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S c i e n c e  D a t a 
M a n a g e m e n t

SQLShare is a Web-based application for collaborative data analysis that emphasizes 
a simple upload-query-share protocol over conventional database design and ad hoc 
interactive query over general-purpose programming. Here, a case study examines the 
use of SQLShare as an alternative to script-based scientific workflows for a project in 
observational biological oceanography.

Collaborative Science  
Workflows in SQL

Data management has replaced data ac-
quisition as the bottleneck to scien-
tific discovery. Consider an example:  
in the last decade, several high-

frequency flow cytometers have been developed 
to study microorganism composition at very fine 
spatial and temporal scales, collecting hundreds 
of samples per day for several weeks. A flow cy-
tometer passes a fluid through a fine capillary, 
identifying particles in the fluid by analyzing 
the absorption and refraction patterns of vari-
ous wavelengths of light.  One of the largest flow 
cytometry datasets publicly available to marine 
biologists is produced by SeaFlow, a new genera-
tion of flow cytometer created at the University 
of Washington that continuously measures phy-
toplankton composition and abundance at a rate 
of thousands of cells per second.1 The instru-
ment generates the equivalent of 6,700 samples, 
representing a dataset of 35–135 Gbytes, after a 
typical two-week oceanographic cruise. To date,  
the instrument’s dataset represents more than  
200 billion cells collected in different seasons and 
different environments, but only 10 percent of the 
data has been analyzed so far due to challenges in 

management and analysis. (See the related sidebar 
for more details.)

To contend with such challenges, through a 
partnership between the University of Washing-
ton’s eScience Institute and the Armbrust Lab, 
we’re developing a new “delivery vector” for re-
lational database technology called SQLShare, 
and studying how it can be used to satisfy both 
scientific workflow requirements and ad hoc in-
teractive analysis. Here, we present a case study 
of SQLShare use in environmental flow cytom-
etry. We argue that the platform offers significant 
benefits and lower overall costs than the alterna-
tives: ad hoc scripts and files, scientific workflow 
systems, and conventional database applications.

SQLShare: Collaborative Science  
via Relational View Sharing
SQLShare is a Web-based query-as-a-service 
system that eliminates the initial setup costs as-
sociated with conventional database projects and 
instead emphasizes a simple upload-query-share 
protocol: users can upload their table-structured 
files through a browser and immediately query 
them using SQL without needing schema de-
sign, preprocessing, or the assistance of database 
administrators. SQLShare users derive new data-
sets by writing and saving SQL queries; these  
derived datasets can be queried and manipulated 
in the same way as uploaded datasets. Each de-
rived dataset is managed as a view in the underly-
ing database: a named, permanently stored query.  
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Each dataset is also equipped with descriptive 
metadata. Everything in SQLShare is accom-
plished by writing and sharing views. Users can 
clean data, assess quality, standardize units, inte-
grate data from multiple sources, attach metadata, 
protect sensitive data, and publish results. The 
resulting network of related views is superficially 
similar to the “boxes-and-arrows” abstractions 
found in scientific workflow systems (see Figure 1),  
but there are some important differences:

•	No special software is required—all data and 
processing logic are fully accessible through a 
Web browser, and views can be edited directly 
in the browser as well.

•	Data never needs to be reprocessed explicitly— 
for most queries, the underlying database sys-
tem can efficiently and scalably regenerate re-
sults on demand whenever a view is accessed 
(for expensive queries, the results can be mate-
rialized and cached on disk automatically or on 
demand).

•	The only size limit for datasets is the storage 
capacity of the database itself—unlike script-
based processing, no task can ever crash due to 
“out-of-memory” errors (nor thrash due to lim-
ited virtual memory).

•	All collaborators access the same version of 
each view, stored centrally in the database: Any 
change to a view is immediately and automati-
cally reflected in all future results, eliminat-
ing confusion over which version is current or 
correct.

•	 SQLShare stores source code and data, cou-
pling them in a single Web interface: Views and 
the input data they require can’t be separated, 
so errors resulting from applying a script to the 
wrong data can’t occur (in contrast, physical 
files are generally decoupled from the scripts 

that generate them, and can only be associated 
explicitly through elaborate metadata schemes 
or sophisticated provenance systems).

•	Ownership of a view affords precise control 
over access permissions: Views can be public, 
private, or shared explicitly with specific col-
laborators in a centralized manner.

