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Figure 1: Perfopticon visualizing a recorded query execution that estimates species abundance in an oceanography dataset. The
left panel displays the optimized query execution plan. The right panel includes (top) a divided bar chart showing the runtime
contribution of individual query operators, and (bottom) a focus+context view of detailed per-worker execution traces.

Abstract
Distributed database performance is often unpredictable due to issues such as system complexity, network congestion,
or imbalanced data distribution. These issues are difficult for users to assess in part due to the opaque mapping
between declaratively specified queries and actual physical execution plans. Database developers currently must
expend significant time and effort scanning log files to isolate and debug the root causes of performance issues.
In response, we present Perfopticon, an interactive query profiling tool that enables rapid insight into common
problems such as performance bottlenecks and data skew. Perfopticon combines interactive visualizations of
(1) query plans, (2) overall query execution, (3) data flow among servers, and (4) execution traces. These views
coordinate multiple levels of abstraction to enable detection, isolation, and understanding of performance issues. We
evaluate our design choices through engagements with system developers, scientists, and students. We demonstrate
that Perfopticon enables performance debugging for real-world tasks.

1. Introduction

As data acquisition continues to outpace data analysis in many
fields, scientists and analysts are increasingly adopting dis-
tributed database systems and performing computation using
ad hoc analytical queries over large datasets. Computation in
a database is expressed in a declarative query language (often
a variant of SQL) and then translated into a physical query
plan for execution. This physical plan describes a distributed
data flow that performs the local computation and moves
records from machine to machine in the cluster as needed.

Although a declarative language helps to raise the level of
abstraction for performing data analysis, there is a mental mis-

match between high-level declarative queries and low-level
physical plans that are chosen by the optimizer and executed
by the database system. The translation from query to execu-
tion plan is opaque and makes it difficult for both developers
and users to understand and diagnose unexpected system
behavior, including poor performance, incorrect results, or
failures [RH05, AB04].

Non-distributed databases are already highly complex sys-
tems, but distributed databases introduce significant new com-
plexities: users must reason about distributed correctness,
complex data flow patterns between machines, and new fail-
ure modes. These query analysis tasks cause database de-
velopers and users alike to spend significant time and effort
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isolating and debugging unexpected behavior and unexpected
performance. Specifically, we find that users need to complete
the following tasks (discussed in §4):

T1: Understand the specific computations being performed,
after translation into a query plan.

T2: Obtain an overview of the work distribution to identify
bottlenecks in the query plan.

T3: Understand distributed communication patterns to di-
agnose bottlenecks resulting from network effects.

T4: Trace local execution on each machine to diagnose
bottlenecks resulting from non-distributed computation.

In the status quo, database developers and users process
log files with ad hoc methods to compute system performance
metrics (profiling) as part of query performance debugging.
These log files are distributed across the cluster, are repre-
sented in non-standard formats, and include an enormous
amount of irrelevant information. We argue that interactive
visualizations designed specifically to support query analysis
tasks should be considered a first-class design requirement in
modern distributed systems.

In this paper we contribute Perfopticon, an interactive visu-
alization tool for understanding both data flow and run-time
performance in a distributed database. Perfopticon visualizes
query execution logs in coordinated visualizations at different
levels of abstraction to enable efficient profiling and debug-
ging. Using our tool, we find that both database developers
and users can quickly discover run-time bottlenecks and prob-
lematic data imbalances, saving them significant guesswork
and programming effort. Perfopticon includes the following
components to support the query analysis tasks above:

• Query plan view: An interactive graph showing the query
plan, which provides a starting point for further explo-
rations (Figure 1, left).

• Work distribution overview: Small-multiple area charts
showing cluster utilization over time by each query oper-
ator. In this view, a long tail identifies a worker that lags
behind the rest of the cluster.

• Communication view: A matrix diagram that shows how
much data was sent between each pair of workers. This
view reveals patterns in the communication such as skew.

• Local execution view: A novel timeline chart visualiza-
tion that compactly shows nested execution traces across
workers (Figure 1, right). This view serves to identify and
explain low-level problems in the local execution.

Perfopticon follows the common “overview first, zoom and
filter, details on demand” navigation pattern [Shn96]. The
interface begins with high-level overviews of both the query
plan and cluster-wide performance details. Based on observed
patterns, users can then drill-down by filtering performance
views or navigating to more localized visualizations.

