
11/4/12

1

1

Energy Efficient Computing with Composable
Accelerators

Jason Cong

Director, Center for Domain-Specific Computing

www.cdsc.ucla.edu

Chancellor’s Professor, UCLA Computer Science Department
cong@cs.ucla.edu

2

Center for Domain-Specific Computing (CDSC)
Funded by 2009 NSF Expeditions in Computing Program

Reinman
(UCLA)

Palsberg
(UCLA)

Sadayappan
(Ohio-State)

Sarkar
(Associate Dir)

(Rice)

Vese
(UCLA)

Potkonjak
(UCLA)

Aberle
(UCLA)

Baraniuk
(Rice)

Bui
(UCLA)

Cong (Director)
(UCLA)

Cheng
(UCSB)

Chang
(UCLA)

UCLA Rice UCSB Ohio State

Domain-specific modeling Bui, Reinman, Potkonjak Sarkar, Baraniuk Sadayappan

CHP creation Chang, Cong, Reinman Cheng

CHP mapping Cong, Palsberg, Potkonjak Sarkar Cheng Sadayappan

Application drivers Aberle, Bui, Chien, Vese Baraniuk

Experimental systems All (led by Cong & Bui) All All All

11/4/12

2

3

CDSC Focus: New Transformative Approach to Power/
Energy Efficient Computing

Parallelization

Customization

Adapt the architecture to
application domain

♦  Current solution: Parallelization
♦  Next significant opportunity – Customization

4

Project Goals
♦  A general, customizable platform for the given domain(s)

§  Can be customized to a wide-range of applications in the domain
§  Can be massively produced with cost efficiency
§  Can be programmed efficiently with novel compilation and runtime systems

♦  Metric of success
§  A “supercomputer-in-a-box” with +100x performance/power improvement via

customization for the intended domain(s)

11/4/12

3

5

Customizable Heterogeneous Platform
(CHP) $ $ $ $

Fixed
Core

Fixed
Core

Fixed
Core

Fixed
Core

Custom
Core

Custom
Core

Custom
Core

Custom
Core

Prog
Fabric

Prog
Fabric accelerator accelerator

DRAM

DRAM

I/O

CHP

CHP

CHP

Reconfigurable RF-I bus
Reconfigurable optical bus
Transceiver/receiver
Optical interface

Research Scope in CDSC (Center for Domain-
Specific Computing)

CHP mapping
Source-to-source CHP mapper

Reconfiguring & optimizing backend
Adaptive runtime	

Domain

characteriza
tion

Application
modeling

Domain-specific-modeling
(healthcare applications)	

CHP creation
Customizable computing engines

Customizable interconnects

Architecture
modeling

Customization
setting Design once Invoke many times

6

[1] Amphion CS5230 on Virtex2 + Xilinx Virtex2 Power Estimator
[2] Dag Arne Osvik: 544 cycles AES – ECB on StrongArm SA-1110
[3] Helger Lipmaa PIII assembly handcoded + Intel Pentium III (1.13 GHz) Datasheet
[4] gcc, 1 mW/MHz @ 120 Mhz Sparc – assumes 0.25 u CMOS
[5] Java on KVM (Sun J2ME, non-JIT) on 1 mW/MHz @ 120 MHz Sparc – assumes 0.25 u CMOS

Performance/Energy Efficiency of Accelerators

Source: P Schaumont and I Verbauwhede, "Domain specific
codesign for embedded security," IEEE Computer 36(4), 2003

648 Mbits/sec ASM Pentium III [3] 41.4 W 0.015 (1/800)

Java [5] Emb. Sparc 450 bits/sec 120 mW 0.0000037 (1/3,000,000)

C Emb. Sparc [4] 133 Kbits/sec 0.0011 (1/10,000)

350 mW

Power

1.32 Gbit/sec FPGA [1]

11 (1/1) 3.84 Gbits/sec 0.18mm CMOS

Figure of Merit
(Gb/s/W)

Throughput AES 128bit key
128bit data

490 mW 2.7 (1/4)

120 mW

ASM StrongARM [2] 240 mW 0.13 (1/85) 31 Mbit/sec

11/4/12

4

7

Accelerator-Rich CMP (ARC) [DAC’12]

GAM responsibility:
Accelerator
•  Sharing
•  Virtualization
•  Scheduling
GAM, Accelerator, SPM,
DMA-C Synthesized from
C-based specification
(AutoESL/Xilinx +
Synopsys DC)

