

Using System-Enforced
Determinism to Control

Timing Channels

Bryan Ford, Amittai Aviram, Weiyi Wu,
Jose Faleiro, Ramki Gummadi

Yale University
http://dedis.cs.yale.edu/

ASPLOS PC Symposium, November 2, 2012

http://dedis.cs.yale.edu/

The Long History of Timing Attacks

● Cooperative attacks – apply to:
– Mandatory Access Control (MAC) systems

[Kemmerer 83, Wray 91]

– Decentralized Information Flow Control (DIFC)
[Efstathopoulos 05, Zeldovich 06]

● Non-cooperative attacks – apply to:
– Processes/VMs sharing a CPU core

[Percival 05, Wang 06, Acıiҫmez 07, …]

– Including VM configurations typical of clouds
[Ristenpart 09]

Cooperative Attacks: Example

Trojan leaks secret information by modulating a
timing channel observable by unclassified app

Secret Level
Trojan App

MAC/DIFC Protection Boundary

Unclassified Level
Conspiring App

use a lot,
use a little

how fast am
I running?

Timeshared
Host

Non-Cooperative Attacks: Example

Apps unintentionally modulate shared resources
to reveal secrets when running standard code

Acme Data, Inc.
Crypto (AES, RSA, ...)

Discretionary Protection Boundary

Eviltron
Passive Attacker

key-dependent
usage patterns

watch memory
access timing

Cloud
Host

Timing Attacks in the Cloud

The cloud exacerbates timing channel risks:

1.Routine co-residency

2.Massive parallelism

3.No intrusion alarms → hard to monitor/detect

4.Partitioning defenses defeat elasticity

“Determinating Timing Channels in Compute Clouds”
[CCSW '10]

Towards a “Timing-Hardened Cloud”

Internet:
Public

Timing Domain

Customer A's
Private Timing Domain

Shared
Timing Domain

Customer A's Job

Timing
Firewall

Remote
Customer's
Job

Timing
Firewall

Public
Infrastructure Cloud Provider's Computing/Network Infrastructure

unrestricted
interaction Physically isolated

timing domains

Leak-Plugging Approaches

Two broad classes of existing solutions:
● Tweak specific algorithms, implementations

– Equalize AES path lengths, cache footprint, …

● Demand-insensitive resource partitioning
– Requires new or modified hardware in general

● Partition CPU cores, cache, interconnect, …

– Can't oversubscribe, stat-mux resources
➔ Not economically feasible in an “elastic” cloud!

Anatomy of a Timing Channel

Two elements required: [Wray 91]
● A resource that can be modulated

by the signaling process (or victim)
● A reference clock enabling the attacker

to observe, extract the modulated signal

Remove either → no timing channel.

Prior Approaches

Attempt to eliminate modulation
– e.g., by partitioning hardware resources

Customer A's Job

Customer B's Job

Our Approach

Allow modulation, eliminate reference clocks

Customer A's Job

Customer B's Job

Our Approach

Allow modulation, eliminate reference clocks
– Dynamic statistical multiplexing allowed

Customer A's Job

Customer B's Job

Timing Information Flow Control
[HotCloud '12]

Adapt IFC to label & control timing channels

Key idea: separate labeling of state and events
● State labels attached to explicit program state

– Represent ownership of information in the
content of a variable, message, process, etc.

● Time Labels attached to event channels
– Represent ownership of information affecting

time or rate events occur in a program

Relies on enforceable deterministic execution

Timing Control in Elastic Clouds

Need two key facilities:
● System-enforced deterministic execution

– OS/VMM ensures that a job's outputs depend
only on job's explicit inputs

● Pacing queues
– Input jobs/messages at any rate

– Output jobs/messages on a fixed schedule

Determinator

A Determinism-Enforcing
Microkernel/Hypervisor
● “Efficient System-Enforced

Deterministic Parallelism”
(Best Paper Award, OSDI 2010)

Enforces determinism on parallel applications
● Even if user code behaves adversarially
● Not provided by user-level approaches

(DMP, CoreDet, Grace, Dthreads, etc.)

Determinator Microkernel

Child Space Child Space

Grandchild Space Grandchild Space

Root Space

Hardware

Determinator versus Linux

Coarse-grained Fine-grained

Elastic Cloud Scenario

Alice's Gateway
{A+,A-,Bf

-}
Bob's Gateway

{B+,B-,Af
-}

AliceAlice Bob

Job
{A/A∞}

Result
{A/A∞,B∞}

Shared Deterministic
 Compute Server

Job
{B/B∞}

Result
{B/A∞,B∞}

Untrusted Scheduler
{A,B/A∞,B∞}

Control
{A,B/A∞,B∞}

Demand
{A,B/A∞,B∞}

Pacer
freq f

Pacer
freq f

Result
{A/Af,Bf}

Job
{B/B∞}

Result
{B/Af,Bf}

Jobs: In Anytime, Out on a Schedule

For each customer (e.g., Alice):
● Deterministic execution ensures job output bits

depend only on job input bits: Oj = f(Ij)

● Job outputs produced in same order as inputs
● At each “clock tick”, paced queue releases

either next job output or says not ready yet
– The single bit of information per clock tick

that might leak other users' information

Also supports predictive mitigation [CCS '11]

Informal “Schedule Analysis”

Bob's (Short) Job

Time

Bob's (Long) Job

Time

Alice's
Job
{A/A∞}

C
om

pu
te

S
ch

ed
ul

e

Result
{A/A∞,B∞}

Alice's
Job
{A/A∞}

Result
{A/A∞,B∞}

(b) Schedule: Bob's job short (b) Schedule: Bob's job long

Paced result
at tick 3
{A/Af,Bf}

P
ac

er
S

ch
ed

ul
e

Paced result
at tick 4
{A/Af,Bf}

Key Challenges/Questions

● Formalize full TIFC model
– Potentially applicable at systems or PL levels

– Integrate Myers' “predictive mitigation” ideas

● Complete TIFC-enforcing prototype
– Ongoing, based on Determinator [OSDI '10]

● Explore flexibility, applicability of model
– Can model support interactive applications?

– Can model support transactional apps?

Conclusion

First approach to timing channels control that:
– Works with unmodified hardware and software

– Works with general computing algorithms

– Supports stat-multiplexed elastic computing

More info: http://dedis.cs.yale.edu/2010/det/
● “Determinating Timing Channels” [CCSW '10]
● “Plugging Side-Channel Leaks” [HotCloud '12]
● “Efficient System-Enforced Det...” [OSDI '12]

http://dedis.cs.yale.edu/2010/det/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