We developed Perfopticon in collaboration with the
developers of Myria [HdAC∗13], a distributed, shared-
nothing [Sto86] big data management system. Although

built for Myria, Perfopticon’s design easily generalizes to
other operator-based data flow systems such as Hadoop,
Hive [TSJ∗09], Drill [HN13], and Shark [ELX∗12], as well
as commercial systems like Vertica [HP].

Beyond the system itself, this paper contributes domain
specific and task-relevant abstractions for visual query anal-
ysis, and “lessons learned” during the design of a scalable
visualization system.

To evaluate Perfopticon, we performed a long-term deploy-
ment (6 months) with database researchers (including two
paper authors) and conducted informal studies with Myria
users. We found Perfopticon valuable for database develop-
ment, query writing & debugging, and teaching. Participants
successfully used Perfopticon to resolve performance issues,
optimize queries, understand new distributed join algorithms,
and teach basic operating principles of distributed databases.

2. Related Work

To allow users to tune their queries, database systems such
as SQL Server, MySQL, and PostgreSQL let users obtain the
query plan with the EXPLAIN keyword in SQL. The query
plan is annotated with expected costs so that expert users can
tune indexes and assess how different expressions of logically
equivalent queries may result in different execution strategies.
EXPLAIN ANALYZE annotates the query plan with the ac-
tual runtime and number of rows by profiling the query. The
Microsoft SQL Server query plan visualizer [Mic] graphically
presents the result of EXPLAIN. The Vertica Query Analyzer
(VQA) [SWBW14] extends this idea to distributed databases.
However, unlike Perfopticon these tools do not expose fine-
grained execution traces, limiting users’ ability to understand
the causes of observed behavior. Perfopticon’s query plan
view builds on prior work on query plan visualization (T1).

Profiling tools for imperative programs, such as GNU
gprof [GKM82], are widely used by software developers
to analyze CPU and memory usage on a single machine. In-
teractive tools allow developers to explore vast amounts of
profiling data. For example, the Chrome performance pro-
filer [Goo] lets users interactively explore JavaScript exe-
cution, rendering, and network usage. Perfopticon’s local
execution view builds on insights from these existing tools,
but adapts them for use in the context of distributed databases.

Performance debugging is more challenging for distributed
systems, and is largely unaddressed by conventional soft-
ware debugging tools. Google uses Dapper [SBB∗10], which
maps individual call traces through their distributed systems.
Users can explore collected traces in an interactive visualiza-
tion. The scientific computing community developed tools
to trace MPI (Message Passing Interface) events and calls
in high-performance computing. Current visualization tools
for traces such as Vampir [NAW∗96], ParaGraph [HF03],
and Paraver [FZB∗08] use timeline charts with bars that are
grouped by process and span the lifetime of events. Recently,
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Isaacs et al. presented Ravel [IBJ∗14], which uses logical
time to unravel overlapping lines that depict communication
between events in MPI. Parallel operator-based data flow sys-
tems, such as Myria, regularly shuffle data between each pair
of machines. Hence, causalities and direct communication
are less relevant, impeding the direct application of Vampir
and Ravel. Moreover, distributed databases process large data
resulting in many traces from only a few operators. Perfop-
ticon uses a timeline chart to show local execution (T4) in
each fragment but focuses on operators instead of traces and
hides direct communication. We applied the matrix view from
Vampir (showing message exchanges) in Perfopticon to show
how many tuples have been sent between fragments.

In pure trace debugging tools, developers can lose the con-
text of the original computational abstractions such as the
query plan, and are forced to view the computation solely
as a set of parallel event streams. Offering higher-level ab-
stractions for domain-specific concepts can dramatically sim-
plify developer tools and provide necessary context. Twit-
ter’s Ambrose [Twi13] is a platform to visualize and monitor
MapReduce workflows using views of associated jobs, job
dependencies, and job progress. However, this approach is
not suitable for our needs, as “jobs” constitute too coarse of
an abstraction: they do not reveal individual operators as they
appear in database query execution plans.

In Perfopticon, we build on the insights from systems such
as the SQL Server query plan visualizer, the Chrome profiler,
Dapper, Vampir, and Ambrose. We combine and extend these
ideas in a novel UI for analyzing distributed operator-based
data flow computations, informed by visualization design
principles [Bre99, CM84, HR07, JME10].

3. Background: Distributed Query Execution

The design of Perfopticon was originally motivated by Myria,
a state-of-the-art distributed database system typical of a large
class of systems to which Perfopticon’s design can apply. As
shown in Figure 2, Myria has a single master, which is a
server responsible for optimizing the query and coordinating
query execution. The query is executed by a set of workers
that can communicate with each other.