8

Overall Communication Scheme in AXR-CMP

New ISA
lcacc-req t
lcacc-rsrv t, e
lcacc-cmd id, f, addr
lcacc-free id

CPU

Memory Task
description Accelerator

GAM
1,3

5
7

1.  The core requests for a given type of accelerator (lcacc-req).
2.  The GAM responds with a “list + waiting time” or NACK
3.  The core reserves (lcacc-rsv) and waits.
4.  The GAM ACK the reservation and send the core ID to accelerator
5.  The core shares a task description with the accelerator through memory and starts it (lcacc-cmd).
6.  The accelerator reads the task description, and begins working
7.  When the accelerator finishes its current task it notifies the core.
8.  The core then sends a message to the GAM freeing the accelerator (lcacc-free).

2,4

6

4 5

11/4/12

5

9

Accelerator Virtualization

♦  Chaining
§  Efficient accelerator to

accelerator communication

♦  Composition

§  Constructing virtual
accelerators

 Accelerator1

 Scratchpad

 DMA controller

 Accelerator2

 Scratchpad

 DMA controller

M-point
1D FFT

M-point
1D FFT

3D FFT

N-point
2D FFT

virtualization

M-point
1D FFT

M-point
1D FFT

10

xPilot: Behavioral-to-RTL Synthesis Flow [SOCC’2006]
(with GSRC and NSF supports from 2001 – 2006)

Behavioral spec.
in C/C++/SystemC

RTL + constraints

SSDM

  µArch-generation & RTL/constraints
generation
§  Verilog/VHDL/SystemC
§  FPGAs: Altera, Xilinx
§  ASICs: Magma, Synopsys, …

  Advanced transformtion/optimizations
§  Loop unrolling/shifting/pipelining
§  Strength reduction / Tree height reduction
§  Bitwidth analysis
§  Memory analysis …

FPGAs/ASICs

Frontend
compiler

Platform
description

  Core behvior synthesis optimizations
§  Scheduling
§  Resource binding, e.g., functional unit

binding register/port binding

11/4/12

6

11

AutoPilot Compilation Tool (based UCLA xPilot system)

♦  Platform-based C to FPGA
synthesis

♦  Synthesize pure ANSI-C and C+
+, GCC-compatible compilation
flow

♦  Full support of IEEE-754
floating point data types &
operations

♦  Efficiently handle bit-accurate
fixed-point arithmetic

♦  SDC-based scheduling
♦  Automatic memory partitioning
♦  …
QoR matches or exceeds manual
RTL for many designs

C/C++/SystemC

Timing/Power/Layout
Constraints

RTL HDLs &
RTL SystemC

Platform
Characterization

Library

FPGA
Co-Processor

=

Sim
ulation, Verification, and Prototyping

Compilation &
Elaboration

Presynthesis Optimizations

Behavioral & Communication
Synthesis and Optimizations

AutoPilotTM

C
om

m
on Testbench

User Constraints

ESL Synthesis

Design Specification

Developed by AutoESL, acquired by Xilinx in Jan. 2011

12

Accelerator-Rich CMP (ARC) [DAC’12]

Heterogeneous Simulation Platform:
•  Compute heterogeneity
•  Memory/cache heterogeneity
•  Communication heterogeneity
•  Built on top of Simics+GEMS

GAM responsibility:
Accelerator
•  Sharing
•  Virtualization
•  Scheduling
GAM, Accelerator, SPM,
DMA-C Synthesized by:
•  AutoESL (Xilinx Vivado
HLS)
•  Synopsys Design
Compiler