•	Because all data are stored in a centralized lo-
cation, there’s only one global namespace to  
manage—it’s impossible to have two datasets 
with the same name but different content.

•	A complex network of views can be inspected 
visually (see Figure 2), providing an intuitive 
form of provenance.

Figure 1. The SQLShare data model. (a) A dataset’s internal structure 
consists of a relational view, attached metadata, and a cached preview 
of the results. (b) A newly uploaded dataset creates both a physical 
base table and an initial (trivial) wrapper view. (c) The physical data 
are stored in base tables, but are never modified directly. (d) Wrapper 
views are indistinguishable from other SQLShare datasets, except 
that they reference physical base tables. (e) Derived datasets can 
be created by any user. Permissions are managed in the underlying 
database.
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Figure 2. A set of related datasets in SQLShare representing the integration of data from three research cruises organized as 
a dependency graph. These dependencies are derived automatically from the queries themselves and need not be tracked 
explicitly by a separate system.
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•	The SQL definition of each view provides a 
concise and declarative expression of the logic, 
eliminating data-representation issues.2

•	Ad hoc interactive exploration is supported di-
rectly: With sufficient permissions, any view can 
be copied, modified slightly, and re-executed— 
no matter who owns the original.

Our initial experience with SQLShare has al-
lowed us to reject the conventional wisdom that 

“scientists won’t write SQL.” Our experience is 
that they can and will. We find that even non-
programmers can create and share SQL views 
for a variety of tasks, including those considered 
the turf of general-purpose scripting languages: 
quality control, data integration, basic statistical 
analysis, sampling, binning and aggregation, data 
cleaning, and reshaping in preparation for visu-
alization. We also find that researchers are using 
SQL not just to manipulate data themselves, but 

Why Use sQL for  
CoLLaborative Data anaLysis?

Why was the script-based approach for analyzing the 
SeaFlow data problematic? Here are the issues cited 

by our colleagues in Oceanography and echoed by our 
other collaborators:

•	 Scripts for data processing and ad hoc analysis, typically 
written in R, must be manually re-executed, sometimes 
by multiple collaborators, when new data arrives or the 
logic changes.

•	 These scripts assume all data can be loaded in the main 
memory; redesigning algorithms to exploit secondary 
storage or multiple computers in parallel is often beyond 
the capabilities of domain researchers.

•	 New versions of scripts and/or the results they produce 
must be redistributed among collaborators, creating 
the opportunity for confusion; also, older, deprecated 
versions of scripts and data can’t be “recalled” by their 
authors, and thus might (silently) continue to be used to 
make wrong decisions.

•	 Given a dataset generated by some variant of these 
scripts, there’s no unambiguous way to determine its 
provenance—that is, the exact series of steps that pro-
duced it.

•	 Files must be read and written by each step in the 
pipeline, incurring a dependence on brittle file for-
mats and requiring explicit paths that can complicate 
portability.

Some of these problems motivated the study of scientific 
workflow management systems (SWMS), which aim to 
raise the level of abstraction for expressing and executing 
science data-processing pipelines by offering features for 
managing provenance, reusing components, and execut-
ing pipelines on heterogeneous platforms. These systems 
have enjoyed success in large-scale projects involving 
substantial investment in IT infrastructure,1 where the 
cost of workflow development can be amortized over 
many repeated executions. However, despite years of 
productive research, these systems haven’t been widely 
adopted.2 In particular, we find that workflow systems are 

difficult to deploy in the long tail of science3,4—that is, the 
smaller labs and individual researchers who may operate 
at the “forward edge” of science where rapidly changing 
requirements, exploding data volumes, and limited access 
to in-house IT infrastructure and expertise make develop-
ment of reusable pipelines for data processing prohibitively 
expensive. As a result, we seek a system that emphasizes 
simple, interactive analysis instead of software engineering, 
yet automatically provides workflow-like provenance and 
reuse features as a side effect.

Our observation is that although relational databases 
support interactive analysis and can comfortably handle 
the scale of the data, they haven’t enjoyed significant up-
take in these scenarios. It’s tempting to ascribe this under-
use to a mismatch between scientific data and the models 
and languages of commercial database systems.5 But our 
experience is that relational models and languages aren’t 
the problem.6 Instead, we find that the barrier to adoption 
is the assumption that, before these models and languages 
can be used, we must engineer a database schema and 
populate it only with clean, integrated, and well-structured 
data. But it’s clear that developing a definitive database 
schema for a project at the frontier of research, where 
knowledge is undergoing sometimes daily revision, is a 
challenge even for database experts. Moreover, concerns 
about controlling unpublished research data—a concern 
that conflicts with the need for unfettered collaboration 
and sharing—complicate centralization and organization 
in a database. Researchers want fine-grained control over 
their data, and scripts and files give them this measure of 
control where databases (by default) don’t.