A user (Figure 2a) writes a query in a declarative language,
which is sent to the master. On the master, the optimizer
(Figure 2b) first translates the query into a logical query
plan, which is a tree of relational algebra operators such as
selections, projections, and joins. Next, the logical plan is
optimized according to known rules, such as moving selec-
tion operators earlier in the dataflow to send as little data
over the network as possible. The optimized logical plan is
then translated to a physical query execution plan, or query
plan (Figure 2c), consisting of physical operators. A logi-
cal join operator could be instantiated as a MergeJoin or
a HashJoin. These optimization steps require knowledge
about the data in the system, their schemas, and statistical
properties, which are stored in the catalog (Figure 2d).
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Figure 2: Overview of the Myria architecture. A query is sent
through the front-end to the master; the optimizer translates
it to a physical query execution plan. The query execution
plan consists of parts that can be executed locally on each
machine (fragments) with communication steps in between.

Myria is a parallel data flow evaluation system that takes a
graph of operators and executes it on a shared-nothing [Sto86]
cluster (example query plan in Figure 3). Execution spans
multiple machines and operators are processed in parallel.
Flow control must ensure that operators start computing when
data is available and wait when a downstream operator is
backlogged. In a shared-nothing system, all data is partitioned
across workers: each server is responsible for a certain part
of the keyspace and each tuple (row) in the database belongs
on exactly one worker. Thus, if data has to be aggregated or
joined on a key by which the data is not partitioned, data must
be repartitioned (shuffled) according to a new key, using a
hash function from key to worker. These shuffle steps require
inter-worker communication (Figure 2e) over the network,
but all other computations can be local and independent.

In Myria, a fragment is a set of local operators that is in-
dependent of global flow control. Fragments split the query
plan into distinct subtrees of operators that can be executed
on many workers in parallel (Figure 2f). The final operator in
a fragment (the root of a fragment’s tree) synchronously re-
quests data from its children. The initial operators (the leaves
of the tree) receive data either asynchronously from other
workers or synchronously from a local data store (Figure 2g).
When called by its parent, each operator either returns a com-
plete batch of tuples, an incomplete batch, or a signal that all
data has been processed. An operator may repeatedly call its
children for more data. The fragment as a whole will cease
computation (“go to sleep”) when each of its operators has
processed all currently available data. It will “wake up” when
new data is received by the worker it is running on.

To investigate performance issues, it is sometimes neces-
sary to examine both data partitioning and data flow and to
understand local execution inside of fragments. For example,
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to process a distributed join, tuples that share a key are sent
to the same worker. If there is a popular key, certain work-
ers will receive disproportionately large amounts of data to
process. This skew could also be caused by a hash function
assigning too many keys to the same worker. Other causes
of stragglers (workers that finish long after other workers)
include failures at the hardware or OS level and non-uniform
computational complexity across workers. Stragglers delay
dependent computation and hurt performance, as total query
runtime is determined by the slowest worker.

4. The Design of Perfopticon

In this section, we describe the constituent components of
Perfopticon, and justify our design decisions based on system
restrictions, best practices, and results from interviews.

The four tasks users wished to accomplish when analyzing
queries from §1 are informed by formative interviews with
developers and users, experience with prototypes, and obser-
vations of common debugging practices. Query debugging
(T1) is long recognized as difficult due to the dissimilarity
between query and query plan [Har10, RH05]. We found that
performance issues are caused by bugs, missing optimiza-
tions, an incorrect query, problems with the servers, skewed
communication, or imbalanced data distribution. Hence, de-
bugging often starts without a clear hypothesis. An overview
(T2) over the whole execution provides a way to narrow
down the source of an issue, which also helps delivering
the tool to non-experts. It is well known that communica-
tion (T3) is a major bottleneck in data-intensive comput-
ing [XKZC08, DG92]. Fine-grained debugging and profiling
requires inspection of the low-level execution (T4). Initially,
we expected summaries to be sufficient but early user experi-
ences revealed a strong need for fine-grained debugging.

Perfopticon was developed through an iterative user-
centered design process. Based on the identified tasks (T1
to T4), we sketched interfaces and developed visualizations
based on data from log files. We then developed a prototype
that collected log files from all workers on the master and
transformed the log data into a suitable format for the front-
end. Based on the feedback from the first prototype, we then
focused on scalability and simplified the visualizations by
removing redundant data. In a third pass, we refined features
and improved system performance.

