+1,0 that they did not meet in πv in
Gi,∗. Again, the charges and birthdates attached to edges will be the same in Gi+1,0

as in Gi,∗ through step b′. In particular, each of the i+ 1 committed edges in Gi+1,0

will have a charge of τ , and hence M will run for at least (i+ 1)τ steps on Gi+1,0.

Final Construction. After Gi+1,0 is built, we restart the simulation from the be-
ginning on Gi+1,0 to build Gi+2,0, etc. Continue this process until Gµ,0 is constructed.
Finally, from Gµ,0 we build a pair of similar graphs G and G′, one connected and the
other not, on which M will have identical behavior. In particular, if M runs for fewer
than µ · τ steps, then M cannot be correct on both. The connected graph G is built
by

1. committing all uncommitted edges, as described above;
2. joining the remaining open entry vertices with some number, ∆, of extra

vertices so as to make G have n vertices and be d-regular; and
3. designating one of these extra vertices as t.

A TIME-SPACE TRADEOFF FOR GRAPH TRAVERSAL 1065

One way to accomplish the second step is the following. First, pick any two nonad-
jacent open vertices and connect them. Repeat this as often as possible. Let u be
the number of “missing” half-edges, i.e., the total over all open vertices of d minus
their degrees, and let i be the number of remaining open vertices. Since the pairing
process could not be applied to reduce i further, it must be the case that the i open
entry vertices form a clique. Recalling that each entry vertex is incident to at most
d− d′ connecting edges, the number u of missing half-edges can be at most

i((d− d′)− (i− 1)) ≤ i(d− i) ≤ d2/4,

since d′ ≥ 1 and since i(d− i) is maximized when i = d/2. Thus u ≤ d2/4. Further-
more, u will necessarily be even, since each entry vertex starts with d−d′ missing half
edges; since from (4) d− d′ is a multiple of q, hence even; and since each committed
edge replaces a pair of missing half-edges. Notice that this implies that d(n −∆) is
even, since the gadgets together contain n−∆ vertices and d(n−∆)− u half-edges,
which naturally occur in pairs. Complete the construction by adding a ∆-vertex, d-
regular graph that contains a u/2-matching, removing the edges of this matching, and
connecting each of the u missing half-edges to a distinct endpoint of the matching.
Such a regular graph exists by Proposition 1, since dn, d(n −∆), and hence d∆ are
even; since, as shown below, d < ∆ and u ≤ d2/4 < ∆; and since the proof of Propo-
sition 1 given in Borodin et al. [16] constructs a regular graph that is Hamiltonian
and hence has a u/2-matching. (That construction is similar to the construction of
cross edges in one layer of our gadgets, where the 0-labels form a Hamiltonian cycle.)

The nonconnected graph G′ is built similarly, except that d + 1 of the ∆ extra
vertices, including t, are connected in a clique and hence are disconnected from the
rest of the graph.

By an argument similar to the one above, M ’s behavior on both G and G′ is
essentially the same as on Gµ,0. In particular, the edge charges will be the same, so
M will run for at least µ·τ steps without reaching any of the ∆ extra vertices, including
t. One point to be shown in the analysis below is that ∆ ≥ d+1+max(d+1, d2/4) =
d2/4 +d+ 1, i.e., large enough to allow completion of the construction of G and G′ as
described above. Since d ≤ √n−2 (in fact, d2 +Pd = o(n)), it suffices that ∆ ≥ n/4.

Analysis. All that remains to show our Ω(mτ) lower bound is to give values for
the various parameters so as to satisfy the constraints listed above (and to maximize
τ). For convenience, we summarize the relevant parameters and constraints here.

C1. Number of committed connecting edges: µ = Ω(m).
C2. Number of vertices added in the final step of the construction: ∆ ≥ n/4.
C3. Number of layers per gadget: k ≥ 1.
C4. Size of full blocks in the label partition: q ≥ 2, even.
C5. Number of full label blocks: g = bd/qc.
C6. Upper bound on the number of pebbles entering a protogadget: 1 ≤ r ≤ g/3.
C7. Time per committed edge: τ ; if P ≤ r then τ = (k − dlog2 ke) bg/3c; else

τ = r.

To satisfy constraint C1, choose

µ = bdLn/(8S)c .(8)

Since we have seen in inequality (1) that L/S = Ω(1), we have µ = Ω(m) as claimed
above.