Despite these weaknesses, the core technology of rela-
tional databases remains attractive for science. The data-
sets we encounter are naturally modeled as relations—such 
as comma-separate values (CSV) files and “rectangular” 
spreadsheets. These relations are frequently too large to be 
manipulated in main memory, but nearly all databases are 
equipped with out-of-core algorithms and can automati-
cally select among the algorithms using cost-based alge-
braic optimization. Of course, performance is irrelevant if 
we can’t use the programming interfaces and languages to 
implement the tasks that researchers must perform. But we 
(and others) have found that many of these analysis tasks 
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also to exchange ideas and collaborate—sharing 
SQL queries lets researchers communicate in 
terms of science questions instead of computer 
programs.

Now that we’ve offered a sense of our approach 
to the problem, let’s consider how this works in 
practice. The following case study shows how 
scientists use SQLShare as an alternative to 
script-based scientific workflows in observational 
biological oceanography.

Case Study: A Census of Microbial 
Ocean Populations Using SeaFlow
The most abundant organisms in the world’s 
oceans are microbes less than 20 micrometers 
(µm) in size. Together, these organisms drive 
biogeochemical cycling of major elements, with 
almost 50 percent of organic carbon production 
on Earth generated and recycled by these small 
microbes. Satellite images of chlorophyll-a con-
centrations in the surface ocean have transformed 

can be easily expressed as SQL queries.6,7 As an example, 
Figure A illustrates binning a time series on three-minute 
intervals for integration with other data streams—a task 
that was initially assumed to be inappropriate for imple-
mentation in the database.
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Figure A. Two implementations of a time-binning task, where each measured variable is averaged across three-minute intervals. 
Variables from different sensors are binned to the same intervals, then joined to construct a single dataset. Data from multiple 
research cruises are similarly integrated, then merged into a single overall dataset.

 1 table <- read.csv("table.csv")

 2 # define 3 min time intervals

 3 breaks <- seq(

 4               min(table$time),

 5               max(table$time),

 6               by=3)

 7 # bin the table according to the breaks

 8 b <- cut(table$time, breaks=breaks)

 9

10 # calculate the mean of each variable

11 b.time <- tapply(table$time, b, mean))

12 b.Fluo <- tapply(table$Fluo, b, mean))

13 b.Temp <- tapply(table$Temp, b, mean))

14 b.Oxyg <- tapply(table$Oxyg, b, mean))

15 b.Nitr <- tapply(table$Nitr, b, mean))

16 b.Lat  <- tapply(table$Lat, b, mean))

17 b.Lon  <- tapply(table$Lon, b, mean))

18 

19 binned.table <- data.frame(

20          cbind(b.time, b.Fluo, b.Temp,

21                b.Oxyg, b.Nitr,

22                b.Lat, b.Lon))

23 write.csv(binned.table,"binned.csv")

 1 WITH data AS

 2   (SELECT * FROM [table.csv]),

 3      -- compute the minimum timestamp

 4      bounds AS

 5   (SELECT min(time) AS mintime FROM data),

 6      -- assign each timestamp a bin

 7      binned AS

 8   (SELECT bounds.mintime +

 9           floor((data.time – bounds.mintime)/3.0)

10           * 3.0 as binid

11      FROM data, bounds)

12 -- compute the average of each bin

13 SELECT binid

14   , avg(Fluo) as Fluo

15   , avg(Temp) as Temp

16   , avg(Oxyg) as Oxyg

17   , avg(Nitr) as Nitr

18   , avg(Lon) as Lon

19   , avg(Lat) as Lat

20   , avg(time) as time

21 FROM binned

22 GROUP BY binid

23 ORDER BY binid ASC
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our view of photosynthetic microbe (phytoplank-
ton) distribution, but provide little information 
about specific populations of phytoplankton. 
Also, finer-scale details are lost due to the data 
aggregation required to counteract cloud cover. 
Our ability to develop high-resolution maps of 
the distribution and abundance of these organ-
isms is critical to understanding ecosystem func-
tions and the sensitivity of these processes to 
environmental changes. Progress in this area has 
been limited largely because we lack observation-
al tools for microbes.

