Energy Efficient Computing with Composable
Accelerators

Jason Cong

Director, Center for Domain-Specific Computing
www.cdsc.ucla.edu

Chancellor’s Professor, UCLA Computer Science Department
cong@cs.ucla.edu

Center for Domain-Specific Computing (CDSC)
Funded by 2009 NSF Expeditions in Computing Program
- ‘

Cheng Cong (Director)
(ucsB) (UCLA)

Aberle Baraniuk Bui Chang
(UCLA) (Rice) (UCLA) (UCLA)

Palsberg Potkonjak Reinman Sadayapf)an Sarkar Vese
UCLA Rice ucsBe Ohio State
Domain-specific modeling Bui, Reinman, Potkonjak Sarkar, Baraniuk Sadayappan
CHP creation Chang, Cong, Reinman Cheng
CHP mapping Cong, Palsberg, Potkonjak Sarkar Cheng Sadayappan
Application drivers Aberle, Bui, Chien, Vese Baraniuk
Experimental systems All (led by Cong & Bui) All All All

11/4/12

CDSC Focus: New Transformative Approach to Power/
Energy Efficient Computing

+ Current solution: Parallelization
+ Next significant opportunity - Customization

Parallelization

Nuclear Reactor Customization
il

100

4 . Adapt the architecture to
Pentium Il ® application domain

Pentium || ®

€
g
]
k=]
]
3

I5p Ip 07p 05p 0354 025p 0.18u 0.13p 0.dp 0.07p

Project Goals

+ A general, customizable platform for the given domain(s)

= Can be customized to a wide-range of applications in the domain
= Can be massively produced with cost efficiency
= Can be programmed efficiently with novel compilation and runtime systems

+ Metric of success

= A “supercomputer-in-a-box” with +100x performance/power improvement via
customization for the intended domain(s)

11/4/12

Research Scope in CDSC (Center for Domain-

Specific Computing)

Customizable Heterogeneous Platform

ﬂ
al
[0[0] [0[0] [6[0]
[O] [o[0]

Reconfigurable RF-I bus
Reconfigurable optical bug
@@ Transceiverireceiver

CHP creation
Customizable computing engines
L Customizable interconnects

Design once

~e—
Customizatio
settina Invoke many times

Architecture §
-
modeling

CHP mapping

Adaptive runtime

Source-to-source CHP mapper
Reconfiguring & optimizing backend

Performance/Energy Efficiency of Accelerators

AES 128bit key Throughput Power Figure of Merit

128bit data (Gbis/W)

0.13mm CMOS 3.84 Gbits/sec 350 mW

FPGA[1] 1.32 Ghitisec 490 mW 2.7 (114)

ASM StrongARM [2] 31 Mbitisec 240 mW

ASM Pentium lll [3] 648 Mbits/sec 414W

C Emb. Sparc [4] 133 Kbits/sec 120 mW 0.0011 (1/10,000)

Java [5] Emb. Sparc 450 bits/sec 120 mW 0.0000037 (1/3,000,000)

[1] Amphion CS5230 on Virtex2 + Xilinx Virtex2 Power Estimator

[2] Dag Arne Osvik: 544 cycles AES - ECB on StrongArm SA-1110

[3] Helger Lipmaa PlIl assembly handcoded + Intel Pentium Il (1.13 GHz) Datasheet

[4] gcc, 1 mW/MHz @ 120 Mhz Sparc - assumes 0.25 u CMOS

[5] Java on KVM (Sun J2ME, non-JIT) on 1 mW/MHz @ 120 MHz Sparc - assumes 0.25 u CMOS

Source: P Schaumont and | Verbauwhede, "Domain specific
codesign for embedded security," IEEE Computer 36(4), 2003

11/4/12

Accelerator-Rich CMP (ARC) [DAC’12]

Accelerator +
DMA + SPM

GAM | Global Accelerator \
Manager N

GAM responsibility: | €---
Accelerator

* Sharing

* Virtualization
* Scheduling

) S

GAM, Accelerator, SPM, L2 Banks

DMA-C Synthesized from

C-based specification Core

(AutoESL/Xilinx + Memory
Synopsys DC) Cotroller

B Router

Overall Communication Scheme in AXR-CMP

CPU New ISA

Icacc-req t

Icacc-rsrv t, e

Icacc-cmd id, f, addr

Accelerator

Icacc-free id

Task

The core requests for a given type of accelerator (Icacc-req).