We now turn to constraint C2. We say a gadget is closed if each of its L entry
vertices is connected to the maximum number d−d′ of committed half-edges; otherwise

1066 P. BEAME, A. BORODIN, P. RAGHAVAN, W. RUZZO, AND M. TOMPA

the gadget is open. Gµ,0 has exactly µ committed edges, or 2µ committed half-edges.
From (4), each closed gadget contributes (d− d′)L ≥ dL/2 committed half-edges, so
by (8) there can be no more than 2µ/(dL/2) ≤ n/(2S) closed gadgets in Gµ,0, each
of size S, and so closed gadgets contribute no more than n/2 vertices to G. Thus, to
ensure constraint C2, i.e., that ∆ is at least n/4, it suffices to ensure that the following
additional constraint holds:

C8. Number of vertices in open gadgets: must be at most n/4.

When building Gi+1,0 from Gi,∗, the adversary replaces a protogadget π by a
copy of a fixed gadget γ. There might be many copies of the gadget γ with which
π can be replaced. A key claim in establishing constraint C8 is that there are never
more than P (τ + 2) + d open copies of such a gadget.

Claim 4. When Gi+1,0 is defined, if there are P (τ + 2) + d open copies of
the gadget γv, then at least one of them will have an entry vertex x satisfying the
conditions (7), so a new (open) gadget will not be introduced into Gi+1,0.

Proof. We show an upper bound on the number of open gadgets that are disqual-
ified from containing x. It is easy to see that at most d− d′ ≤ d− 1 entry vertices are
adjacent to u in Gi,∗. A more subtle problem is to bound the number of gadgets that
can be touched by pebbles between the birth of π’s uncommitted connecting edge
f and the time at which f has accumulated charge τ . At most P gadgets contain
pebbles at the time of f ’s birth. At most P − 1 edges older than f can have charge
less than τ , because, by Claim 1, for each such edge f ′ there is at least one pebble
that does not leave its gadget or protogadget until f ′ has accumulated charge τ . Each
gadget touched by some pebble after the birth of f necessitates the crossing of some
connecting edge. Thus after at most (P − 1)τ such crossings, f will be the oldest
uncommitted edge, and after at most τ more crossings, f will have charge τ . Thus, at
most P (τ+1) gadgets can be touched by pebbles during the relevant interval. Finally,
at all times, at most P open gadgets are incident to uncommitted half-edges, hence
at most P lack open entry vertices. Thus, the number of vertices x not disqualified is
at least P (τ + 2) + d− (d− 1)−P (τ + 1)−P = 1, which establishes the claim.

Inequality (5) bounds the number of distinct gadget types, Claim 4 bounds the
number of open copies of each, and inequality (2) bounds the size of each copy. Thus,
the total number of vertices in open gadgets is at most

(eg
r

)r(2k+dlog2 ke)
(P (τ + 2) + d) 6dk.(9)

We divide the remainder of the analysis into two cases. The second applies when
P is small. The first applies to either small or large P but gives a weaker bound than
the second for small P .

Case 1. Let δ = 3ε/2 = 1/(2 ln(6e)), let

β = 72

(
d2 + Pd ln

n

d2 + Pd

)
,

and suppose n, P , and d are such that d2 + Pd ≤ n/e and β ≤ n/e6/δ, both of which
are true for all sufficiently large n, since d2 + Pd = o(n). Then we claim that the
following parameter values satisfy constraints C3–C8:

A TIME-SPACE TRADEOFF FOR GRAPH TRAVERSAL 1067

k = 1,

q = 2

⌈
d− 5

δ ln(n/β)

⌉
,

g = bd/qc ,
r = bg/3c ,
τ = r.

Note that constraints C3 and C5 are immediately satisfied, as is constraint C7 since
k = 1. It is also immediate that q is even and is positive, since d ≥ 6, δ > 0, and
n/β > 1; hence constraint C4 is satisfied.

For constraint C6, it is immediate that r ≤ g/3. To show r ≥ 1 it suffices to show
q ≤ d/3:

q = 2

⌈
d− 5

δ ln(n/β)

⌉
≤ 2

⌈
d− 5

6

⌉
= 2

⌊
d

6

⌋
≤ d

3
.