In the latest version, Perfopticon’s interface consists of
the query plan view on the left and the details panel on the
right (Figure 1). The query plan view always shows a graph
representation of the query plan and the details panel shows
either a work distribution overview, communication view, or
local execution view. Above the details panel is a breadcrumb
navigation, which allows the user to go back to the overview.

We describe Perfopticon via a usage scenario in which
Emma, an oceanographer, writes a complex query to esti-
mate the abundance of synechococcus, a common marine

Figure 3: Query plan view for a query with a two-way join
and an aggregate. The user collapsed Fragment 0 and selected
Fragment 1 to view details in the right side view. The edges
going into Fragment 1 are wider than the outgoing edge,
indicating that the number of tuples is decreasing.

cyanobacterium, in data collected by ocean-deployed sensors.
Modeled on a real Myria user, Emma is both an expert in her
field and a Myria “power user”: she understands the execution
model, has expectations about performance, and performs
follow-up analysis when her expectations are not met.

In this example, Emma must join multiple datasets: one
with biological information and one with environmental in-
formation. When she submits the query, she observes that her
query is running slower than expected. She hypothesizes that
there could be a mistake in her query, a transient problem
in the cluster, or even a bug in the database itself. Emma
uses Perfopticon for query analysis through the four tasks of
understanding the query plan (T1), overall work distribution
(T2), communication (T3), and local execution (T4).

4.1. Query execution plan view

Emma inspects the query plan, finding that a join was trans-
lated to a cross product with output quadratic in the size of
the input. Realizing that the problem arose from a mistake in
her query, she fixes the query and tries again (Figure 3).

The left panel always shows a graph of the query plan,
which reveals the result of the decisions made by the opti-
mizer (T1). It helps users orient themselves and provides a
starting point for further exploration.

Figure 3 shows Emma’s revised query plan. Fragments are
shown as groups around operators. Operators are shown as
nodes, each labeled with both the name of the operator and
the most important parameters to distinguish operators of the
same type (e.g., the Scans in Fragment 2 and 3 in Figure 3).
In the top-left corner of each node is a white circle, which pro-
vides details on demand about the operator or fragment. The
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Figure 4: Overview showing small multiples of utilization
over time, grouped by fragment. Utilization is measured as
the fraction of workers executing each fragment. The long
tail in the utilization chart for Fragment 1 shows that a few
workers take significantly longer, indicating skew.

details about operators vary from type to type and show the
complete set of parameters for the operator, i.e. the columns
to aggregate and the aggregate function (Figure 3, tooltip).

An edge between two operator nodes indicates a parent-
child relationship; the parent operator receives tuples from its
children. As explained in §3, tuple-passing can result either
from a synchronous call to an operator or asynchronous input
from the network. Edges involving network communication
provide an initial hint for expensive shuffling steps since they
have different widths depending on the number of tuples sent
(exact numbers in tooltip). The smallest width maps to no
tuples and the largest width to the maximum number of tuples
(we highlight zero tuples).

Analytic queries are often complex and the resulting plans
consist of many operators and fragments. A representative
large query in Myria has 40 fragments and up to 16 operators
(with a depth of less than 5) in a fragment. In Perfopticon,
fragments are automatically collapsed if the query plan has
too many fragments. A user can expand and collapse frag-
ments using the green circle in the top left corner of fragment
nodes. Transitions are animated to facilitate perception of
changes between layouts [HR07]. The query plan view can
be zoomed by scrolling in the left view area.

4.2. Overview of Work Distribution in all Fragments

Although Emma fixed her query, she notices that performance
is still not what she expected. She uses the overview of work
distribution (Figure 4) to investigate if there is an issue with
a worker in the cluster. She looks for stragglers (unusually
slow workers), which could suggest problems with the cluster
itself. Emma finds that there are in fact stragglers caused by
an overloaded machine in the cluster.

The default view shown in the details panel is an overview
of usage over time across all fragments. It provides a sum-
mary of the global execution and aids comparison between
the execution in different fragments (T2).

(a) Utilization broken down by operator.

(b) Summarized for whole fragment.

Figure 5: The fraction of workers executing operators in a
fragment (top), and the same data summarized as the fraction
of workers executing any operator in the fragment (bottom).

The overview is a small-multiples view of time series area
charts, each showing the fraction of workers executing an
operator over the lifetime of the query. Inside a fragment,
only one operator is executed at a time while the fragment
is active. As shown in Figure 5, we can aggregate the area
charts for each operator in a fragment into a single area chart
showing the fraction of active fragments across all workers.
When a fragment is expanded in the query plan view, the
utilization is broken down by operator. Otherwise we show
the aggregated data.