The GAM responds with a “list + waiting time” or NACK

The core reserves (Icacc-rsv) and waits.

The GAM ACK the reservation and send the core ID to accelerator

The core shares a task description with the accelerator through memory and starts it (Icacc-cmd).
The accelerator reads the task description, and begins working

When the accelerator finishes its current task it notifies the core.

The core then sends a message to the GAM freeing the accelerator (Icacc-free).

O NG EODN =

11/4/12

Accelerator Virtualization

+ Chaining

= Efficient accelerator to
accelerator communication

Accelerator1 Accelerator2
! f v t
{ Scratchpad ‘ [Scratchpad
H '

DMA controller

DMA controller

+ Composition

= Constructing virtual
accelerators

virtualization
3D FFT

M-point | [M-point
1D FFT 1D FFT

N-point
2D FFT

XPilot: Behavioral-to-RTL Synthesis Flow [SOCC’2006]
(with GSRC and NSF supports from 2001 — 2006)

[Behavioral spec.

J

in C/C++/SystemC
description

[RTL + constraints]

FPGAs/ASICs

¢ Advanced transformtion/optimizations
= Loop unrolling/shifting/pipelining

» Strength reduction / Tree height reduction

= Bitwidth analysis
s Memory analysis ...

+ Core behvior synthesis optimizations
= Scheduling

= Resource binding, e.g., functional unit
binding register/port binding

. pArch-ﬂenmtion & RTL/constraints
generation

» Verilog/VHDL/SystemC
s FPGASs: Altera, Xilinx
= ASICs: Magma, Synopsys, ...

11/4/12

AutoPilot Compilation Tool (based UCLA xPilot system)

Design Specification

‘ || Myﬂomcl User Constraints
. ~ .

/ Compilation& | AytoPilot™
ADOTation

[Pmyn\holh Opumlnnom]

youaqjse] uowwion

]

C.) Behavioral & Communication
Synthesis and Optimizations

sisayjufs 1S3

RTL HDLs & |[Timing/Power/Layou
RTL SystemC

Constraints

BuidAjojoid pue ‘uonedlLIaA ‘UoReINWIS

g

|

T
Co-Processor

+ Platform-based C to FPGA
synthesis

+ Synthesize pure ANSI-C and C+
+, GCC-compatible compilation
flow

+ Full support of IEEE-754
floating point data types &
operations

+ Efficiently handle bit-accurate
fixed-point arithmetic

+ SDC-based scheduling
+ Automatic memory partitioning

QoR matches or exceeds manual
RTL for many designs

Developed by AutoESL, acquired by Xilinx in Jan. 2011

11

Accelerator-Rich CMP (ARC) [DAC’12]

Accelerator +
DMA + SPM

GAM | Global Accelerator
Manager

\
\

GAM responsibility:
Accelerator

* Sharing

* Virtualization

* Scheduling

2~ -

GAM, Accelerator, SPM,
DMA-C Synthesized by:
* AutoESL (Xilinx Vivado
HLS)

* Synopsys Design

L2 Banks
Core

Memory
Cotroller

Compiler

B Router

Irregular NoC

Buffer in NUCA
(BiN)

Hybrid
Cache

SIMICS
(Functional
model)
S oPAL
(T leterogeneity

ightly-coupled
accelerator

Accelerator Powerlarea L0OSEly-coupled
Model (interface to accelerator
o (ARC, CHARM)