To satisfy constraint C8 above, we first note (making frequent use of the inequal-
ities x/2 ≤ bxc and dxe ≤ 2x, valid for all x ≥ 1) that

g/r = g/ bg/3c ≤ g/(g/6) = 6,

r = bg/3c ≤ g/3 = bd/qc /3 ≤ d/(3q)
=

d

6
⌈

d−5
δ ln(n/β)

⌉ ≤ 1

6

d

d− 5
δ ln(n/β) ≤ δ ln(n/β),

r + 2 ≤ 3r,

d2 + Pd ≤ d2 + Pd ln
n

d2 + Pd
< β, and

δ = 1/(2 ln(6e)) < 1.

Returning to constraint C8, we must show that (9) is at most n/4:(eg
r

)r(2k+dlog2 ke)
(P (τ + 2) + d) 6dk

= 6
(eg
r

)2r

(d2 + Pd(r + 2))

≤ 18(6e)2r(d2 + Pdr)

≤ 18(6e)2δ ln(n/β)(d2 + δPd ln(n/β))

= 18(n/β)(d2 + δPd ln(n/β))

=
18n(d2 + δPd ln(n/β)

72
(
d2 + Pd ln n

d2+Pd

)
< n/4,

as desired.
To complete the analysis of Case 1, we show that τ is large enough to imply the

bound in the statement of the theorem:

τ = r = bg/3c ≥ g/6 = bd/qc /6 ≥ d/(12q)

=
d

24
⌈

d−5
δ ln(n/β)

⌉ .

1068 P. BEAME, A. BORODIN, P. RAGHAVAN, W. RUZZO, AND M. TOMPA

The latter quantity equals d/24, if d ≤ δ ln(n/β) + 5. If d > δ ln(n/β) + 5, then

d

24
⌈

d−5
δ ln(n/β)

⌉ ≥ d

48
(

d−5
δ ln(n/β)

)
=

1

48

d

d− 5
δ ln(n/β)

≥ δ ln(n/β)

48

=
δ

48
ln

n

72
(
d2 + Pd ln n

d2+Pd

)
≥ δ

48
ln

n

72 (d2 + Pd) ln n
d2+Pd

= Ω

(
ln

n

d2 + Pd

)
.

The penultimate inequality holds since, by assumption, ln(n/(d2+Pd)) ≥ 1. The final
lower bound follows since ln(x/(72 lnx)) = Ω(lnx). Thus, as claimed in the statement
of the theorem, τ = Ω(min(d, ln(n/(d2 + Pd)))).

Case 2. Recall ε = 1/(3 ln(6e)) and suppose 6P ≤ d ≤ √n/69 and 1 ≤ P ≤
ε ln(n/d2). (Note that d ≤ √n/69 must be true for all sufficiently large n, since
d2+Pd = o(n).) Then we claim that the following parameter values satisfy constraints
C3–C8:

q̂ =
ed

P

(
d2

n

)1/(3P)

,

q = 2 dq̂/2e ,
g = bd/qc ,
r = P,

k =

⌊
ln(n/d2)

3P ln(ed/(qP))

⌋
,

τ = (k − dlog2 ke) bg/3c = Θ(gk).

Note that constraint C5 is immediately satisfied, as is constraint C7 since r ≥ P . Since
q̂ is positive, it is also immediate that q is even and is positive, hence constraint C4
is satisfied.

Note for future use that

(n/d2)1/(3P) ≥ (n/d2)1/(3ε ln(n/d2)) = e1/(3ε) = 6e.(10)

For constraint C3, note that q ≥ q̂. Thus,

k =

⌊
ln((n/d2)1/(3P))

ln(ed/(qP))

⌋
≥
⌊

ln((n/d2)1/(3P))

ln(ed/(q̂P))

⌋
=

⌊
ln((n/d2)1/(3P))

ln((n/d2)1/(3P))

⌋
= 1.

Thus k ≥ 1. Using a similar analysis, we note for future use that k = 1 whenever
q > 2. This holds since q > 2 implies q̂/2 > 1, which implies q ≤ 2q̂. Thus,

k =

⌊
ln((n/d2)1/(3P))

ln(ed/(qP))

⌋
≤
⌊

ln((n/d2)1/(3P))

ln(ed/(2q̂P))

⌋
=

⌊
ln((n/d2)1/(3P))

ln((n/d2)1/(3P)/2)

⌋
= 1.(11)

A TIME-SPACE TRADEOFF FOR GRAPH TRAVERSAL 1069

The last equality follows from the fact that 1 < (lnx)/(ln(x/2)) < 2 whenever x > 4,
and from (10).