SeaFlow Overview
To address these issues, the University of Wash-
ington’s SeaFlow project has developed an en-
tirely new flow cytometer.1 SeaFlow taps into 
the seawater intake on ships and continuously (at 
a rate of up to 24,000 cells per second) measures 
abundance, cell size, and f luorescence signals 
from pigments within individual phytoplankton 
cells (0.5–20 µm), while simultaneously logging 
underway temperature, salinity, chlorophyll, and 
fluorescence. Data files are created every three 
minutes, yielding a sampling resolution of one  
kilometer (km) along a cruise track.

To date, about 130 days of continuous cytom-
etry data have been collected, sampling 60,000 km  
in the North Pacific Ocean, a dataset compa-
rable to collecting 120,000 traditional flow cy-
tometry samples. A set of software tools has been 

developed to automatically cluster and analyze cy-
tometric populations.3 This processed data can be 
accessed and visualized through our Web portal 
(http://seaflow.ocean.washington.edu). Figure 3  
is a cytogram that illustrates SeaFlow’s ability 
to discriminate between microbial populations.  
A key remaining challenge is to create collaborative 
data processing and a management and analysis plat-
form, with both on-ship and onshore components, 
to allow scalable, interactive analysis of the rapidly 
expanding datasets. This challenge is the motiva-
tion for our collaborative work with SQLShare.

Data Processing Workflows for SeaFlow
The SeaFlow instrument produces up to 24,000 
particle counts per second, depending on ambi-
ent cell concentrations. Each particle is associated 
with five measurements corresponding to the in-
tensity of scattered light (a proxy for cell size) and 
the fluorescence emitted by different pigments 
(for example, chlorophyll a and phycoerythrin) 
within the organism. Cells are clustered into dif-
ferent microbial populations using a variant of 
k-means (a cluster analysis method aimed at par-
titioning n observations into k clusters in which 
each observation belongs to the cluster with the 
nearest mean). Data size is then reduced by com-
puting the summary statistics for each popula-
tion. The summarized SeaFlow data are then 
merged with other data streams from the research 
cruise. 

Figure 3. Example of flow cytometric signatures of phytoplankton populations in the North Pacific Ocean. (a) Red 
fluorescence from chlorophyll versus forward light scattering (a proxy of cell size) identified five distinct phytoplankton 
populations: large and small elongated phytoplankton, large and small nanoplankton, and ultraplankton. (b) Orange 
fluorescence from phycoerythrin versus forward light scattering was used to identify the cyanobacteria Synechococcus, 
cryptophytes, and fluorescent microspheres (beads) added as an internal standard.
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Additional SeaFlow measurements include a  
continuous flow-through thermosalinograph (TSG) 
to measure salinity and temperature (and some-
times dissolved oxygen), latitude and longitude 
from the ship’s navigation system, and depth pro-
files from conductivity, temperature, and depth 
(CTD) packages. More sensors can be added 
depending on the cruise and the particular sci-
ence mission. Certain variables such as location, 
time, temperature, and salinity are integrated 
into the SeaFlow data during the cruise. Much 
of the other data must be processed before being 
integrated with other datasets. This processing is 
done offline, after the cruise. The entire cruise 
dataset must then be integrated and shared with 
colleagues in a timely manner. It’s at this phase 
that the script-oriented “pipeline” model breaks 
down due to poor scalability beyond main mem-
ory, complications from multiple versions, and 
poor provenance. Consider these examples.

example 1: error propagation. A bug was discovered 
in the initial R script responsible for computing 
summary statistics of the different microbial pop-
ulations, a task on which the majority of the post-
processing depended. Resolving the bug wasn’t 
an especially onerous task, but it took significant 
effort and communication with collaborators 
to ensure that everyone was using and sharing 
the corrected data. With SQLShare, this data is 
stored in one central place and is automatically re-
generated on demand as needed.

example 2: scaling data integration. The R scripts 
used to process SeaFlow data pertain to only one 
cruise; each cruise is processed independently. 
This approach complicates longitudinal analysis 
across multiple cruises. Combining and repro-
cessing files from different cruises is one solu-
tion, but it requires loading tens of gigabytes into 
memory at once, which isn’t feasible without an 
investment in new hardware.