11/4/12

7

13

compressive
sensing

level set
methods

fluid
registration

total variational
algorithm

Application Domain: Medical Image Processing
§ d

en
oi

sin
g

§ r

eg
ist

ra
tio

n
§ s

eg
m

en
ta

tio
n

§ a
na

lys
is

h

zy
S

i,j
volumevoxel

ji

S

k
kk

e
iZ

wjfwi

∑

=−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=∀

=

−

−

∈
∑

1

21

2

j

2
,)(

1 ,2)()(u :voxel σ

() [])()()()(uxTxRuxTvv

uv
t

u
v

−∇−−−=⋅∇∇++Δ

∇⋅+
∂

∂
=

ηµµ

{ }0t)(x, : xvoxels)(surface

div),(F

==

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∇

∇
+∇=

∂

∂

ϕ

ϕ
ϕ

λφϕ
ϕ

t

data
t

∑∑
==

+
∂

∂
+

∂

∂
−=

∂

∂
+

∂

∂

+Δ+−∇=∇⋅+
∂

∂

3

1
2

23

1
),(

),()(

j
i

j

i
j

j ij

i
j

i txf
x

v
v

x

p

x

v
v

t

v

txfvpvv
t

v

υ

υ

§ r
ec

on
st

ru
ct

io
n

∑∑
∀

+

<<

voxels

2

points sampled
)(-ARmin

:theoryNyquist -Shannon classical rate a
at sampled be can and sparsity,exhibit images Medical

ugradSu
u

λ

Navier-Stokes

equations

14

Area Overhead

♦  AutoESL (from Xilinx) for C to RTL synthesis
♦  Synopsys for ASIC synthesis

§  32 nm Synopsys Educational library
♦  CACTI for L2
♦  Orion for NoC
♦  One UltraSparc IIIi core (area scaled to 32 nm)

§  178.5 mm^2 in 0.13 um (http://en.wikipedia.org/wiki/UltraSPARC_III)

Core	
 NoC	
 L2	
 GAM	
 Deblur	
 Denoise	
 Segmenta8on	
 Registra8on	
 SPM	
 Banks	
 	

Number	
 of	

instance/Size	
 1	
 1	
 8MB	
 1	
 1	
 1	
 1	
 1	
 39	
 x	
 2KB	

Area(mm^2)	
 10.8	
 0.3	
 39.8	
 0.012	
 2.01	
 0.49	
 0.69	
 3.85	
 1.44	

Percentage	
 (%)	
 18.2	
 0.5	
 67.0	
 0.02	
 3.4	
 0.8	
 1.2	
 6.5	
 2.4	

Total	
 Accelerators	
 +	
 GAM	
 +	
 SPMs:	
 	
 	
 14.3	
 %	

11/4/12

8

15

Experimental Results – Performance
(N cores, N threads, N accelerators)

Performance improvement
over OS based approaches:
on average 51x, up to 292x

Performance improvement
over SW only approaches:

on average 168x, up to 380x
0

50
100
150
200
250
300
350
400

1 2 4 8 16

Ga
in

 (X
)

Configuration (N cores, N threads, N accelerators)

Speedup over SW-Only

Registration

Deblur

Denoise

Segmentation

0
50

100
150
200
250
300
350

1 2 4 8 16

Ga
in

 (X
)

Configuration (N cores, N threads, N accelerators)

Speedup over OS-based

Registration

Deblur

Denoise

Segmentation

16

Experimental Results – Energy
(N cores, N threads, N accelerators)

Energy improvement
over OS-based approaches:
on average 17x, up to 63x

Energy improvement
over SW-only approaches:

on average 241x, up to 641x
0

100
200
300
400
500
600
700

1 2 4 8 16

Ga
in

 (X
)

Configuration (N cores, N threads, N accelerators)

Energy gain over SW-only version

Registration

Deblur

Denoise

Segmentation

0
10
20
30
40
50
60
70

1 2 4 8 16

Ga
in

 (X
)

Configuration (N cores, N threads, N accelerators)

Energy gain over OS-based version

Registration

Deblur

Denoise

Segmentation

11/4/12

9

17

What are the Problems with ARC?
♦  Dedicated accelerators are inflexible

§  An LCA may be useless for new algorithms or new domains
§  Often under-utilized
§  LCAs contain many replicated structures
•  Things like fp-ALUs, DMA engines, SPM
•  Unused when the accelerator is unused

♦  We want flexibility and better resource utilization
§  Solution: CHARM

♦  Private SPM is wasteful
§  Solution: BiN

18

♦  ABB
§  Accelerator building blocks (ABB)
§  Primitive components that can be

composed into accelerators
♦  ABB islands

§  Multiple ABBs
§  Shared DMA controller, SPM and

NoC interface

♦  ABC
§  Accelerator Block Composer

(ABC)
•  Runtime composition of virtual

accelerators from ABBs
•  Arbitrate requests from cores

♦  Other components
§  Cores
§  L2 Banks
§  Memory controllers

Fine-grain Accelerator Composition +
Globally-managed Buffer in NUCA [ISLPED’12]