Heterogeneous Simulation Platform:
« Compute heterogeneity

» Memory/cache heterogeneity

+ Communication heterogeneity

« Built on top of Simics+GEMS

11/4/12

Appllcatlon Domain: Medical Image Processing

Medicalimages exhibit sparsity, and can be sampled at
arate << classical Shannon - Nyquist theory :

gHARu S|+ loract)]

sampledpoints Vvoxels

$, 2
s
h

Vvoxel: u(i) = (Ew,‘,f(j)] 207wy = Z()

voxel Evolume

vy
ot

v+ (4 V(7 -v)= [T -u) -RO) N T(x - 1)

=|V¢||F(data ¢)+Ad|v

surface(t) = {voxels X:gxt) = 0}

%+(v V)V =-Vp+vAv +f(x,t)

at i’:ﬁ: - 2v—+fxt

13
Area Overhead
1 1 1
0.012 2.01 0.49 0.69 3.85
182 0.567.0 0.02 3.4 0.8 1.2 6.5 2.4
[Total Accelerators + GAM + SPMs: 14.3 %
+ AutoESL (from Xilinx) for C to RTL synthesis
+ Synopsys for ASIC synthesis
= 32 nm Synopsys Educational library
+ CACTIfor L2
+ Orion for NoC
+ One UltraSparc llli core (area scaled to 32 nm)
= 178.5mm"2 in 0.13 um (http://en.wikipedia.org/wiki/UltraSPARC llI)
14

11/4/12

Experimental Results - Performance
(N cores, N threads, N accelerators)

Speedup over SW-Only

400

350

300
g = Registation Performance improvement
S 150 | Deblur over SW only approaches:

100 Denoise

on average 168x, up to 380x
58 I I I I I B Segmentation g d P
1 2 4 8 16

Configuration (N cores, N threads, N accelerators)

Speedup over 0S-based
350
300

. 250
Performance improvement £ 200 ® Registration

over OS based approaches: & 150 | | Deblur
I I — I L - =
1 2 4 8 16

on average 51x, up to 292x 123

0

Denoise

¥ Segmentation

Configuration (N cores, N threads, N accelerators)

15
Experimental Results - Energy
(N cores, N threads, N accelerators)
Energy gain over SW-only version
700
600
500 .
= 400 B Registration Energy Improvement
8 223 Deblur over SW-only approaches:
100 Denoise on average 241x, up to 641x
0 | | |] B ™ Segmentation
1 2 4 8 16
Configuration (N cores, N threads, N accelerators)
Energy gain over OS-based version
70
60
. 50
Energy improvement <10 = Regisiration
over 0S-based approaches: s Deblur
20 '
on average 17x, up to 63x 10 I Denoise
0 — - - - ™ B Segmentation
1 2 4 8 16
Configuration (N cores, N threads, N accelerators)
16

11/4/12

What are the Problems with ARC?

+ Dedicated accelerators are inflexible

= An LCA may be useless for new algorithms or new domains

= Often under-utilized

= LCAs contain many replicated structures
* Things like fp-ALUs, DMA engines, SPM

« Unused when the accelerator is unused

+ We want flexibility and better resource utilization

= Solution: CHARM

+ Private SPM is wasteful
= Solution; BiN

Fine-grain Accelerator Composition +
Globally-managed Buffer in NUCA [ISLPED’12]

+ ABB
= Accelerator building blocks (ABB)
= Primitive components that can be
composed into accelerators

+ ABBislands
= Multiple ABBs
= Shared DMA controller, SPM and
NoC interface

+ ABC

= Accelerator Block Composer
(ABC)

* Runtime composition of virtual
accelerators from ABBs
* Arbitrate requests from cores
+ Other components
= Cores
= L2 Banks
= Memory controllers

M |$2|$2(C | C |$2($2|M
c|(c|jc|jc|cfcjc|c
$2 |1 ($2 |1 |$2| 1 [$2(1
$2 (1 [$2) 1 [$2| 1 |$2] 1
$2 (1 [$2 ABC[$2 | I |$2| I
$2 (1 |$2 |1 [$2| 1 |$2] 1
c|icfcjc|jc|c|c
M |$2|82|C | C |$2($2| M