In SQLShare, datasets from multiple cruises 
can be combined with a single UNION query (see 
Figure 2). Thanks to the closure properties of the 
underlying relational algebra, we know that a set 
of cruises can be handled identically to a single 
cruise: everything is a relation. Evaluation is lazy; 
nothing is recomputed until the results are ac-
cessed. More importantly, no assumptions about 
available memory are made when manipulating 
these datasets, and the performance is excellent. 
In this way, SQLShare facilitates a new class of 
longitudinal science questions that were previously 
deemphasized because of logistical challenges. 

For example, macroecology questions involving 
the relationships between organisms and their en-
vironment at large spatial scales can’t be studied 
without convenient, efficient access to large-scale 
datasets.

To solve these problems and migrate the over-
all workflow to SQLShare, the processing scripts 
must be reimplemented in SQL. It might seem 
surprising that this is possible; SQL has a repu-
tation for being a simple, inexpressive language. 
But we find in practice that most data-processing 
tasks reduce to table manipulations, at which SQL 
excels.

For example, Figure A (see the sidebar) shows 
two implementations of the same task, one in R 
(a free software programming language for sta-
tistical computing and analysis) and one in SQL. 
The task is to average a series of measurements 
by three-minute intervals. The two implementa-
tions are of superficially comparable length and 
complexity and produce the same results, up to 
structural distinctions. The R script must read 
from and write to a file, exposing a parameter 
that’s dependent on the user’s local file system re-
sources. The storage for the SQL version is im-
plicit. The SQL version can also be optimized by 
the database and executed regardless of the avail-
able memory, whereas line 1 of the R version reads 
the entire file into memory—a critical limitation 
for long cruises.

SQLShare Design and Implementation
SQLShare (see http://escience.washington.edu/
sqlshare) has three components, all of which are 
cloud-hosted: a Web-based user interface (UI), a 
Representational State Transfer (REST) Web 
service, and a database back end. The UI is a 
Django Python application (a Web framework 
similar to Ruby on Rails), hosted on Amazon Web 
Services. The UI communicates with the back 
end exclusively through REST calls, ensuring 
that all client tools have full access to all features. 
The Web service is implemented on Microsoft 
Azure as (one or more) Web Roles. The database 
also is implemented using Microsoft’s SQL Azure 
system, which is very similar to Microsoft’s SQL 
Server platform.

Data Model
Figure 4 shows a screenshot of SQLShare. The 
data model consists of a single entity: the dataset. 
A dataset consists of a named SQL query (imple-
mented as a view in the underlying database), a 
free-text description, and a collection of metadata 
tags. We also compute and cache a preview of each 

CISE-15-3-Howe.indd   27 6/6/13   7:35 PM



28 Computing in SCienCe & engineering

view’s results to afford low-latency browsing of 
the relatively static science datasets we encounter 
in practice. 

When a new dataset is uploaded, the system 
creates both the physical base table and a trivial 
wrapper view of the form SELECT * FROM TABLE. 
Then, users can modify the wrapper view or cre-
ate derived views. Figure 1 illustrates the situation. 
Users rarely interact directly with the underlying 
physical tables: every dataset is associated with a 
view. By erasing the distinction between logical 
view and physical table, we preserve the ability to 
choose when views should be fully materialized 
(that is, precomputed and stored on disk). Because 
there are no destructive updates supported, we 
can cache view results as aggressively as space will 
allow. When a view definition changes, down-
stream dependent views might no longer be valid. 
In this case, before applying the change, we cre-
ate a snapshot of any views that would have been 
invalidated by the change. With this approach, no 
change or access to any view will ever be rejected 
outright, although we do warn the user when de-
pendent objects are affected.

Researchers can load data into SQLShare by 
uploading files through a browser. The system 
makes an attempt to infer the file’s record struc-
ture and schema by recognizing column names, 

identifying row and column delimiters, and infer-
ring the data type in each column. Files with no 
column headers receive default names. Various 
data-quality issues are addressed automatically: 
files with an inconsistent number of columns or 
inconsistent data types among rows can still be 
uploaded successfully. The design goal is to be tol-
erant in getting data into the system and encour-
age the use of queries and views to repair quality 
problems. Here are some examples:

•	Numeric data is often polluted with string val-
ues representing NULL (such as “N/A,” “None,” 
or “-”), complicating automatic type inference; we 
can repair this situation easily by writing a simple 
view to replace these strings with a true NULL.