11/4/12

10

19

An Example of ABB Library (for Medical Imaging)

Internal
of Poly

20

Example of ABB Flow-Graph (Denoise)

 2

11/4/12

11

21

Example of ABB Flow-Graph (Denoise)

-­‐	

	

*

-­‐	

	

*

-­‐	

	

*

-­‐	

	

*

-­‐	

	

*

-­‐	

	

*

+	
 +	
 +	

+	

+	

sqrt

1/x	

2

22

Example of ABB Flow-Graph (Denoise)

-­‐	

	

*

-­‐	

	

*

-­‐	

	

*

-­‐	

	

*

-­‐	

	

*

-­‐	

	

*

+	
 +	
 +	

+	

+	

sqrt

1/x	

2

ABB1: Poly

ABB2: Poly

ABB3: Sqrt

ABB4: Inv

11/4/12

12

23

Example of ABB Flow-Graph (Denoise)

-­‐	

	

*

-­‐	

	

*

-­‐	

	

*

-­‐	

	

*

-­‐	

	

*

-­‐	

	

*

+	
 +	
 +	

+	

+	

sqrt

1/x	

2

ABB1:Poly

ABB2: Poly

ABB3: Sqrt

ABB4: Inv

24

LCA Composition Process

ABB
ISLAND1

ABB
ISLAND2

ABB
 ISLAND3

ABB
ISLAND4

x

y

x

w

z

w

y

z

11/4/12

13

25

ABB
ISLAND1

ABB
ISLAND2

ABB
 ISLAND3

ABB
ISLAND4

LCA Composition Process
1.  Core initiation

§  Core sends the task description: task flow-
graph of the desired LCA to ABC together with
polyhedral space for input and output

x

y

x

w

z

w

y

z

x	

y	
 z	

10x10 input and output

Task description

26

ABB
ISLAND1

ABB
ISLAND2

ABB
 ISLAND3

ABB
ISLAND4

LCA Composition Process
2.  Task-flow parsing and task-list creation

§  ABC parses the task-flow graph and breaks the request
into a set of tasks with smaller data size and fills the
task list

x

y

x

w

z

w

y

z
§ Needed ABBs: “x”, “y”, “z”

§ With task size of 5x5 block,
ABC generates 4 tasks

ABC generates internally

11/4/12

14

27

ABB
ISLAND1

ABB
ISLAND2

ABB
 ISLAND3

ABB
ISLAND4

LCA Composition Process
3.  Dynamic ABB mapping

§  ABC uses a pattern matching algorithm to
assign ABBs to islands

§  Fills the composed LCA table and resource
allocation table

x

y

x

w

z

w

y

z

Island	

ID	

ABB	

Type	
 	

ABB	
 ID	
 Status	

1	
 x	
 1	
 Free	

1	
 y	
 1	
 Free	

2	
 x	
 1	
 Free	

2	
 w	
 1	
 Free	

3	
 z	
 1	
 Free	

3	
 w	
 1	
 Free	

4	
 y	
 1	
 Free	

4	
 z	
 1	
 Free	

28

ABB
ISLAND1

ABB
ISLAND2

ABB
 ISLAND3

ABB
ISLAND4

LCA Composition Process
3.  Dynamic ABB mapping

§  ABC uses a pattern matching algorithm to
assign ABBs to islands

§  Fills the composed LCA table and resource
allocation table

x

y

x

w

z

w

y

z

Island	

ID	

ABB	

Type	
 	

ABB	
 ID	
 Status	

1	
 x	
 1	
 Busy	

1	
 y	
 1	
 Busy	

2	
 x	
 1	
 Free	

2	
 w	
 1	
 Free	

3	
 z	
 1	
 Busy	

3	
 w	
 1	
 Free	

4	
 y	
 1	
 Free	

4	
 z	
 1	
 Free	

11/4/12

15

29

ABB
ISLAND1

ABB
ISLAND2

ABB
 ISLAND3

ABB
ISLAND4

LCA Composition Process
4.  LCA cloning

§  Repeat to generate more LCAs if ABBs are
available

x

y

x

w

z

w

y

z

Core	
 ID	
 ABB	

Type	
 	

ABB	
 ID	
 Status	

1	
 x	
 1	
 Busy	

1	
 y	
 1	
 Busy	

2	
 x	
 1	
 Busy	

2	
 w	
 1	
 Free	

3	
 z	
 1	
 Busy	

3	
 w	
 1	
 Free	

4	
 y	
 1	
 Busy	

4	
 z	
 1	
 Busy	

30

ABB
ISLAND1

ABB
ISLAND2

ABB
 ISLAND3

ABB
ISLAND4

LCA Composition Process
5.  ABBs finishing task

§  When ABBs finish, they signal the ABC. If
ABC has another task it sends otherwise it
frees the ABBs