For constraint C6, it is immediate that r = P ≥ 1. To show r ≤ g/3 it suffices
to show 3qP ≤ d. If q = 2, this holds, since by assumption 6P ≤ d. If q > 2, then
q̂/2 > 1, so

3qP = 6 dq̂/2eP ≤ 6q̂P = 6(ed/P)(d2/n)1/(3P)P ≤ 6ed/(6e) = d.(12)

The last inequality follows from (10).
For constraint C8, we first note for integer k ≥ 1 that

2k + dlog2 ke ≤ 8k/3.

(The bound is tight at k = 3.) Also,

τ + 2 = (k − dlog2 ke) bg/3c+ 2 ≤ gk,

since g ≥ 3. Using (9), we bound the number of vertices in open gadgets as follows.(eg
r

)r(2k+dlog2 ke)
(P (τ + 2) + d) 6dk

≤ 6
(eg
P

)8Pk/3

dk(Pgk + d)

≤ 6

(
ed

qP

)(8/3)P

⌊
ln(n/d2)

3P ln(ed/(qP))

⌋
dk(Pdk/q + d)

≤ 6
(n
d2

)8/9

d2(Pk2/q + k)

≤ 6n8/9d2/9(Pk2/q + k).

We break the rest of the derivation of constraint C8 into two subcases based on d.
Note that, since 3qP ≤ d from (12),

k =

⌊
ln(n/d2)

3P ln(ed/(qP))

⌋
≤ lnn

3P ln(3e)
≤ lnn.

When d < n1/4, since k and P are both O(logn), we have

6n8/9d2/9(Pk2/q + k) = O(n8/9(n1/4)2/9 log3 n) = O(n17/18 log3 n) = o(n).

When d ≥ n1/4, we will show that q > 2P and k = 1, so we have

6n8/9d2/9(Pk2/q + k) ≤ 6n8/9(n1/2/69)2/9(1/2 + 1) = n/4.

We show that q > 2P as follows.

q

P
≥ q̂

P
=
ed

P 2

(
d2

n

)1/(3P)

≥ n1/4

P 2

(
n2/4

n

)1/3

=
n1/12

P 2
= ω(1).

(Recall P = O(logn).) Since q > 2P and P ≥ 1, we have q > 2, so k = 1 by (11).
To complete the analysis of Case 2, we show that τ = (k − dlog2 ke) bg/3c is

large enough to imply the bound in the statement of the theorem. Again we split the

1070 P. BEAME, A. BORODIN, P. RAGHAVAN, W. RUZZO, AND M. TOMPA

analysis into two subcases based on d. We have q > 2 if and only if q̂ > 2, which
holds exactly when

d > d0 = (2P/e)3P/(3P+2) n1/(3P+2).

In this case we have k = 1 by (11) and

τ = bg/3c ≥ g/6 ≥ d/(12q) ≥ d/(24q̂) =
d

24
(
ed
P

(
d2

n

)1/(3P)
)

=
P

24e

(n
d2

)1/(3P)

(13)

= Ω

(
P
(n
d2

)1/(3P)
)
,

as claimed. We remark that, by (10), when P is maximal, (13) is P/4 = Θ(log(n/d2)),
so the transition to the bound given in Case 1 is “smooth.”

In the second subcase we have d ≤ d0. First, note that

d0 = (2P/e)3P/(3P+2) n1/(3P+2) ≤ Pn1/(3P+2) ≤ Pn1/5 = o(n1/4).(14)

Second, since d ≤ d0, we have q = 2 and k ≥ 1. Also, note that (k−dlog2 ke)/k ≥ 1/3,
(attaining the minimum at k = 3) and that g ≥ 3. Hence τ = Ω(gk) and

gk =

⌊
d

q

⌋⌊
ln(n/d2)

3P ln(ed/(qP))

⌋
≥ d ln(n/d2)

24P ln(ed/(2P))

=
d ln(n/o(n1/2))

24P ln(ed/(2P))

= Ω

(
d/P

ln(d/P)
lnn

)
,

as claimed. We remark that when P is maximal and d ≥ 6P , the estimate in (14) can
be refined, allowing one to show d = Θ(P) = Θ(logn). Thus, τ again matches the
bound in Case 1 (up to constant factors).