We chose small multiples rather than stacked area charts or
overlapping line charts because of their superior performance
on comparison tasks [JME10, BW08]. The labels to the left
of each area chart show the operator name, slightly indented
based on depth in the operator tree.

In Figure 4, long tails in the area charts reveal skewed
execution, where a few workers finish long after other work-
ers. Spikes are an indication of cluster-wide synchronization
caused by similar execution times or timeouts. We can see
when certain fragments finish well before others, and which
operators are run at different stages of the query execution. In
Emma’s query the Fragments 2 and 3, which read data from
disk and shuffle it, finish well before the other fragments.

The user can zoom in on a time range in the small-multiples
views by brushing within any of the charts. The zoom is ani-
mated to preserve context [HR07]. Immediately upon zoom,
the available data is interpolated to provide a coarser level-
of-detail. Later, the view is updated with higher resolution
data. This technique does not prevent update lag (which can
negatively affect visual exploration [MW93,LH14]), but does
let users continue their visual exploration uninterrupted and
without losing context.

4.3. Network communication view

After Emma frees resources on the overloaded machine, the
query improves but is still slower than expected. She uses
Perfopticon to reevaluate query execution. She now notices
a single slow running worker in the overview visualization
and disproportionately large amounts of data coming from
Fragment 1. This sparks her interest and she clicks on the
edge between fragments to open the communication view
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Figure 6: Communication matrix for a join query on a Twitter
follower graph, running over a 72-worker cluster. Source
workers are on the y-axis and target workers on the x-axis.
The matrix shows that all source workers send the same
number of tuples, but that the amount of data sent to target
workers is skewed due to large differences in follower count
among Twitter users.

in the details panel. She notices disproportionately large
amounts of data sent from one worker.

In Perfopticon a user may click on any edge between frag-
ments in the query plan to investigate communication related
issues (T3) in the communication view. This view reveals
communication patterns such as skew (§3). In a previous it-
eration, this view showed communication over time for an
edge, but it did not help our users to gain new insights.

The central visualization of this view is a communication
matrix visualizing the number of tuples sent between every
pair of workers (Figure 6). The source worker is on the y-axis
and the target worker on the x-axis. We chose to show the
number of tuples instead of bytes, as tuples (or rows) are
the atomic unit of most data flow systems. We used Cynthia
Brewer’s BuPu palette [Bre99] to encode the number of
tuples sent. Tooltips show exact values.

Marginal histograms along the x- and y-axes show the
count of tuples sent/received, overlaid with an average line to
assist comparison. Users also asked us to support reordering
the columns to place outliers closer together. Perfopticon
supports ordering by worker id and number of tuples shuffled,
covering the use cases we have encountered thus far.

We use a matrix diagram because it compactly visual-
izes bidirectional communication between all workers. We
considered alternative designs such as a circular chord dia-

gram [KSB∗09] (as used by Twitter Ambrose [Twi13]), but
found that chord diagrams do not scale well when visualizing
large, dense matrices: in a chord chart each communication
requires drawing a link and in a matrix diagram only a simple
rectangle. The matrix diagram in Perfopticon scales well up
to 100 workers, at which point labels begin to overlap.

4.4. Local Execution Trace View

Drilling down into the local execution view, Emma investi-
gates the straggling worker and finds that the join operator
produced more tuples than expected. In this case, a sensor
took more measurements at a particular time and location.
Based on this insight she can enable special rules in the
optimizer that better distribute the work of the join.

The execution trace view presents detailed performance
traces within a single fragment, enabling users to further
investigate patterns (e.g., long tails) found in the overview
(§4.2). This view is opened when a fragment is selected in
the query plan view or the overview. It consists of a summary
chart showing how much each operator contributed to the
runtime, a focus+context area chart showing overall utiliza-
tion, and a timeline showing nested execution traces (T4).
The operators of the selected fragment are colored in the plan
view using Tableau’s categorical color palette, making the
query plan a legend for other visualizations.

Figure 7: A divided bar chart illustrating each operator’s
proportional contribution to runtime. Circles at the top left of
each bar provide details on demand about an operator.

At the top of this view a divided bar chart illustrates how
much each operator proportionally contributes to the query
execution time (Figure 7). We chose this chart over a pie
chart because we have more horizontal space available in the
interface and because the perception of angles generally has
higher errors [CM84]. The bars are sorted by their depth in
the operator tree. We experimented with a treemap showing
the complete hierarchy, but our users reported it to be more
confusing than helpful.