x

y

x

w

z

w

y

z

Island	

ID	

ABB	

Type	
 	

ABB	
 ID	
 Status	

1	
 x	
 1	
 Busy	

1	
 y	
 1	
 Busy	

2	
 x	
 1	
 Busy	

2	
 w	
 1	
 Free	

3	
 z	
 1	
 Busy	

3	
 w	
 1	
 Free	

4	
 y	
 1	
 Busy	

4	
 z	
 1	
 Busy	

DONE

11/4/12

16

31

ABB
ISLAND1

ABB
ISLAND2

ABB
 ISLAND3

ABB
ISLAND4

LCA Composition Process
5.  ABBs being freed

§  When an ABB finishes, it signals the ABC. If
ABC has another task it sends otherwise it
frees the ABBs

x

y

x

w

z

w

y

z

Island	

ID	

ABB	

Type	
 	

ABB	
 ID	
 Status	

1	
 x	
 1	
 Busy	

1	
 y	
 1	
 Busy	

2	
 x	
 1	
 Free	

2	
 w	
 1	
 Free	

3	
 z	
 1	
 Busy	

3	
 w	
 1	
 Free	

4	
 y	
 1	
 Free	

4	
 z	
 1	
 Free	

32

ABB
ISLAND1

ABB
ISLAND2

ABB
 ISLAND3

ABB
ISLAND4

LCA Composition Process
6.  Core notified of end of task

§  When the LCA finishes ABC signals the
core

x

y

x

w

z

w

y

z

Island	

ID	

ABB	

Type	
 	

ABB	
 ID	
 Status	

1	
 x	
 1	
 Free	

1	
 y	
 1	
 Free	

2	
 x	
 1	
 Free	

2	
 w	
 1	
 Free	

3	
 z	
 1	
 Free	

3	
 w	
 1	
 Free	

4	
 y	
 1	
 Free	

4	
 z	
 1	
 Free	

DONE

11/4/12

17

33

CHARM Software Infrastructure
♦  ABB type extraction

§  Input: compute-intensive kernels
from different application

§  Output: ABB Super-patterns
§  Currently semi-automatic

♦  ABB template mapping
§  Input: Kernels + ABB types
§  Output: Covered kernels as an

ABB flow-graph
♦  CHARM uProgram

generation
§  Input: ABB flow-graph
§  Output:

34

ABB Template Mapping
♦  Scalability problem

§  NP-complete
•  The flow in [S. Mahlke, et.al. CASE’06] takes ~ 30 min for segmentation (1147 connected

ABB candidates)
§  Solution: only consider maximal ABB candidates + efficient pruning techniques

♦  Maximal ABB candidate identification
§  Input: Kernels + ABB types
§  Output: Maximal ABB candidates

♦  Maximal ABB mapping
§  Input: Kernels + maximal ABB candidates
§  Output: Covered kernels as an ABB flow-graph

♦  Mapping efficiency
§  Up to 26X reduction on total number of ABB candidates in the mapping phase
§  Obtain the optimal solution in less than 6 sec. with ~ 1200 ABB candidates

11/4/12

18

35

Area Overhead Analysis
♦  Area-equivalent

§  The total area consumed by
the ABBs equals the total area
of all LCAs required to run a
single instance of each
benchmark

♦  Total CHARM area is 14%
of the 1cmx1cm chip
§  A bit less than LCA-based

design

36

Results: Improvement Over LCA-based Design
♦  Use same area as LCA

(loosely coupled accelerators)
based design

♦  Performance
§  2.5X vs. LCA+GAM (max 5X)
§  476X vs Multi-core (max 1800 X)

♦  Energy
§  1.9X vs. LCA+GAM (max 3.4X)
§  381X vs. Multi-core (max 1300X)

