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Energy accounting by software 
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How much energy does a process 

contribute given a time internal? 



Modern mobile systems are multiprocessing 
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More cores, more types of cores, and more specialized cores 



Core 1 

Core 2 

Software tasks 

t 
Time 

4 



E = β0+β1x1+…+ βpxp 
Predictors xi:      System status variables 

H. Zeng et al, "ECOSystem: managing energy as a first class operating system resource," ASPLOS’02. 
A. Kansal et al, "Virtual machine power metering and provisioning," SoCC’10. 
A. Roy, "Energy Management in Mobile Devices with the Cinder Operating System". EuroSys 2011 

Model-driven policy 
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x1 = x1,1+…+ x1,n 

xp = xp,1+…+ xp,n 

n tasks contribute to the predictors 

ϕi = β1x1,i+…+ βpxp,i 
Energy contribution by process i 



 Predictors must be software accountable 
 Model must be linear 

                 Constant factor (β0)    

E = β0+β1x1+…+ βpxp 

Problems 
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Lone-wolf policy 
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ϕi = E(S U {i}) - E(S)  often S is an idle system 

Lin Zhong and Niraj K. Jha, "Graphical user interface energy characterization for handheld computers",  in Proc. Int. 
Conf. on Compilers, Architectures & Synthesis for Embedded Systems (CASES), Oct.  2003. 

Problem: ϕi+ϕj != E(S U{i,j}) 
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How can we evaluate an energy 
accounting policy? 



How to split the utility bill? 
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How to split the profit? 
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N={1,2,..,n}       set of players 
S                       subset of N (coalition) 
v(S)          game surplus when S plays 
ϕi(S)                    surplus received by player i 



Shapley Value 
How to determine the contribution of each 
individual player in a multi-player game? 

L. S. Shapley, A value for n-person games: In Contributions to the Theory of Games, volume II, 
Annals of Mathematical Studies v. 28, pp. 307–317, Princeton Univ. Press, 1953. 
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Four axioms determines a unique distribution 



Game 

Players (N) 
System energy consumption (E): game surplus (v) 
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Axiom 1: Efficiency 

The sum of the energy contributions by all tasks equals 
the system energy consumption.  
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If replacing one with another will not change the 
system energy consumption under any 
circumstances, two tasks should have the same 
energy contributions. 
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Axiom 2: Symmetry 



If adding a task under any circumstances does not 
increase system energy consumption, this task should 
have zero energy contribution. 
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Axiom 3: Null Player 



Axiom 4: Additivity 

The same energy attribution policy should work for 
all the time intervals. 
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Shapley Value 
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Rethink Energy Accounting

fi(E(N)) = Â
S✓N\{i}

E(S[{i})�E(S)
(|N|� |S|)

�|N|
|S|
� (1)
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Systems challenges 
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•  E(S) is highly random 

•  E(S) not available for many S 

•  E(S) depends on hardware configuration 
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Challenge I: Shapley value only cares about IF a 
player participates in a game but not HOW 
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Challenge I: Shapley value only cares about IF a 
player participates in a game but not HOW 
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Challenge I: Shapley value only cares about IF a 
player participates in a game but not HOW 
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~108 ways these five tasks can appear in t 



Challenge II: Not all combinations of tasks have 
been observed 

Core 1 

Core 2 

Software tasks 

t 
Time 

To distribute system energy to the five tasks, Shapley 
value requires E(S) for every subset S of the five tasks 
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Solutions 
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•  E(S) is highly random 
•  E(S) not available for all S 

•  Estimate E for short time interval (10 ms)
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Challenge I: Shapley value only cares about IF a 
player participates in a game but not HOW 
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~108 ways these five tasks can appear in t 
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Core 2 

Software tasks 
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Time 

Challenge I: Shapley value only cares about IF a 
player participates in a game but not HOW 
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Only two tasks can appear in t 
Two ways any two tasks can appear in t 



Challenge II: Not all combinations of tasks have 
been observed 

Core 1 
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Time 

To distribute system energy to the five tasks, Shapley 
value requires E(S) for any subset S of the five tasks 
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Challenge II: Not all combinations of tasks have 
been observed 

Core 1 

Core 2 

Software tasks 

t 
Time 

To distribute system energy to the five tasks, Shapley 
value requires E(S) for any subset S of the two tasks 

28 



Solutions 
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•  E(S) is highly random 
•  E(S) not available for all S 

•  Estimate E for short time interval (10 ms) 
•  Estimate E in situ 



Smart battery interface 
 

•  Machine learning techniques (~80%) 
–  Dong and Zhong (MobiSys 2011) 

•  Improved hardware/software (~95%) 
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Mian Dong and Lin Zhong, "Self-constructive, high-rate energy modeling for battery-powered mobile systems," in Proc. ACM/USENIX Int. 
Conf. Mobile Systems, Applications, and Services (MobiSys), June 2011. 