(]

s
’ m
->>>>>
| || oo| (00| |oo
N 00| (9| || |oo) o
N
N

a8V

Accelerator Block

L2

Bank

Composer

Memory
Controller

E‘ Core

11/4/12

An Example of ABB Library (for Medical Imaging)

Denoise | Deblur | Registration | Segmentation
ABBs
Float Reciprocal (FInv) v v v
Float Square-Root (FSqrt) v v v v
Float Polynomial-16 (Poly16) v v v v
Float Divide (FDiv) v v v v
NoC interface
Internal y oo
DMA-C SPM Bank o -
of Poly I
Id Id1 Id Id ctrl1 =
ADD/SUB/MUL
ASM ASM ASM ASM (ASM)
ASM ASM Frox‘(:;;ecgqoc
Asm) 1t YrTrrT Veeaa.
T 1d[3:0] e
19
Example of ABB Flow-Graph (Denoise)
6
. 2
1 Xi—Y)
i=0
20

11/4/12

10

Example of ABB Flow-Graph (Denoise)

6 2
1/ Z(Xi —v)
i=0

21

Example of ABB Flow-Graph (Denoise)

6 2
1/ Z(Xi —v)
i=0

ABB3: Sqrt
ABB4: Inv

e

22

11/4/12

"

6

1/ Z(Xi —y)?

i=0

ABB3: Sqrt

ABB4: Inv

Decomposed Denoise LCA

Example of ABB Flow-Graph (Denoise)

1

ABB1, Type = Poly
Input: Mem, Output:ABB2
Function:(x0-x1),(x2-x3), ...

I

ABB2, Type = Poly
Input: ABB1, Output: ABB3
Function: x0*x1+x2*x3+....

!

ABB3, Type = Sqrt
Input: ABB2, Output: ABB4
Function: sqrt(x0)

!

ABB4, Type = Finv
Input: ABB3, Output: Mem
Function: 1/x0

23

LCA Composition Process

Core
asB X asg X
ISLAND1 ISLAND2
y w
ABC
ABB £ asg Y
ISLAND3 ISLAND4
w Y4

24

11/4/12

12

11/4/12

LCA Composition Process

1. Core initiation

= Core sends the task description: task flow-
graph of the desired LCA to ABC together with
polyhedral space for input and output

Core
aBB X agg X
Task description ISLAND1 ISLAND2
v y w
X ABC
z
ABB Z asg Y
10x10 input and output ISLAND3 ISLAND4
w Z
25
LCA Composition Process
2. Task-flow parsing and task-list creation
= ABC parses the task-flow graph and breaks the request
into a set of tasks with smaller data size and fills the
task list
Core
aBB X agg X
ISLAND1 ISLAND2
y w
ABC generates internally
ABC
ABB 2 asg Y
*Needed ABBs: “x”, “y”, “2” ISLAND3 ISLAND4
w Z
=With task size of 5x5 block,
ABC generates 4 tasks
26

13

11/4/12

LCA Composition Process
3. Dynamic ABB mapping

= ABC uses a pattern matching algorithm to
assign ABBs to islands

= Fills the composed LCA table and resource
allocation table

Core
agg X A X
ISLAND1 ISLAND2
R 1
i ABC
1 X 1 Free
1 y 1 Free
2 X 1 Free ABB 4 ABB y
2 w ! Free ISLAND3 ISLAND4
3 z 1 Free w Z
3 w 1 Free
4 Yy 1 Free
4 z 1 Free o
LCA Composition Process
3. Dynamic ABB mapping
= ABC uses a pattern matching algorithm to
assign ABBs to islands
= Fills the composed LCA table and resource
allocation table
Core X
ABB ABB
ISLA Q ISLAND2
R '
i ABC
1 X 1 Busy \»
1 y 1 Busy
2 X 1 Free ABB Q ABB y
2 w ! Free ISLAND3 ISLAND4
3 z 1 Busy w Z
3 w 1 Free
4 Yy 1 Free
4 z 1 Free 28