♦  ABB+ABC has better energy
and performance
§  ABC starts composing ABBs to

create new LCAs
§  Creates more parallelism

0	

0.5	

1	

1.5	

1x	
 2x	
 4x	
 8x	
 1x	
 2x	
 4x	
 8x	
 1x	
 2x	
 4x	
 8x	
 1x	
 2x	
 4x	
 8x	

Deb	
 Den	
 Reg	
 Seg	

Normalized	
 Performance	

LCA+GAM	

ABB+ABC	

0	

0.5	

1	

1.5	

1x	
 2x	
 4x	
 8x	
 1x	
 2x	
 4x	
 8x	
 1x	
 2x	
 4x	
 8x	
 1x	
 2x	
 4x	
 8x	

Deb	
 Den	
 Reg	
 Seg	

Normalized	
 Energy	

LCA+GAM	

ABB+ABC	

11/4/12

19

37

Results: Platform Flexibility
♦  Two applications from two

unrelated domains to MI
§  Computer vision
•  Log-Polar Coordinate Image

Patches (LPCIP)
§  Navigation
•  Extended Kalman Filter-based

Simultaneous Localization and
Mapping (EKF-SLAM)

♦  Only one ABB is added
§  Indexed Vector Load

MAX	
 Benefit	
 over	

LCA+GAM	
 3.64	
 X	

AVG	
 Benefit	
 over	
 LCA
+GAM	
 2.46	
 X	

38

Memory Management for Accelerator-Rich
Architectures [ISLPED’2012]
♦  Providing a private buffer for each accelerator is very inefficient.

§  Large private buffers: occupy a considerable amount of chip area
§  Small private buffers: less effective for reducing off-chip bandwidth

♦  Not all accelerators are powered-on at the same time
§  Shared buffer [Lyonsy et al. TACO’12]
§  Allocate the buffers in the cache on-demand [Fajardo et al. DAC’11][Cong et al.

ISLPED’11]
♦  Our solution

§  BiN: A Buffer-in-NUCA Scheme for Accelerator-Rich CMPs

11/4/12

20

39

Buffer Size vs. Off-chip Memory Access Bandwidth
♦  Buffer size ↑ - off-chip memory bandwidth ↓: covering longer reuse distance [Cong et al.

ICCAD’11]
♦  Buffer size vs. bandwidth curve: BB-Curve
♦  Buffer utilization efficiency

§  Different for various accelerators
§  Different for various inputs for one accelerator

♦  Prior work: no consideration of global allocation at runtime
§  Accept fixed-size buffer allocation requests
§  Rely on the compiler to select a single, ‘best’ point in the BB-Curve

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

9 27 119 693
Buffer size (KB)

O
ff-

ch
ip

 m
em

or
y

ac
ce

ss
es

input image: cube(28)
input image: cube(52)
input image: cube(76)

Denoise

High buffer utilization efficiency

Low buffer utilization efficiency

40

Resource Fragmentation
♦  Prior work allocates a contiguous space to each buffer to simplify buffer access
♦  Requested buffers have unpredictable space demand and come in dynamically:

resource fragmentation
♦  NUCA complicates buffer allocations in cache

§  The distance of the cache bank to the accelerator also matters
♦  To support fragmented resources: paged allocation

§  Analogous to a typical OS-managed virtual memory
♦  Challenges:

§  Large private page tables have high energy and area overhead
§  Indirect access to a shared page table has high latency overhead

Shared buffer space: 15KB

Buffer 1: 5KB, duration: 1K cycles

Buffer 2: 5KB, duration: 2K cycles

Buffer 3: 10KB, duration: 2K cycles

11/4/12

21

41

BiN: Buffer-in-NUCA
♦  Goals of Buffer-in-NUCA (BiN)

§  Towards optimal on-chip storage utilization
§  Dynamically allocate buffer space in the NUCA among a large number of competing

accelerators
♦  Contributions of BiN:

§  Dynamic interval-based global (DIG) buffer allocation: address the buffer resource
contention

§  Flexible paged buffer allocation: address the buffer resource fragmentation

42

Accelerator-Rich CMP with BiN
Overall architecture of ARC [Cong et al. DAC
2011] with BiN

§  Cores (with private L1 caches)
§  Accelerators

●  Accelerator logic
●  DMA-controller
●  A small storage for the control structure

