
System energy consumption is
a multi-player game

Mian Dong, Tian Lan and Lin Zhong

Energy accounting by software

2

How much energy does a process

contribute given a time internal?

Modern mobile systems are multiprocessing

3

MPU	 DSP	 Graphics	
accelerator	

System	 bus	 Peripheral	 bus	

UART	

sensor	

SPI	 I2C	 Display	
controller	

Camera	
ISP	

Memory	
controller	

McBSP	 McBSP	

Application Processor

sensor	

…

…
…

DMA	 McBSP	

Imager	

Cellular	
chipset	

802.11	
chipset	

Bluetooth	
chipset	

M
cB
SP
	

Off-‐chip	
memory	

M
ic
.	 I
C	

More cores, more types of cores, and more specialized cores

Core 1

Core 2

Software tasks

t
Time

4

E = β0+β1x1+…+ βpxp
Predictors xi: System status variables

H. Zeng et al, "ECOSystem: managing energy as a first class operating system resource," ASPLOS’02.
A. Kansal et al, "Virtual machine power metering and provisioning," SoCC’10.
A. Roy, "Energy Management in Mobile Devices with the Cinder Operating System". EuroSys 2011

Model-driven policy

5

x1 = x1,1+…+ x1,n

xp = xp,1+…+ xp,n

n tasks contribute to the predictors

ϕi = β1x1,i+…+ βpxp,i
Energy contribution by process i

 Predictors must be software accountable
 Model must be linear

 Constant factor (β0)

E = β0+β1x1+…+ βpxp

Problems

6

Lone-wolf policy

7

ϕi = E(S U {i}) - E(S) often S is an idle system

Lin Zhong and Niraj K. Jha, "Graphical user interface energy characterization for handheld computers", in Proc. Int.
Conf. on Compilers, Architectures & Synthesis for Embedded Systems (CASES), Oct. 2003.

Problem: ϕi+ϕj != E(S U{i,j})

8

How can we evaluate an energy
accounting policy?

How to split the utility bill?

9

How to split the profit?

10

11

N={1,2,..,n} set of players
S subset of N (coalition)
v(S) game surplus when S plays
ϕi(S) surplus received by player i

Shapley Value
How to determine the contribution of each
individual player in a multi-player game?

L. S. Shapley, A value for n-person games: In Contributions to the Theory of Games, volume II,
Annals of Mathematical Studies v. 28, pp. 307–317, Princeton Univ. Press, 1953.

12

Four axioms determines a unique distribution

Game

Players (N)
System energy consumption (E): game surplus (v)

Core 1

Core 2

Software tasks

t
Time

13

Axiom 1: Efficiency

The sum of the energy contributions by all tasks equals
the system energy consumption.

14

If replacing one with another will not change the
system energy consumption under any
circumstances, two tasks should have the same
energy contributions.

15

Axiom 2: Symmetry

If adding a task under any circumstances does not
increase system energy consumption, this task should
have zero energy contribution.

16

Axiom 3: Null Player

Axiom 4: Additivity

The same energy attribution policy should work for
all the time intervals.

17

Shapley Value

18

Rethink Energy Accounting

fi(E(N)) = Â
S✓N\{i}

E(S[{i})�E(S)
(|N|� |S|)

�|N|
|S|
� (1)

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

1

Systems challenges

19

•  E(S) is highly random

•  E(S) not available for many S

•  E(S) depends on hardware configuration

Core 1

Core 2

Software tasks

t
Time

Challenge I: Shapley value only cares about IF a
player participates in a game but not HOW

20

Core 1

Core 2

Software tasks

t
Time

Challenge I: Shapley value only cares about IF a
player participates in a game but not HOW

21

Core 1

Core 2

Software tasks

t
Time

Challenge I: Shapley value only cares about IF a
player participates in a game but not HOW

22

~108 ways these five tasks can appear in t

Challenge II: Not all combinations of tasks have
been observed

Core 1

Core 2

Software tasks

t
Time

To distribute system energy to the five tasks, Shapley
value requires E(S) for every subset S of the five tasks

23

Solutions

24

•  E(S) is highly random
•  E(S) not available for all S

•  Estimate E for short time interval (10 ms)

Core 1

Core 2

Software tasks

t
Time

Challenge I: Shapley value only cares about IF a
player participates in a game but not HOW

25

~108 ways these five tasks can appear in t

Core 1

Core 2

Software tasks

t
Time

Challenge I: Shapley value only cares about IF a
player participates in a game but not HOW

26

Only two tasks can appear in t
Two ways any two tasks can appear in t

Challenge II: Not all combinations of tasks have
been observed

Core 1

Core 2

Software tasks

t
Time

To distribute system energy to the five tasks, Shapley
value requires E(S) for any subset S of the five tasks

27

Challenge II: Not all combinations of tasks have
been observed

Core 1

Core 2

Software tasks

t
Time

To distribute system energy to the five tasks, Shapley
value requires E(S) for any subset S of the two tasks

28

Solutions

29

•  E(S) is highly random
•  E(S) not available for all S

•  Estimate E for short time interval (10 ms)
•  Estimate E in situ

Smart battery interface

•  Machine learning techniques (~80%)
–  Dong and Zhong (MobiSys 2011)

•  Improved hardware/software (~95%)

30

Mian Dong and Lin Zhong, "Self-constructive, high-rate energy modeling for battery-powered mobile systems," in Proc. ACM/USENIX Int.
Conf. Mobile Systems, Applications, and Services (MobiSys), June 2011.