14

11/4/12

LCA Composition Process
4. LCA cloning

= Repeat to generate more LCAs if ABBs are
available

ABB ABB

ISLA ISLA
v
el PP

Type ABC

- \ \

1 1 Busy v Vv

1 y 1 Busy Q

2 1 Busy ABB ABB

2 w 1 Free ISLAND3 ISLAND4

3 z 1 Busy w

3 w 1 Free

4 Yy 1 Busy

4 z 1 Busy 29

LCA Composition Process
5. ABBs finishing task
= When ABBs finish, they signal the ABC. If DONE
ABC has another task it sends otherwise it o o e
frees the ABBs P S~ N
v d
P N
&
Core /’
4 ABB ABB

ABB ABB ID /4
R swpll
1 X 1 Busy w
1 y 1 Busy ABC
2 1 Busy \» \‘\'
2 w 1 Free
3 z 1 Busy ABB Q ABB
3 w 1 Free ISLAND3 ISLAND4
4 Yy 1 Busy w
4 z 1 Busy

30

15

11/4/12

LCA Composition Process

5. ABBs being freed
= When an ABB finishes, it signals the ABC. If
ABC has another task it sends otherwise it

frees the ABBs
Core ? x
ABB ABB
ABB ABB ID
1 X 1 Busy Q w
1 y 1 Busy ABC
2 1 Free \»
2 w 1 Free
3 z 1 Busy ABB Q ABB y
3 w 1 Free ISLAND3 ISLAND4
4 y 1 Free w Z
4 z 1 Free
31
LCA Composition Process
6. Core notified of end of task
= When the LCA finishes ABC signals the
core
Core
as X aBB X
ABB ABB ID A
1 X 1 Free y w
1 y 1 Free ABC
2 1 Free
2 w 1 Free
3 z 1 Free ABB z ABB y
3 w 1 Free ISLAND3 ISLAND4
4 y 1 Free w Z
4 z 1 Free
32

16

CHARM Software Infrastructure
+ ABB type extraction

Domain
= |nput: compute-intensive kernels Kemels
from different application
= Qutput: ABB Super-patterns ABB Typs Extraction

= Currently semi-automatic

+ ABB template mapping
= |nput: Kernels + ABB types ABB Template Mapping

= Qutput: Covered kernels as an

ABB flow-graph

Graph Y

+ CHARM uProgram
generation CHARM

u-Program Generation

ABB Types

Compilation Flow

= Input: ABB flow-graph
= Qutput;
uProgram

33

ABB Template Mapping

+ Scalability problem
= NP-complete

* The flow in [S. Mahlke, et.al. CASE'06] takes ~ 30 min for segmentation (1147 connected
ABB candidates)

= Solution: only consider maximal ABB candidates + efficient pruning techniques
+ Maximal ABB candidate identification
= Input: Kernels + ABB types
= Qutput: Maximal ABB candidates
+ Maximal ABB mapping
= |nput: Kernels + maximal ABB candidates
= Output: Covered kernels as an ABB flow-graph
+ Mapping efficiency
= Up to 26X reduction on total number of ABB candidates in the mapping phase
= QObtain the optimal solution in less than 6 sec. with ~ 1200 ABB candidates

34

11/4/12

17

Area Overhead Analysis

NoC interface

+ Area-equivalent

—
[owacld sPmBank | o
I

= The total area consumed by
the ABBs equals the total area
of all LCAs required to run a
single instance of each
benchmark

i 0, Name A®@W?®) | P(mW) | Total#
+ Total CHARM area is 14% Name L AG) [POn) | Tota
of the 1cmxicm Chlp Polyl6 | 38276 | 1.608 | 96
Flnv 3503 0.141 12
= Abit less than LCA-based FSqrt [S8683] 183 [8
. SPM-4KB IR/W | 13591 17.6 288
deS|gn SPM-768B 1IR/W | 2545 7 72
ABC 8383 0.066 1
Core NoC Cache & Dir | CHARM-HW | CHARM-Total | LCA HW | LCA Total
10.8mm? 0.3mm* | 39.8mm* 8 3mm- 59 2mm?> 8.5mm* | 59.4mm>
(scaled to 32nm) (Orion) (Cacti) (14%) (14.3 %)