§  The accelerator and BiN manager (ABM)
●  Arbitration over accelerator resources
●  Allocates buffers in the shared cache (BiN

management)
§  NUCA (shared L2 cache) banks

C

A

Core L2 Bank Router

Accelerator
Accelerator

& BiN
Manager

$2 C $2 C $2 C $2

$2 $2 $2 $2A A A

A $2 $2 $2 $2A A A

A $2 $2 $2 $2A A

A $2 $2 $2 $2A A

A

A

A $2 $2 $2 $2A A A

A $2 $2 $2 $2A A A

A $2 $2 $2 $2A ABM A

C $2

A ABM

Core ABM

Accelerator

(1)

(2)(3) (5)
(4)

(6)

(7)

(2)

NUCA
(L2 Cache Banks)

(1) The core sends the accelerator and buffer allocation
 request with the BB-Curve to ABM.
(2) ABM performs accelerator allocation, buffer allocation
 in NUCA, and acknowledges the core.
(3) The core sends the control structure to the accelerator.
(4) The accelerator starts working with its allocated buffer.
(5) The accelerator signals to the core when it finishes.
(6) The core sends the free-resource message to ABM.
(7) ABM frees the accelerator and buffer in NUCA.

11/4/12

22

43

Dynamic Interval-based Global (DIG) Allocation
♦ Perform global allocation for buffer allocation requests in an interval

§  Keep the interval short (10K cycles): Minimize waiting-in-interval
§  If 8 or more buffer requests, the DIG allocation will start immediately

♦ An example: 2 buffer allocation requests
§  Each point (b, s)

●  s: buffer size
●  b: corresponding bandwidth requirement at s
●  Buffer utilization efficiency at each point:

§  The points are in non-decreasing order of buffer size

10 10(,)b s

11 11(,)b s

12 12(,)b s
04 04(,)b s

00 00(,)b s

01 01(,)b s

02 02(,)b s

01 00

01 00

()
()
b b
s s
−

−

02 01

02 01

()
()
b b
s s

−

−

11 10

11 10

()
()
b b
s s
−

−

12 11

12 11

()
()
b b
s s
−

−

b (Bandwidth requirement) b (Bandwidth requirement)

s (Size of the buffer) s (Size of the buffer)

Buffer request 0 Buffer request 1

Step 1 Step 1

(1) (1)() /()ij i j ij i jb b s s− −− −

Steps:
1. Allocate and .

2. Increase buffer 0 to , since .

3. Increase buffer 1 to , since .

4. Increase buffer 1 to , since .

5. Try to increase buffer 0 to , but the paged
allocation failed, algorithm terminated

00s 10s

01s
01 00 11 10

01 00 11 10

() ()
() ()
b b b b
s s s s
− −

>
− −

11 10 02 01

11 10 02 01

() ()
() ()
b b b b
s s s s
− −

>
− −

02 0112 11

12 11 02 01

()()
() ()

b bb b
s s s s

−−
>

− −

11s

12s

02s

Step 2 Step 3

Step 4

44

Flexible Paged Allocation
♦  Set the page size according to buffer size: Fixed total number of pages for each buffer
♦  BiN manager locally keep the information of the current contiguous buffer space in each L2 bank

§  Since all of the buffer allocation and free operations are performed by BiN manager

♦  Allocation: starting from the nearest L2 bank to this accelerator, to the farthest
♦  We allow the last page (source of page fragments) of a buffer to be smaller than the other
pages of this buffer

§  No impact on the page table lookup
§  The max page fragment will be smaller than the min-page
§  The page fragments do not waste capacity since they can be used by cache

Cache
bank 0

Accelerator0 pages Accelerator1 pages

Accelerator2 pages

Cache set
0
1
2
3
0
1
2
3
0
1
2
3

Page fragments

Accelerator0

Router

Accelerator1

Accelerator2

Cache
bank 1

Cache
bank 2

11/4/12

23

45

Reference Design Schemes
♦  Accelerator Store (AS) [Lyonsy, et al. TACO’12]

§  Separate cache and shared buffer module
§  Set the buffer size 32% larger than maximum buffer size in BiN: overhead of buffer-in-cache
§  Partition the shared buffer into 32 banks distributed them to the 32 NoC nodes

♦  BiC [Fajardo, et al. DAC’11]
§  BiC dynamically allocates contiguous cache space to a buffer
§  Upper bound: limiting buffer allocation to at most half of each cache bank
§  Buffers can span multiple cache banks