Finally, when d = d0 we have q̂ exactly equal to 2; similarly, when d = d0,
the expression of which k is the floor is precisely 1. Furthermore, both expressions
vary slowly with d, so both are Θ(1) when d is near d0. Thus, again τ = (k −
dlog2 ke) bbd/qc /3c is “smooth” as d crosses d0, the threshold between the lower
bounds quoted in (a) and (b) in the statement of the theorem, and in fact both lower
bounds are Θ(md0) for d near d0.

This completes the proof.
It is interesting to note why the proof would fail if M were allowed to jump

pebbles. In the local phase, the adversary was able to pick an existing gadget in which
p must invest τ steps. In the presence of jumping, this fails, since p can always jump
out of the new gadget. As a particular foil to the proof above, imagine an automaton
that stations one pebble p on an entry vertex of some gadget, and successively moves
a second pebble q to each neighbor, jumping q back to p to find the next neighbor. In
time Θ(d), this has touched all Θ(d) connecting edges incident to that entry vertex,
which was impossible in the construction above.

A TIME-SPACE TRADEOFF FOR GRAPH TRAVERSAL 1071

4. Open problem. The obvious important problem is to strengthen and gen-
eralize these lower bounds. Following an earlier version of this paper [9], Edmonds
[21] proved a much stronger time-space tradeoff on general JAGs: for every z ≥ 2,
a JAG with at most 1

28z
logn

log log n pebbles and at most 2logz n states requires time

n · 2Ω((log n)/(log log n)) to traverse 3-regular graphs. The ultimate goal might be to
prove that ST = Ω(mn) for JAGs or even for general models of computation.

Acknowledgment. We thank Michael Sipser for showing us the construction
generalized in section 3.

REFERENCES

[1] L. M. Adleman, Two theorems on random polynomial time, in 19th Annual IEEE Symposium
on Foundations of Computer Science, Ann Arbor, MI, 1978, pp. 75–83.

[2] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovász, and C. W. Rackoff, Random walks,
universal traversal sequences, and the complexity of maze problems, in 20th Annual IEEE
Symposium on Foundations of Computer Science, San Juan, Puerto Rico, 1979, pp. 218–
223.

[3] N. Alon, Y. Azar, and Y. Ravid, Universal sequences for complete graphs, Discrete Appl.
Math., 27 (1990), pp. 25–28.

[4] A. Bar-Noy, A. Borodin, M. Karchmer, N. Linial, and M. Werman, Bounds on universal
sequences, SIAM J. Comput., 18 (1989), pp. 268–277.

[5] G. Barnes, J. F. Buss, W. L. Ruzzo, and B. Schieber, A sublinear space, polynomial time
algorithm for directed s-t connectivity, SIAM J. Comput., 27 (1998), pp. 1273–1282.

[6] G. Barnes and J. A. Edmonds, Time-space lower bounds for directed s-t connectivity on
JAG models, in Proceedings 34th Annual IEEE Symposium on Foundations of Computer
Science, Palo Alto, CA, 1993, pp. 228–237.

[7] G. Barnes and U. Feige, Short random walks on graphs, SIAM J. Disc. Math., 9 (1996),
pp. 19–28.

[8] G. Barnes and W. L. Ruzzo, Undirected s-t connectivity in polynomial time and sublinear
space, Comput. Complexity, 6 (1996/1997), pp. 1–28.

[9] P. W. Beame, A. Borodin, P. Raghavan, W. L. Ruzzo, and M. Tompa, Time-space tradeoffs
for undirected graph traversal, in Proc. 31st Annual IEEE Symposium on Foundations of
Computer Science, St. Louis, MO, 1990, pp. 429–438.

[10] P. W. Beame, A. Borodin, P. Raghavan, W. L. Ruzzo, and M. Tompa, Time-space trade-
offs for undirected graph traversal by graph automata, Inform. and Comput., 130 (1996),
pp. 101–129.

[11] P. Berman and J. Simon, Lower bounds on graph threading by probabilistic machines, in
24th Annual IEEE Symposium on Foundations of Computer Science, Tucson, AZ, 1983,
pp. 304–311.