Solutions

31

•  E(S) is highly random
•  E(S) not available for all S

•  Estimate E for short time interval (10 ms)
•  Estimate E in situ
•  Use the crowd

Solutions

32

•  E(S) is highly random
•  E(S) not available for all S

•  Estimate E for short time interval (10 ms)
•  Estimate E in situ
•  Use the crowd
•  Extend Shapley Value framework

Extend Shapley Value framework

•  Approximate unknown E(S) by their per-task
energy cost allocations

•  Example
–  Tasks: {1, 2, 3}
–  E(S) known for S = {1,2,3}, {2,3}, {1}, {2}
–  E(S) can be recursively estimated for others

•  Ê({3}) = E({1,2,3}) − E({1}) − E({2})
•  Ê({1,2}) = E({1}) + E({2})
•  Ê({1,3}) = E({1}) + E({3})

33

Prototype implementation

34

Current
Sensor

ADC

...

Memory

Controller
Timer

Voltage
Sensor

Battery Interface HardwareMobile System

App
n

App
1

App
2 ...

Battery Interface
Driver

+

-

Battery Interface
Library

OS Kernel

Libraries

Battery

Texas Instruments Pandaboard
(OMAP4430) with Android

MAXIM DS2756 battery fuel
gauge

Evaluating existing policies

35

III = Lone-Wolf V = Model-driven

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Em
pr

ic
al

 C
D

F

Relative Error

w/ synchronization
w/o synchronization

Figure 8: CDF of measurement error

0%

20%

40%

60%

80%

100%

10 20 30 40 50 60 70 80

R
el

at
iv

e
Er

ro
r

Number of E (S,σ)

Figure 9: Estimation error from partial data

• Video: Video player based on ffmpeg.
• Game: Open source 3D video game Quake 3. The inputs are

recorded in a script.

Out of the four applications, Video, Web and Game cannot run
at the same time because both of them require a foreground exe-
cution to present the content on the screen. Therefore, we further
define three scenarios that represent three typical usage cases with
multiple application actively running.

• Scenario 1: Web + Download + Android.
• Scenario 2: Video + Download + Android.
• Scenario 3: Game + Download + Android.

6.1.1 Accuracy of E(S)
We first evaluate the accuracy of energy measurement by the pro-

totype by comparing the measurement results against readings by
a high-end oscilloscope. As shown in Figure 8, over 90% of mea-
surement are with error less than 5%. Figure 8 also illustrates the
importance of synchronization. As shown in the figure, the 90% of
measurement are with error less than 30% without synchronization.

We then evaluate the accuracy of energy estimation from partial
data. The prototype support 12 states in total, i.e., four states for
CPU and three states for WiFi. There are 10 combinations for each
of the three scenarios included in our experiment. Therefore, thee
are 120 E(S,s) for each scenarios. In our experiment, we run each
scenarios for a sufficient long period and finally obtain 97, 102,
and 86 E(S,s), respectively. We treat these obtained E(S,s) as
ground truth and randomly choose part of these E(S,s) to estimate
the remaining part. Figure 9 shows the results.

6.1.2 Accuracy of Existing Energy Accounting Poli-
cies

0%

50%

100%

150%

200%

S I II III IV V S I II III IV V S I II III IV V

R
el

at
iv

e
En

er
gy

 C
on

tr
ib

ut
io

n

Accounting Policy

Android Download Web Video Game

Scenario1 Scenario2 Scenario3

Figure 10: Accounting Comparison

We finally evaluate different energy accounting policies by com-
paring their results with the results from Shapley value based en-
ergy accounting. For comparison, we also implemented five alter-
native energy accounting policies as described in Section 2. The
results are shown in Table 10.

As we see in the table, policy II and policy III obviously vio-
late the Axiom of Efficiency. Policy IV usually gives inaccurate
accounting results, as in Scenario 1 and 2, because it only consid-
ers the usage of CPU but not WiFi interface that consumes a large
portion of energy in network related applications such as Web and
Download. In Scenario 3, Policy V gives an very inaccurate ac-
counting results against Shapley value because the power model
utilized by policy V does not include the power consumption of
GPU, the major power consumer in Game application.

6.2 Evaluating OEM-based Scheduling

6.2.1 Implementation
We utilize interior point method to solve the optimization prob-

lem described in Section 4.1. The mathematical computation is
based on the GNU Scientific Library. To guarantee the calculation
precision, we implement the optimization solver running in user
space to leverage the floating point hardware unit in ARM pro-
cessor. The coarse-grained optimization is scheduled when a new
application is launched by user or every 100 seconds depending
on which comes first. After each coarse-grained optimization, all
the inputs needed for fine-grained optimization are available. We
choose to calculate all the fine-grained optimization right after the
coarse-grained optimization. The goal of this decision to minimize
the overhead of the OEM scheduler. Note that the execution time
of fine-grained optimization can be as long as 10 ms, which is com-
parable to the interval of process scheduling interval itself.

We created a new process scheduler which wraps the default
process scheduler in Android kernel and incorporates our OEM
scheduling algorithm. Whether to use our OEM scheduling is con-
figurable during runtime by the upper layer android applications.
By doing so, the impact to the existing code is minimum and the
modification is transparent to the upper layer android applications.

6.2.2 Results
We next show that OEM scheduler is able to achieve superior

utility function values than BEM scheduler with any energy ac-
counting policy. In our experiment, there are six combinations in
total, as shown in Figure 11. To guarantee fairness, we set the util-
ity function as the total execution time of the two applications in
three scenarios using the proportional fairness utility function, the
weights for the foreground application and background application

11

Conclusions

•  Shapley value as ground truth for energy
accounting

•  System challenges can be addressed

36