35

ADD/SUB/MUL
(Asm)

Results: Improvement Over LCA-based Design

+ Use same area as LCA
(loosely coupled accelerators) ™
based design

+ Performance
= 2.5X vs. LCA+GAM (max 5X)
= 476X vs Multi-core (max 1800 X)

+ Energy :

o

Deb

Normalized Performance

Den

Reg Seg

Normalized Energy

5||IIII|I|II||III -
0 ABB+ABC

Ix 2x 4x 8x | Ix 2x 4x 8x |1x 2x 4x 8x | 1x 2x 4x 8x

= 1.9Xvs. LCA+GAM (max 3.4X) 05 | | | | I | | | | | I | | I I I LCA+GAM
0 ABB+ABC

2x 4x 8x|1x 2x 4x 8x

= 381X vs. Multi-core (max 1300X) 1% 2¢ 4x 8x 1x 2x 4x 8x | 1x

+ ABB+ABC has better energy oo
and performance

Den

Reg Seg

- CHARM vs

= ABC starts composing ABBs to
create new LCAs

= Creates more parallelism

R

and Energy

36

11/4/12

18

Results: Platform Flexibility

+ Two applications from two Normalized Performance
unrelated domains to Ml "~ = LCAYGAM = LCASABC = ABB+ABE
= Computer vision 08 |
* Log-Polar Coordinate Image - i
Patches (LPCIP) 0z N
= Navigation *T e [exesim] wop [eesuam| wap | excsiam
« Extended Kalman Filter-based 1xData ize 2xData size x Data size
Simultaneous Localization and
Mapping (EKF-SLAM) MAX Benefit over
+ Only one ABB is added LCA+GAM 3.64X
= Indexed Vector Load . Be:i;f/i\tn:ver “ 2.46X

37

Memory Management for Accelerator-Rich
Architectures [ISLPED’2012]

+ Providing a private buffer for each accelerator is very inefficient.
= Large private buffers: occupy a considerable amount of chip area
= Small private buffers: less effective for reducing off-chip bandwidth

+ Not all accelerators are powered-on at the same time
= Shared buffer [Lyonsy et al. TACO'12]

= Allocate the buffers in the cache on-demand [Fajardo et al. DAC'11][Cong et al.
ISLPED11]

+ Our solution
= BiN: A Buffer-in-NUCA Scheme for Accelerator-Rich CMPs

38

11/4/12

19

Buffer Size vs. Off-chip Memory Access Bandwidth

+ Buffer size 1 - off-chip memory bandwidth |: covering longer reuse distance [Cong et al.
ICCAD11]

+ Buffer size vs. bandwidth curve: BB-Curve

+ Buffer utilization efficiency
= Different for various accelerators
= Different for various inputs for one accelerator

+ Prior work: no consideration of global allocation at runtime
= Accept fixed-size buffer allocation requests
= Rely on the compiler to select a single, ‘best’ point in the BB-Curve

2,500,000

4 .

2 Denoise

g 2,000,000

g . T . .