Below the contribution bar chart is a timeline showing de-
tailed execution traces (Figure 1, right). These traces depict
when a worker executes the selected fragment, along with
details about which operators are called. The view consists
of an area chart (with zoomable overview+detail) showing
fragment utilization. Providing focus+context [CMS99] al-
lows us to display detailed traces alongside the context of the
overall execution. As before (§4.2), zooming is animated and
Perfopticon’s front-end requests data with a resolution that
matches the number of horizontal pixels [LJH13].

Selecting a time range loads fragment execution traces into
the canvas below the focus+context charts. Here, the user can
compare execution across all implicated workers during the
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Figure 8: Timeline of nested calls involving five operators
(from outer to inner): Shuffle Producer ( ), Group By ( ),
Symmetric Hash Join ( ), 2 × Shuffle consumer ( and  ).

Figure 9: An early design for execution traces. Each operator
occupies a separate lane. Colors indicate states: ‘active’ ( ),
‘sleeping’ ( ) and ‘waiting for child to return’ ( ).

selected time range. The visualization shows when a worker
(each in a separate lane) becomes active and what operators
are executed while it is active.

Figure 8 provides an example of one such trace. First, the
fragment executes the Shuffle Producer ( ), which in turn
synchronously calls its child Group By ( ), which calls the
Symmetric Hash Join ( ). The Hash Join has two Shuffle
Consumers ( and  ), which it calls one after the other.
During the first call, a child returns tuples but the join can
not produce a full batch. As the join operator’s children don’t
have any tuples ready, the execution goes to sleep. The user
may mouse-over the boxes to open a tooltip showing the name
of the operator, the execution time and the number of tuples
returned from the synchronous call. To help a user distinguish
two adjoining calls to the same operator, we slightly expand
the operator box to the bottom and give it a brighter color
while the cursor is over the operator.

Initial designs (Figure 9) explicitly showed the states of
each operator in different lanes. Our final design removes
redundant information and is more compact, allowing users to
examine traces from many workers. This design also exhibits
better performance, as fewer bars are drawn. Developers
found the fragment execution view useful to debug low level
performance issues. However, novices unfamiliar with the
execution model outlined in §3 did not utilize this view.

5. The Architecture of Perfopticon

We implemented Perfopticon on top of Myria, with only mi-
nor modifications to the Myria system itself. The front-end is
web based and integrated into the Myria web front-end. In this
section, we describe our implementation, including needed
modifications to the back-end, and discuss how Perfopticon
can be used with other operator-based data flow systems.

5.1. The Back-End Collects Logs and Executes Queries

We designed Perfopticon with minimal requirements for the
database system to make it easier to generalize beyond Myria.

Perfopticon requires only (1) the query execution plan, (2) in-
formation about the number and destination of tuples sent
from a worker, and (3) logs when an operator called its child
or returned a call to its parent. For (2) and (3), we had to add
only 3 log statements to the generic operator code in Myria.

In our first prototype, we used standard Java logging to
files. These had to be collected on the master, parsed, and
the extracted data transformed into a suitable format for the
visualizations. This design did not scale beyond second-long
queries. In our final implementation, Perfopticon collects data
during query execution with small runtime impact. Event logs
are written to two special tables (one for tuples sent (2) and
one for operator calls (3)) in the local database (Figure 2g).
This “reflective” data design, storing the usage data as first-
class relations within the database, enabled large gains in
scalability (queries are parallelized) while simplifying the
overall design (we reused Myria’s query execution logic).
Performance data can be analyzed both via our visualizations
and directly via SQL queries. The underlying data for ev-
ery visualization in Perfopticon are computed via a small
set of queries that filter and aggregate these two tables. For
zoomable visualizations (e.g. Figure 4 and Figure 5), the reso-
lution of the query result is typically the number of horizontal
pixels. By manually optimizing the queries, we reduced lag
and achieved interactive query response times of ~100 ms.
For our tests, we used a cluster of up to 72 workers and
queries running for ~20 min.

5.2. Implementation of the Front End Visualizations

Perfopticon’s front-end is implemented using Python and
Google AppEngine on the server side and D3 [BOH11] on
the client side. When a query is executed in Myria, logs are
collected during execution and a link to Perfopticon appears
when the query has finished. The query execution plan visu-
alization (§4.1) takes the JavaScript Object Notation (JSON)
description of the query plan, extracts operators and frag-
ments, and computes the layout using Graphviz [EGK∗02]
(compiled to JavaScript with Emscripten [Zak11]). All other
visualizations fetch data from the Myria REST server using
asynchronous JavaScript (AJAX) as JSON or comma sepa-
rated text (CSV) files.