Solutions 
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•  E(S) is highly random 
•  E(S) not available for all S 

•  Estimate E for short time interval (10 ms) 
•  Estimate E in situ 
•  Use the crowd 



Solutions 
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•  E(S) is highly random 
•  E(S) not available for all S 

•  Estimate E for short time interval (10 ms) 
•  Estimate E in situ 
•  Use the crowd 
•  Extend Shapley Value framework 



Extend Shapley Value framework 

•  Approximate unknown E(S) by their per-task 
energy cost allocations 

•  Example 
–  Tasks: {1, 2, 3} 
–  E(S) known for S = {1,2,3}, {2,3}, {1}, {2} 
–  E(S) can be recursively estimated for others 

•  Ê({3}) = E({1,2,3}) − E({1}) − E({2}) 
•  Ê({1,2}) = E({1}) + E({2}) 
•  Ê({1,3}) = E({1}) + E({3}) 

 

33 



Prototype implementation 
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Evaluating existing policies 
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III = Lone-Wolf            V = Model-driven 
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Figure 8: CDF of measurement error
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Figure 9: Estimation error from partial data

• Video: Video player based on ffmpeg.
• Game: Open source 3D video game Quake 3. The inputs are

recorded in a script.

Out of the four applications, Video, Web and Game cannot run
at the same time because both of them require a foreground exe-
cution to present the content on the screen. Therefore, we further
define three scenarios that represent three typical usage cases with
multiple application actively running.

• Scenario 1: Web + Download + Android.
• Scenario 2: Video + Download + Android.
• Scenario 3: Game + Download + Android.

6.1.1 Accuracy of E(S)
We first evaluate the accuracy of energy measurement by the pro-

totype by comparing the measurement results against readings by
a high-end oscilloscope. As shown in Figure 8, over 90% of mea-
surement are with error less than 5%. Figure 8 also illustrates the
importance of synchronization. As shown in the figure, the 90% of
measurement are with error less than 30% without synchronization.

We then evaluate the accuracy of energy estimation from partial
data. The prototype support 12 states in total, i.e., four states for
CPU and three states for WiFi. There are 10 combinations for each
of the three scenarios included in our experiment. Therefore, thee
are 120 E(S,s) for each scenarios. In our experiment, we run each
scenarios for a sufficient long period and finally obtain 97, 102,
and 86 E(S,s), respectively. We treat these obtained E(S,s) as
ground truth and randomly choose part of these E(S,s) to estimate
the remaining part. Figure 9 shows the results.

6.1.2 Accuracy of Existing Energy Accounting Poli-
cies
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Figure 10: Accounting Comparison

We finally evaluate different energy accounting policies by com-
paring their results with the results from Shapley value based en-
ergy accounting. For comparison, we also implemented five alter-
native energy accounting policies as described in Section 2. The
results are shown in Table 10.

As we see in the table, policy II and policy III obviously vio-
late the Axiom of Efficiency. Policy IV usually gives inaccurate
accounting results, as in Scenario 1 and 2, because it only consid-
ers the usage of CPU but not WiFi interface that consumes a large
portion of energy in network related applications such as Web and
Download. In Scenario 3, Policy V gives an very inaccurate ac-
counting results against Shapley value because the power model
utilized by policy V does not include the power consumption of
GPU, the major power consumer in Game application.

6.2 Evaluating OEM-based Scheduling

6.2.1 Implementation
We utilize interior point method to solve the optimization prob-

lem described in Section 4.1. The mathematical computation is
based on the GNU Scientific Library. To guarantee the calculation
precision, we implement the optimization solver running in user
space to leverage the floating point hardware unit in ARM pro-
cessor. The coarse-grained optimization is scheduled when a new
application is launched by user or every 100 seconds depending
on which comes first. After each coarse-grained optimization, all
the inputs needed for fine-grained optimization are available. We
choose to calculate all the fine-grained optimization right after the
coarse-grained optimization. The goal of this decision to minimize
the overhead of the OEM scheduler. Note that the execution time
of fine-grained optimization can be as long as 10 ms, which is com-
parable to the interval of process scheduling interval itself.

We created a new process scheduler which wraps the default
process scheduler in Android kernel and incorporates our OEM
scheduling algorithm. Whether to use our OEM scheduling is con-
figurable during runtime by the upper layer android applications.
By doing so, the impact to the existing code is minimum and the
modification is transparent to the upper layer android applications.

6.2.2 Results
We next show that OEM scheduler is able to achieve superior

utility function values than BEM scheduler with any energy ac-
counting policy. In our experiment, there are six combinations in
total, as shown in Figure 11. To guarantee fairness, we set the util-
ity function as the total execution time of the two applications in
three scenarios using the proportional fairness utility function, the
weights for the foreground application and background application
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Conclusions 

•  Shapley value as ground truth for energy 
accounting 

•  System challenges can be addressed 
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