[12] M. Blum and D. C. Kozen, On the power of the compass (or, why mazes are easier to search
than graphs), in 19th Annual IEEE Symposium on Foundations of Computer Science, Ann
Arbor, MI, 1978, pp. 132–142.

[13] M. Blum and W. J. Sakoda, On the capability of finite automata in 2 and 3 dimensional
space, in 18th Annual IEEE Symposium on Foundations of Computer Science, Providence,
RI, 1977, pp. 147–161.

[14] A. Borodin, Structured vs. general models in computational complexity, L’Enseignement
Mathématique, XXVIII (1982), pp. 171–190. Also in [27, pp. 47–65].

[15] A. Borodin, S. A. Cook, P. W. Dymond, W. L. Ruzzo, and M. Tompa, Two applications of
inductive counting for complementation problems, SIAM J. Comput., 18 (1989), pp. 559–
578. See also 18 (1989), p. 1283.

[16] A. Borodin, W. L. Ruzzo, and M. Tompa, Lower bounds on the length of universal traversal
sequences, J. Comput. System Sci., 45 (1992), pp. 180–203.

[17] M. F. Bridgland, Universal traversal sequences for paths and cycles, J. Algorithms, 8 (1987),
pp. 395–404.

[18] A. Z. Broder, A. R. Karlin, P. Raghavan, and E. Upfal, Trading space for time in undi-
rected s-t connectivity, SIAM J. Comput., 23 (1994), pp. 324–334.

[19] J. Buss and M. Tompa, Lower bounds on universal traversal sequences based on chains of
length five, Inform. Comput., 120 (1995), pp. 326–329.

1072 P. BEAME, A. BORODIN, P. RAGHAVAN, W. RUZZO, AND M. TOMPA

[20] S. A. Cook and C. W. Rackoff, Space lower bounds for maze threadability on restricted
machines, SIAM J. Comput., 9 (1980), pp. 636–652.

[21] J. A. Edmonds, Time-space trade-offs for undirected ST -connectivity on a JAG, in Proceedings
of the 25th Annual ACM Symposium on Theory of Computing, San Diego, CA, 1993,
pp. 718–727.

[22] J. A. Edmonds and C. K. Poon, A nearly optimal time-space lower bound for directed st-
connectivity on the NNJAG model, in Proceedings of the 27th Annual ACM Symposium
on Theory of Computing, Las Vegas, NV, 1995, pp. 147–156.

[23] U. Feige, A spectrum of time-space trade-offs for undirected s-t connectivity, J. Comput.
System Sci., 54 (1997), pp. 305–316.

[24] A. Hemmerling, Labyrinth Problems: Labyrinth-Searching Abilities of Automata, Teubner-
Texte Math. 114, Teubner, Leipzig, 1989.

[25] S. Istrail, Polynomial universal traversing sequences for cycles are constructible, in Proceed-
ings of the 20th Annual ACM Symposium on Theory of Computing, Chicago, IL, 1988,
pp. 491–503.

[26] H. J. Karloff, R. Paturi, and J. Simon, Universal traversal sequences of length nO(logn)

for cliques, Inform. Proc. Lett., 28 (1988), pp. 241–243.
[27] Logic and Algorithmic, An International Symposium Held in Honor of Ernst Specker, Zürich,

Feb. 5–11, 1980, Monographie No. 30 de L’Enseignement Mathématique, Université de
Genève, Switzerland, 1982.

[28] N. Nisan, RL ⊆ SC , Comput. Complexity, 4 (1994), pp. 1–11.
[29] N. Nisan, E. Szemerédi, and A. Wigderson, Undirected connectivity in O(log1.5 n) space, in

Proceedings 33rd Annual IEEE Symposium on Foundations of Computer Science, Pitts-
burgh, PA, 1992, pp. 24–29.

[30] W. J. Savitch, Relationships between nondeterministic and deterministic tape complexities,
J. Comput. System Sci., 4 (1970), pp. 177–192.

[31] W. J. Savitch, Maze recognizing automata and nondeterministic tape complexity, J. Comput.
System Sci., 7 (1973), pp. 389–403.

[32] M. Tompa, Two familiar transitive closure algorithms which admit no polynomial time, sub-
linear space implementations, SIAM J. Comput., 11 (1982), pp. 130–137.

[33] M. Tompa, Lower bounds on universal traversal sequences for cycles and other low degree
graphs, SIAM J. Comput., 21 (1992), pp. 1153–1160.