•	We can replace missing or nondescriptive 
column names with aliases in the SELECT clause.

•	We can filter out bad rows and columns en-
tirely with an appropriate WHERE or SELECT 
clause, respectively.

•	 We can reconstruct logical datasets that have been 
artificially decomposed into multiple files with 
a UNION clause—for example, we can represent 
one week of sensor data as seven one-day files.

This idiom of uploading dirty data and clean-
ing it declaratively in SQL by writing and saving 

Figure 4. Annotated screenshot of the SQLShare system. The options on the left support browsing datasets in typical ways: by  
popularity, recency, and tags. Each dataset consists of its SQL definition, a text description, a set of tags, and a preview of its result.
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views has proven extremely effective; it insulates 
other users from the problems without resulting 
in multiple versions of the data accumulating, and 
without requiring external scripts to be written 
and managed. Everything is in the database.

Further, all permissions handling is pushed 
down into the database. Each SQLShare user is as-
sociated with a database user and a schema, and 
permissions changes in the UI are translated into 
GRANT and REVOKE statements in the database. 
Web authentication is handled through an open 
standard for authentification (OAuth) and Shibbo-
leth. Once authentication is confirmed, the service 
impersonates the user when issuing queries.

Key Features
The SQLShare data model, API, and supported 
features are designed to lift certain database fea-
tures, such as views, and suppress others, such 
as document-description language (DDL) and 
transactions. Following are summaries of the dis-
tinguishing features.

no schema. We don’t allow CREATE TABLE state-
ments; tables are created directly from the col-
umns and types are inferred in (or extracted from) 
uploaded files. Just as users might place any file 
on a filesystem, we let them put any table into the 
SQLShare “tablesystem”—not just those tables 
that comply with a predefined schema.

appends and incremental upload. Datasets can be 
uploaded in chunks. This mechanism lets large 
files be uploaded safely, but also affords support 
for appends. A chunk for a table can arrive at any 
time, and the table can be freely queried between 
chunks (the chunked upload is non-transactional). 
Appends are handled in the view layer and not 
physically inserted into the underlying table. 
Each chunk is created as a separate table, and the 
base view is rewritten as a UNION of these chunks. 
There are two advantages to this approach.

First, this organization is exactly what’s re-
quired for distributed query processing in many 
vendors’ systems, especially Microsoft SQL 
Server. Each chunk is placed on a separate disk 
or server, allowing each to be scanned and fil-
tered in parallel. Distributed query isn’t the same 
as true parallel query processing, but it can still 
significantly improve performance and be used 
to implement federated databases. Second, the 
original partitioning of the data is preserved for 
provenance reasons. If a “bad” chunk is uploaded, 
it can be trivially removed or replaced by simply 
editing the query rather than editing the database.  

This approach emphasizes dataset-level opera-
tions over row-level operations; we find dataset-
level operations to be researchers’ natural unit of 
processing and a closer analog to the file-oriented 
manipulation to which they are accustomed. 

Tolerance for structural inconsistency. Files with 
missing column headers, columns with nonhomo-
geneous types, and rows with irregular numbers of 
columns are all tolerated.  We encourage research-
ers to put data into SQLShare as early as possible 
in the pipeline, and use SQL itself to clean the data 
to improve provenance and transparency. 

Metadata and tagging. SQLShare encourages cre-
ating views frequently and liberally. Navigating 
and browsing the hundreds of views that result 
from the use of SQLShare has emerged as a chal-
lenge not typically encountered in database ap-
plications. To help solve the problem, views can 
be named, described, and tagged through the UI 
and programmatically through the REST Web 
service. The tags can be used to organize views 
into virtual folders. In future work, we’ll imple-
ment bulk operations—such as download, delete, 
tag, and change permissions—on virtual fold-
ers. We’re also experimenting with a feature that 
would allow regular expression (regex) find-and-
replace over a set of view definitions to simplify 
refactoring. We envision SQLShare evolving into 
a database-backed integrated development envi-
ronment (IDE) for SQL and user-defined func-
tion (UDF) development.

append-only, copy-on-write. We don’t allow de-
structive updates. Users insert new information 
by uploading new datasets. These datasets can be 
appended to existing datasets if the schemas match. 
Name conflicts are handled by versioning—the con-
flicting dataset is renamed, and views that depend on 
the old version are updated to reflect the change.

