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The Long History of Timing Attacks

Cooperative attacks — apply to:

Mandatory Access Control (MAC) systems
[Kemmerer 83, Wray 91]

Decentralized Information Flow Control (DIFC)
[Efstathopoulos 05, Zeldovich 06]

Non-cooperative attacks — apply to:

Processes/VVMs sharing a CPU core
[Percival 05, Wang 06, Aclicmez 07, ...]

Including VM configurations typical of clouds
[Ristenpart 09]




Cooperative Attacks: Example

Trojan leaks secret information by modulating a
timing channel observable by unclassified app
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Non-Cooperative Attacks: Example

Apps unintentionally modulate shared resources
to reveal secrets when running standard code

key-dependent Cloud
usage patterns Acme Data, Inc. Host

Crypto (AES, RSA, ...)
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Timing Attacks in the Cloud

The cloud exacerbates timing channel risks:
Routine co-residency
Massive parallelism
No intrusion alarms — hard to monitor/detect
Partitioning defenses defeat elasticity

“Determinating Timing Channels in Compute Clouds”
[CCSW '10]




Towards a “Timing-Hardened Cloud”
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Leak-Plugging Approaches

Two broad classes of existing solutions:

Tweak specific algorithms, implementations
Equalize AES path lengths, cache footprint, ...
Demand-insensitive resource partitioning

Requires new or modified hardware in general
Partition CPU cores, cache, interconnect, ...
Can't oversubscribe, stat-mux resources
Not economically feasible in an “elastic” cloud!




Anatomy of a Timing Channel

Two elements required: [Wray 91]

A resource that can be modulated
by the signaling process (or victim)

A reference clock enabling the attacker
to observe, extract the modulated signal

Remove either — no timing channel.




Prior Approaches

Attempt to eliminate modulation
- e.g., by partitioning hardware resources
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Our Approach

Allow modulation, eliminate reference clocks

s Customer B's Job




Our Approach

Allow modulation, eliminate reference clocks
- Dynamic statistical multiplexing allowed

Customer B's Job ",




Timing Information Flow Control
[HotCloud '12]

Adapt IFC to label & control timing channels
Key idea: separate labeling of state and events
State labels attached to explicit program state

Represent ownership of information in the
content of a variable, message, process, etc.

Time Labels attached to event channels

Represent ownership of information affecting
time or rate events occur in a program

Relies on enforceable deterministic execution

.




Timing Control in Elastic Clouds

Need two key facilities:

System-enforced deterministic execution

OS/VMM ensures that a job's outputs depend
only on job's explicit inputs

Pacing queues

Input jobs/messages at any rate
Output jobs/messages on a fixed schedule




Determinator
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Enforces determinism on parallel applications
Even if user code behaves adversarially

Not provided by user-level approaches
(DMP, CoreDet, Grace, Dthreads, etc.)
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Determinator versus Linux
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Elastic Cloud Scenario

Untrusted Scheduler
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Jobs: In Anytime, Out on a Schedule

For each customer (e.g., Alice):
Deterministic execution ensures job output bits
depend only on job input bits: O; = f(l;)
Job outputs produced in same order as inputs

At each “clock tick”, paced queue releases
either next job output or says not ready yet

The single bit of information per clock tick
that might leak other users' information

Also supports predictive mitigation [CCS '11]

.
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Key Challenges/Questions

Formalize full TIFC model
Potentially applicable at systems or PL levels

| 1

Integrate Myers
Complete TIFC-enforcing prototype

predictive mitigation” ideas

Ongoing, based on Determinator [OSDI '10]
Explore flexibility, applicability of model

Can model support interactive applications?
Can model support transactional apps?




Conclusion

First approach to timing channels control that:

Works with unmodified hardware and software

Works with general computing algorithms

Supports stat-multiplexed elastic computing

More info: http://dedis.cs.yale.edu/2010/det/
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