Using System-Enforced
Determinism to Control
Timing Channels

Bryan Ford, Amittai Aviram, Weiyi Wu,
Jose Faleiro, Ramki Gummadi
Yale University
http://dedis.cs.yale.edu/

ASPLOS PC Symposium, November 2, 2012
S —

http://dedis.cs.yale.edu/

The Long History of Timing Attacks

Cooperative attacks — apply to:

Mandatory Access Control (MAC) systems
[Kemmerer 83, Wray 91]

Decentralized Information Flow Control (DIFC)
[Efstathopoulos 05, Zeldovich 06]

Non-cooperative attacks — apply to:

Processes/VVMs sharing a CPU core
[Percival 05, Wang 06, Aclicmez 07, ...]

Including VM configurations typical of clouds
[Ristenpart 09]

Cooperative Attacks: Example

Trojan leaks secret information by modulating a
timing channel observable by unclassified app

use a lot, Timeshared
use a little Secret Level Host

Unclassified Level

how fast am Consbpirina A
| running? PITITS PP

Non-Cooperative Attacks: Example

Apps unintentionally modulate shared resources
to reveal secrets when running standard code

key-dependent Cloud
usage patterns Acme Data, Inc. Host

Crypto (AES, RSA, ...)

i Discretionary Protection Boundary

Eviltron

watch memory Passive Attacker
~access timing

Timing Attacks in the Cloud

The cloud exacerbates timing channel risks:
Routine co-residency
Massive parallelism
No intrusion alarms — hard to monitor/detect
Partitioning defenses defeat elasticity

“Determinating Timing Channels in Compute Clouds”
[CCSW '10]

Towards a “Timing-Hardened Cloud”

Customer A's

Private Timing Domain \

Physically isolated

unrestricted
interaction

timing domains

Timing /

Firewall

Shared

Internet:
Public oy b | Timing | B
Timing Domain | Firewall . o e

. Customer's
~ Job

Public
Infrastructure

Cloud Provider's Computing/Network Infrastructure

Leak-Plugging Approaches

Two broad classes of existing solutions:

Tweak specific algorithms, implementations
Equalize AES path lengths, cache footprint, ...
Demand-insensitive resource partitioning

Requires new or modified hardware in general
Partition CPU cores, cache, interconnect, ...
Can't oversubscribe, stat-mux resources
Not economically feasible in an “elastic” cloud!

Anatomy of a Timing Channel

Two elements required: [Wray 91]

A resource that can be modulated
by the signaling process (or victim)

A reference clock enabling the attacker
to observe, extract the modulated signal

Remove either — no timing channel.

Prior Approaches

Attempt to eliminate modulation
- e.g., by partitioning hardware resources

<" Customer B's Job “

| XL XL X

. oooo | oooo .
LA @ S

$oooo®:

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Our Approach

Allow modulation, eliminate reference clocks

s Customer B's Job

Our Approach

Allow modulation, eliminate reference clocks
- Dynamic statistical multiplexing allowed

Customer B's Job ",

Timing Information Flow Control
[HotCloud '12]

Adapt IFC to label & control timing channels
Key idea: separate labeling of state and events
State labels attached to explicit program state

Represent ownership of information in the
content of a variable, message, process, etc.

Time Labels attached to event channels

Represent ownership of information affecting
time or rate events occur in a program

Relies on enforceable deterministic execution

.

Timing Control in Elastic Clouds

Need two key facilities:

System-enforced deterministic execution

OS/VMM ensures that a job's outputs depend
only on job's explicit inputs

Pacing queues

Input jobs/messages at any rate
Output jobs/messages on a fixed schedule

Determinator

A Determinism-Enforcing e =,
MicrOkernellHyperVisor ~|_chid space \h /Chi |||||||]
= = H‘ Root Space
“Ffficient System-Enforced p——
Deterministic Parallelism”

(Best Paper Award, OSDI 2010)

Enforces determinism on parallel applications
Even if user code behaves adversarially

Not provided by user-level approaches
(DMP, CoreDet, Grace, Dthreads, etc.)

.

e —

Determinator versus Linux

Coarse-grained Fine-grained

b m
g
=
i 1 —
v @ —
28
2 g

0.1
28
&
a
D 0.01

md5S matmult gsort blackscholes fft lu_cont lu_noncont
Benchmark

O1CPU O2CPUs W4 CPUs MB8CPUs W12 CPUs

e S

Elastic Cloud Scenario

Untrusted Scheduler

{A,B/A,,B.}
Control ADemand
{A,B/AOO,BOO}V :{AB/A_,B,}

Shared Deterministic
Compute Server

JobA\ : Result JobA : Result
(MVA.) D AA.B,) (BB.): y(BIA.B.)

Pacer - Pacer
- freqf - freqf
- - Result Job: :Result
v{A/Af,Bf} {B/B,}: v{B/Af,Bf}
Alice's Gateway Bob's Gateway 3
{A*,A"B7} {B*,B-Arl
Alice Bob

Jobs: In Anytime, Out on a Schedule

For each customer (e.g., Alice):
Deterministic execution ensures job output bits
depend only on job input bits: O; = f(l;)
Job outputs produced in same order as inputs

At each “clock tick”, paced queue releases
either next job output or says not ready yet

The single bit of information per clock tick
that might leak other users' information

Also supports predictive mitigation [CCS '11]

.

Bl 5ob's (Short) Job

Time ———»

(b) Schedule: Bob's job short
;—“

Informal "Schedule Analysis”

WAV gy
A I I ce ' S \\\\\\\\\\\\\\\\\\\\\\\\\\\“ Allce ’S "I!VIII///I/I///I////////////
Job > Job 4
{A/A .} ’ {A/A,} ‘
Paced result Paced result
‘ at tick 3 \ at tick 4
{A/ArBg] {A/A:B
@ _ .
S8 | 1o Ll L
c 2 > >
a5 | | A R A
@ - Result - Result
L9 E {A/AoovBoo} E {A/AoovBoo}
35 []
£ S H ‘ ‘ ‘ | H H ‘ ‘ |
on e

B :ob's (Long) Job

Time ———»

(b) Schedule: Bob's job long

e e

Key Challenges/Questions

Formalize full TIFC model
Potentially applicable at systems or PL levels

| 1

Integrate Myers
Complete TIFC-enforcing prototype

predictive mitigation” ideas

Ongoing, based on Determinator [OSDI '10]
Explore flexibility, applicability of model

Can model support interactive applications?
Can model support transactional apps?

Conclusion

First approach to timing channels control that:

Works with unmodified hardware and software

Works with general computing algorithms

Supports stat-multiplexed elastic computing

More info: http://dedis.cs.yale.edu/2010/det/

14

14

Determinating Timing Channels”

CCSW "10]

Plugging Side-Channel Leaks” [IF

otCloud '12]

“Efficient System-Enforced Det...” [OSDI '12]

.

http://dedis.cs.yale.edu/2010/det/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