= 1,500,000 \ High buffer utilization efficiency iroe cwes)
E —=— inputimage: cube(52)
£ 1,000,000 \\ —a— input image: cube(76)
o

‘S 500,000 — —

S 0 ;

L 9 . / 27 119 693
Low buffer utilization efficiéncy 5 e size (ka)

39

Resource Fragmentation

+ Prior work allocates a contiguous space to each buffer to simplify buffer access
+ Requested buffers have unpredictable space demand and come in dynamically:
resource fragmentation
+ NUCA complicates buffer allocations in cache
= The distance of the cache bank to the accelerator also matters
+ To support fragmented resources: paged allocation
= Analogous to a typical OS-managed virtual memory
+ Challenges:

= Large private page tables have high energy and area overhead
= |ndirect access to a shared page table has high latency overhead

| Shared buffer space: 15KB | | - |

Buffer 1: 5KB, duration: 1K cycles

_ Buffer 2: 5KB, duration: 2K cycles
_ Buffer 3: 10KB, duration: 2K cycles

40

11/4/12

20

BiN: Buffer-in-NUCA
+ Goals of Buffer-in-NUCA (BiN)

= Towards optimal on-chip storage utilization
= Dynamically allocate buffer space in the NUCA among a large number of competing
accelerators
+ Contributions of BiN:

= Dynamic interval-based global (DIG) buffer allocation: address the buffer resource
contention

= Flexible paged buffer allocation: address the buffer resource fragmentation

41

Accelerator-Rich CMP with BiN

Overall architecture of ARC [Cong et al. DAC

C $2 C 32/ C 2 C g2
2011] with BiN A |52 [A|s2 A |52 A [s2
= Cores (with private L1 caches) A [s2 (A |52 A |]s2 A |82
= Accelerators ol EE B ES S BN NS
. Accelerator logic ol (B I |58 o) BE E | RE
. DMA-controller o[5S BN 0SB BE ERE
. Asmall storage for the control structure NRCNR N
= The accelerator and BiN manager (ABM) AL AL AR AL
. Arbitration over accelerator resources €| core $2 L2Bank eRouter
. Allocates buffers in the shared cache (BiN Al Accelerator EEI ©Cabm
management) Manager

= NUCA (shared L2 cache) banks
() (1) The core sends the accelerator and buffer allocation

request with the BB-Curve to ABM.

(2) ABM performs accelerator allocation, buffer allocation
in NUCA, and acknowledges the core.

(7), The core sends the control structure to the accelerator.

(1) >

(L2 Cache Banks) The accelerator signals to the core when it finishes.

The core sends the free-resource message to ABM.

@)

Accelerator (4) l NUCA g; The accelerator starts working with its allocated buffer.
()
(7) ABM frees the accelerator and buffer in NUCA.

42

11/4/12

21

Dynamic Interval-based Global (DIG) Allocation

+Perform global allocation for buffer allocation requests in an interval
= Keep the interval short (10K cycles): Minimize waiting-in-interval
= |f 8 or more buffer requests, the DIG allocation will start immediately

+An example: 2 buffer allocation requests
= Each point (b, s)
s: buffer size
b: corresponding bandwidth requirement at s
Buffer utilization efficiency at each point: (b, =8,;.1)) /(s; = Si;-n))
= The points are in non-decreasing order of buffer size
b (Band*‘Lidth requirement) b (Band\nhdth requirement)

(Do Soo) (big>51)
\ Step 1

(bm _bno)

(So1 = 800)

(b7

(8117816

(bll’sll)

(bm’s(u)

500 b=ty
Gems) SEPE

s (Size of the buffer)

(S0 =)

s (Size of the buffer)

Buffer request 0 Buffer request 1 43
Flexible Paged Allocation
+ Set the page size according to buffer size: Fixed total number of pages for each buffer
+ BiN manager locally keep the information of the current contiguous buffer space in each L2 bank
= Since all of the buffer allocation and free operations are performed by BiN manager
+ Allocation: starting from the nearest L2 bank to this accelerator, to the farthest
+ We allow the last page (source of page fragments) of a buffer to be smaller than the other
pages of this buffer
= No impact on the page table lookup
= The max page fragment will be smaller than the min-page
= The page fragments do not waste capacity since they can be used by cache
Router yaN Cacr?)e set
AcceleratorQ O " $5¢] % E::; g
L | e
Accelerator2 g E::;z
AcceleratorO pages Accelerator1 pages
[F] Accelerator2 pages Page fragments
44