To make the front-end scalable in the query runtime, all
time series views use binned data at the available pixel res-
olution. The traces view (§4.4), which also scales with the
number of workers, hides blocks that are shorter than one
pixel and only shows root operators for long time ranges. The
browser caches datasets to improve response rates when the
user navigates back to a view she has seen previously.

6. Evaluation: Perfopticon Usage Examples

We demonstrate the efficacy of Perfopticon in use cases cov-
ering performance debugging, bug hunting, teaching, and
research. These use cases come primarily from a 6 month
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deployment of Perfopticon within the Myria development
team as well as usage by collaborating scientists leveraging
Myria for data analysis. Both developers and users have given
us strong positive feedback. For example, one user reported
that “Lacking proper query plan (DAG) visualization and
profiling is one of the main drawbacks of Spark [a popular
distributed data analysis platform] compared with Myria” and
“The number of things I was able to do with Perfopticon is
huge.” Perfopticon has thus far generally met our expecta-
tions, but also had positive unforeseen use cases.

We show these use cases to demonstrate that the visual-
izations in Perfopticon facilitate performance debugging for
users (§6.1) and developers (§6.2, §6.3), algorithm design
and development (§6.4), and understanding of parallel query
execution by non-experts (§6.5).

6.1. Identifying Performance Bottlenecks in a Cluster

In one instance, a query was running slower than usual and
a user decided to profile the query. Perfopticon’s overview
showed a small number of workers taking significantly longer
than the others, apparent as a long tail in the utilization chart.
The user went to the fragment detail view and zoomed in
on the long tail, filtering the execution traces to those active
workers. Perfopticon enabled the user to determine that the
problem was not a data skew issue (e.g., the network view
didn’t show any abnormal communication), was not related
to a single worker, and was not related to the whole cluster.
Instead, the user discovered that all slow workers were on the
same physical machine in the cluster. She resolved the issue
by terminating a large process on the slow machine.

6.2. Implementing Deterministic Shuffling

A developer investigated an unexpectedly long-running query.
The root cause was a redundant shuffle: i.e., hashing on a field
we already partitioned on. To debug this issue, he profiled
the query and opened the communication view to discover
unnecessary communication as seen in Figure 10a. Imme-
diately he could see that all tuples from one worker were
needlessly sent to another worker by a shuffle operator. Com-
paring multiple runs of the same query he discovered that
the destination servers were different and as a result query
runtime was inconsistent.

The underlying issue was a randomized (non-deterministic)
shuffle. In response, the developer updated the mapping from
hash value to worker to function in a deterministic manner.
When the issue was fixed, the developer used Perfopticon to
confirm that the issue is in fact resolved (Figure 10b). Now,
the runtime is more stable and queries run up to 10× faster.
In this case, Perfopticon sped up identification of the bug as
well as confirmation of the fix.

(a) Tuples have to move be-
tween workers.

(b) Tuples stay on the same
worker.

Figure 10: Communication for a redundant shuffle before
(left) and after (right) implementing deterministic shuffling.

6.3. Debugging Incorrect Hashing in Aggregations

A scientist wrote a query to reimplement an existing R script.
The script was roughly 100× slower, but well-tested. Though
the query appeared correct, the results that Myria returned
differed from the script. During debugging, a developer work-
ing with the scientist realized that the result actually changed
every time; hinting at a concurrency or data order issue. More-
over, the issue only appeared for datasets multiple GB in size
with queries taking longer than ~3 min.

The developer ran the query multiple times and compared
the number of tuples exiting each operator across runs us-
ing the query plan and communication view. He found the
problem to be in a fragment with an aggregate operator. The
aggregate operator maintains a hash map of aggregators and
merges incoming tuples with the same key. Somehow new
tuples were not being added to an existing aggregator.

The developer found the bug in the custom hash table
implementation, wherein updates upon hash collision were
not handled correctly. This subtle bug only occurred at scale,
as it required the right data interleaving and a hash collision.
To get the hash collisions, about 216 tuples are needed on
the same machine. With a 72-worker cluster, a dataset of
expected size 216 ×72 = 4.7M tuples is needed to replicate
the bug. Perfopticon was helpful as it enabled the developer
to investigate the issue at the required scale.