simplified views. To make views simpler to use, 
we avoid the awkward CREATE VIEW syntax. In 
SQLShare, view creation is a side effect of querying— 
the current results can be saved by simply typing 
a name. This simple UI adjustment appears to be 
effective, with more than 2,500 views registered 
in the system by more than 350 users.

provenance browsing. We find that some users cre-
ate deep hierarchies of simple, incremental views. 
This usage pattern is encouraged: the optimizer 
doesn’t penalize you at runtime, and a composition 
of simple queries is easier to read and understand 
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than one huge query. However, databases provide 
no natural way to browse and inspect a hierarchy 
of views. The catalog must be queried manually. In 
SQLShare, we’re actively developing two features 
to support this use case. First, we’re developing a 
provenance browser that creates an interactive visu-
alization of the dependency graph of a hierarchy 
of composed views to afford navigation, reasoning, 
and debugging. Users can click each node in the 
graph to access the view definition in the exist-
ing SQLShare interface. Second, we’re rendering 
each table name in a view definition as a link if it 
refers to a view, affording more direct navigation 
through the hierarchy.

semiautomatic visualization. Visualization is an 
immediate requirement among frequent users of 
SQLShare. VizDeck is a Web-based visualiza-
tion client for SQLShare that uses a card game 
metaphor to assist users in creating interactive 
visual dashboard applications in just a few sec-
onds without training.4 VizDeck generates a hand 
of ranked visualizations and UI widgets, and the 
user plays these cards into a dashboard template, 
where the program automatically synchronizes 
the cards into a coherent Web application that 
the user can save and share with other users. By 
manipulating the hand dealt—that is, playing the 
“good” cards and discarding unwanted cards—the 
system learns statistically which visualizations 
are appropriate for a given dataset, improving the 
quality of the hand dealt for future users.

automatic starter queries. SQLShare users fre-
quently lack significant SQL expertise, but they’re 
fully capable of modifying example queries to suit 
their purposes (see, for example, the Sloan Digital 
Sky Survey; http://cas.sdss.org). For some collab-
orators, we seed the system with starter queries by 
asking them to provide English questions that we 
translate (when possible) into SQL. This manual 
approach doesn’t scale, however, so we’ve explored 
automatically synthesizing good example queries 
from the data’s structural and statistical features.5 
Users upload data and example queries that in-
volve reasonable joins, selections, and unions; 
SQLShare automatically generates GROUP BYS. 
We’re in the process of deploying this feature in 
the production system.

T he early response to our system has 
been remarkable. One postdoctoral 
fellow was pretty excited during the 
first demonstration when a simple 

SQL query that was written live in less than a 

minute produced a result she had spent a week 
creating manually by cleaning and prefiltering a 
handful of spreadsheets and then computing a join 
between them using copy-and-paste techniques. 
Within a day, the same researcher had derived and 
saved several new queries.

This isn’t an isolated experience: the direc-
tor of her lab has contributed several of her 
own SQL queries. She commented that the tool  
“allows me to do science again,” explaining that 
she felt “locked out” from personal interaction 
with her data because of technology barriers, rely-
ing instead on indirect requests to students and IT 
staff. She’s not alone—as we mentioned, more than 
2,500 views have been saved in the SQLShare sys-
tem by more than 350 users since its deployment.

We originally focused on facilitating explor-
atory, interactive analysis of datasets that were 
outgrowing script-oriented solutions. However, as 
we’ve described here, a pure SQL approach to sci-
entific workflow realizes a variety of advantages, 
even relative to workflow management systems 
that are designed expressly for these situations. 
We find that the provenance, maintainability, lazy  
evaluation, and scalability provide a “white-box” 
workf low solution that’s markedly superior to 
“black-box” approaches that rely on scripts and files.

Our next steps include surfacing the provenance 
information in the UI in a more direct way, letting 
users browse and interact with the hierarchy of views 
like that in Figure 2. We’re also exploring a distrib-
uted deployment of SQLShare to allow multiple 
universities to share data in a controlled way. To 
support sensitive data, we’re establishing a locally 
deployable version of SQLShare that’s compliant 
with the Health Insurance Portability and Account-
ability Act (HIPAA), International Traffic in Arms 
(ITAR), and Family Education Rights and Privacy 
Act (FERPA) regulations. Visit http://sqlshare. 
escience.washington.edu to access this system. 
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