11/4/12

22

Reference Design Schemes

+ Accelerator Store (AS) [Lyonsy, et al. TACO'12]
= Separate cache and shared buffer module
= Set the buffer size 32% larger than maximum buffer size in BiN: overhead of buffer-in-cache
= Partition the shared buffer into 32 banks distributed them to the 32 NoC nodes
+ BIiC [Fajardo, et al. DAC’11]
= BiC dynamically allocates contiguous cache space to a buffer
= Upper bound: limiting buffer allocation to at most half of each cache bank
= Buffers can span multiple cache banks

+ BiN-Paged
= Only has the proposed paged allocation scheme
+ BiN-Dyn
= Based on BiN-Paged, it also performs dynamic allocation without consideration of near future buffer
requests

= Itresponds to a request immediately by greedily satisfying the request with the current available resources

+ BiN-Full
= This is the entire proposed BiN scheme

45

Impact of Dynamic Interval-based Global Allocation

+ BiN-Full consistently outperforms

14

the other schemes 212
T 10
= The only exception: 4P-mix3 € 08
. 8 o0s
. 1.32X larger capacity of the AS € o4
can accommodate all buffer = 3§

requests PEESPE SIS PSS S8, '@iz@\@

+ Overall, compared to the WBIC mBiN-Paged 1 BiN-Dyn = BiN-Full

accelerator store and BiC, BiN-Full Comparison results of runtime

reduces the runtime reduction by

32% and 35%, respectively

Normalized Off-chip mem
access counts
o
>

i

‘i’&«ﬁ@m‘b&«b@rﬁ&,«“\@@&&\@“@@@&

RO A S R G
m BiC mBiN-Paged m BiN-Dyn 1 BiN-Full

Comparison results of off-chip memory accesses

46

11/4/12

23

Impact on Energy

AS consumes the least per-cache/buffer access energy and the least unit leakage
= Because in the accelerator store the buffer and cache are two separate units
BiN-Dyn
= Saves energy in cases where it can reduce the off-chip memory accesses and runtime
= Results in a large energy overhead in cases where it significantly increases the runtime
Compared with the AS, BiN-Full reduces the energy by 12% on average
= Exception: 4P-mix-{2,3}
The 1.32X capacity of AS can better satisfy buffer requests
Compared with BiC, Bin-Full reduces the energy by 29% on average

1.8
2> 16
g 214 1 [|
25 12
- g 1.
S g os
T > 0.6
Z ® 02
0.0
B RS R A PRSP ISP FEP
QIR DN R LR Tl DUN R L SR DN P P P P P PN
NSRS SE IPO St O e
mBiC mBiN-Paged m BiN-Dyn = BiN-Full 7
Concluding Remarks

+ Platform-based design methodology for accelerator-rich CMPs
(ARCs)

= Enabled by GSRC support over past 15 years

+ ARCs provide huge opportunity for performance/energy
improvement

+ Runtime accelerator composition offers
= Flexibility in application adaptation
= Better resource utilization for scalable parallelism support

+ Compilation and runtime supports are critical

48

11/4/12

24

Acknowledgements

+ Supports from GSRC and NSF

+ Collaboration with faculty in Center for Domain-Specific Computing
in the past 3 years.
- W

Aberle Baraniuk Bui
(UCLA) (Rice) (UCLA)

Cong (Director)
(UCLA)

j
) o e
i %
¥

Palsberg Potkonjak Reinman Sadayappan Sarkar Vese
(UCLA) (UCLA) (UCLA) (Ohio-State) (Associate Dir) (UCLA)
(Rice)

49

More Acknowledgements

Michael Gill Hui Huang Chunyue YiZou Beayna
Liu Grigorian

+ This research is partially supported by the Center for Domain- Specific
Computing (CDSC) funded by the NSF Expedition in Computing Award
CCF-0926127, GSRC under contract 2009-TJ-1984.

50

11/4/12

25