6.4. Analyzing a Skew-resilient Join Algorithm

A researcher evaluating different join strategies found that
a new algorithm has better skew robustness, a previously
unknown property. The researcher ran a query that finds the
number of triangles (three users who transitively follow each
other) in the Twitter follower graph. The query in SQL is:

SELECT a.follower, b.follower, c.follower
FROM twitter AS a, twitter AS b, twitter AS c
WHERE a.followee = b.follower AND

b.followee = c.follower AND
c.followee = a.follower
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Traditional databases execute this join via cascading
two-way joins, requiring two shuffle steps. The researcher
had designed an algorithm that requires only one shuffle
step [CBS15]. He profiled the traditional execution with Per-
fopticon and saw in the query plan view that the edge after
the first join was thicker, indicating that the first join was
producing many tuples that then need to be shuffled. This
confirmed his expectation, as there are many join candidates
in the Twitter follower graph. Upon drilling down into the
network view, he found that the execution is highly skewed
due to one extremely popular person in the dataset. He could
also confirm that the imbalanced output of the first join is not
due to imbalanced input by looking at the communication
before the join.

The researcher then executed the same query with the new
join algorithm that requires only one shuffle step. He discov-
ered that fewer tuples had to be shuffled, and most importantly
that the communication is evenly distributed across all work-
ers. The researcher has since used plots from Perfopticon for
their research paper on novel join algorithms [CBS15].

6.5. Using Perfopticon for Teaching

Perfopticon was used in a big data systems class to demon-
strate how distributed query execution works. The teacher
used the query plan view to show the translation of queries
to an execution plan. He also used the communication view
to illustrate skew. The fragment view with execution traces
was used to explain how tuple batches are processed syn-
chronously and how a fragment must be woken up when new
tuples arrive at a worker. Outside the class, Perfopticon has
been used to teach novices about query optimization. For
example, an expert user showed the runtime impact of cross
products that can often be avoided by rewriting a query.

7. Conclusions and Future Work

In this paper, we introduced Perfopticon, an interactive query
profiling tool comprising visualizations of the query plan,
work distribution across multiple machines, communication,
and local execution traces. We showed that the visualizations
and the back-end of Perfopticon are reusable, and enable
users to efficiently analyze query execution at scale. Perfopti-
con enabled a number of advancements in real-world tasks:
developers have fixed critical bugs, end users have refined
queries to achieve better performance, researchers have inves-
tigated and verified novel algorithms, and teachers have used
the system to explain how distributed database systems work.

Our experience with Perfopticon shows the value of visu-
alizations for developers and users of big data systems. Users
were able to debug issues at a scale impossible without visual
abstraction. Visualization also lets users discover unexpected
issues and hints users towards causes they had not considered.
Hence, making system internals accessible through APIs
and visualizations should be a key design goal for big data

systems, not an afterthought. Our evaluations further rein-
force the value of organizing and aggregating overwhelming
amounts of (performance) data using domain-specific abstrac-
tions and task-relevant groupings. Nonetheless, we learned
that aggregation alone is not sufficient and that users eventu-
ally need to drill down to individual operator executions. This
came as a surprise as Myria is processing billions of tuples.

In retrospect, we found that a reflective design – using the
database itself for storage and data transformation – simpli-
fies application logic. Also, Perfopticon’s back-end scales to
large clusters and long-running queries since transformations
are automatically parallelized.

Another observation is that building a visualization system
for large data is a complex task. We implemented binning
at the available pixel resolution (§4.4) to maintain client re-
sponsiveness. To support this, we had to implement complex
aggregation queries and visualizations that can dynamically
replace (and animate to) a different time range of the data.
Existing visualization and programming frameworks do not
support these tasks well.

Looking forward, Perfopticon can be extended to show
more contextual information about the local execution, or
even be integrated with a local debugger. In the next release,
we will include overall CPU and memory usage in the cluster,
and available/used network bandwidth in Perfopticon’s UI.
Moreover, more operator-specific metrics (e.g., the size of
hash tables in a join or aggregate operator) could be collected
and shown in the interface on demand.

Unlike standard relational databases, Myria also supports
iterative queries that enable users to run machine learning
algorithms. Visualizing performance over asynchronous iter-
ations (without global iteration bounds) adds another dimen-
sion of complexity. We are also interested in better ways to
automatically label fragments by summarizing the operators
they contain. Such summaries might also be used to label frag-
ments when the query plan view is zoomed out [DGDGL07].
A current limitation of Perfopticon is the lack of support
for comparison of multiple queries (other than using two in-
stances of Perfopticon side by side). Such comparisons would
simplify debugging issues like those described in §6.3.

Perfopticon is available as open-source software at
https://github.com/uwescience/myria-web.
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