♦  BiN-Paged
§  Only has the proposed paged allocation scheme

♦  BiN-Dyn
§  Based on BiN-Paged, it also performs dynamic allocation without consideration of near future buffer

requests
§  It responds to a request immediately by greedily satisfying the request with the current available resources

♦  BiN-Full
§  This is the entire proposed BiN scheme

46

Impact of Dynamic Interval-based Global Allocation
♦  BiN-Full consistently outperforms

the other schemes
§  The only exception: 4P-mix3

●  1.32X larger capacity of the AS
can accommodate all buffer
requests

♦  Overall, compared to the
accelerator store and BiC, BiN-Full
reduces the runtime reduction by
32% and 35%, respectively

0.0

0.2
0.4

0.6

0.8

1.0
1.2

1.4

1P
-28

1P
-52

1P
-76

1P
-10

0
2P

-28
2P

-52
2P

-76

2P
-10

0
4P

-28
4P

-52
4P

-76

4P
-10

0

4P
-m

ix1

4P
-m

ix2

4P
-m

ix3

4P
-m

ix4

4P
-m

ix5

4P
-m

ix6

N
or

m
al

iz
ed

 R
un

 ti
m

e

BiC BiN-Paged BiN-Dyn BiN-Full

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1P
-2

8
1P

-5
2

1P
-7

6

1P
-1

00
2P

-2
8
2P

-5
2

2P
-7

6

2P
-1

00
4P

-2
8
4P

-5
2

4P
-7

6

4P
-1

00

4P
-m

ix1

4P
-m

ix2

4P
-m

ix3

4P
-m

ix4

4P
-m

ix5

4P
-m

ix6

N
or

m
al

iz
ed

 O
ff-

ch
ip

 m
em

ac
ce

ss
 c

ou
nt

s

BiC BiN-Paged BiN-Dyn BiN-Full

Comparison results of runtime

Comparison results of off-chip memory accesses

11/4/12

24

47

Impact on Energy
♦  AS consumes the least per-cache/buffer access energy and the least unit leakage

§  Because in the accelerator store the buffer and cache are two separate units

♦  BiN-Dyn
§  Saves energy in cases where it can reduce the off-chip memory accesses and runtime
§  Results in a large energy overhead in cases where it significantly increases the runtime

♦  Compared with the AS, BiN-Full reduces the energy by 12% on average
§  Exception: 4P-mix-{2,3}

●  The 1.32X capacity of AS can better satisfy buffer requests

♦  Compared with BiC, Bin-Full reduces the energy by 29% on average

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

1P
-28

1P
-52

1P
-76

1P
-10

0
2P

-28
2P

-52
2P

-76

2P
-10

0
4P

-28
4P

-52
4P

-76

4P
-10

0

4P
-m

ix1

4P
-m

ix2

4P
-m

ix3

4P
-m

ix4

4P
-m

ix5

4P
-m

ix6

No
rm

ali
ze

d
M

em
or

y
su

bs
ys

te
m

 e
ne

rg
y

BiC BiN-Paged BiN-Dyn BiN-Full

48

Concluding Remarks
♦  Platform-based design methodology for accelerator-rich CMPs

(ARCs)
§  Enabled by GSRC support over past 15 years

♦  ARCs provide huge opportunity for performance/energy
improvement

♦  Runtime accelerator composition offers
§  Flexibility in application adaptation
§  Better resource utilization for scalable parallelism support

♦  Compilation and runtime supports are critical

11/4/12

25

49

Acknowledgements

Reinman
(UCLA)

Palsberg
(UCLA)

Sadayappan
(Ohio-State)

Sarkar
(Associate Dir)

(Rice)

Vese
(UCLA)

Potkonjak
(UCLA)

Aberle
(UCLA)

Baraniuk
(Rice)

Bui
(UCLA)

Cong (Director)
(UCLA)

Cheng
(UCSB)

Chang
(UCLA)

♦  Supports from GSRC and NSF
♦  Collaboration with faculty in Center for Domain-Specific Computing

in the past 3 years.

50

More Acknowledgements

♦  This research is partially supported by the Center for Domain- Specific
Computing (CDSC) funded by the NSF Expedition in Computing Award
CCF-0926127, GSRC under contract 2009-TJ-1984.

Mohammad Ali Ghodrat

Yi Zou Chunyue
Liu

Hui Huang Michael Gill Beayna
Grigorian

