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CDSC Focus: New Transformative Approach to Power/
Energy Efficient Computing

+ Current solution: Parallelization
+ Next significant opportunity - Customization

Parallelization

Nuclear Reactor Customization
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Project Goals

+ A general, customizable platform for the given domain(s)

= Can be customized to a wide-range of applications in the domain
= Can be massively produced with cost efficiency
= Can be programmed efficiently with novel compilation and runtime systems

+ Metric of success

= A “supercomputer-in-a-box” with +100x performance/power improvement via
customization for the intended domain(s)
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Research Scope in CDSC (Center for Domain-

Specific Computing)

Customizable Heterogeneous Platform

ﬂ
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Reconfigurable RF-I bus
Reconfigurable optical bug
@@ Transceiverireceiver

CHP creation
Customizable computing engines
L Customizable interconnects

Design once

~e—
Customizatio
settina Invoke many times

Architecture §
-
modeling

CHP mapping

Adaptive runtime

Source-to-source CHP mapper
Reconfiguring & optimizing backend

Performance/Energy Efficiency of Accelerators

AES 128bit key Throughput Power Figure of Merit

128bit data (Gbis/W)

0.13mm CMOS 3.84 Gbits/sec 350 mW

FPGA[1] 1.32 Ghitisec 490 mW 2.7 (114)

ASM StrongARM [2] 31 Mbitisec 240 mW

ASM Pentium lll [3] 648 Mbits/sec 414W

C Emb. Sparc [4] 133 Kbits/sec 120 mW 0.0011 (1/10,000)

Java [5] Emb. Sparc 450 bits/sec 120 mW 0.0000037 (1/3,000,000)

[1] Amphion CS5230 on Virtex2 + Xilinx Virtex2 Power Estimator

[2] Dag Arne Osvik: 544 cycles AES - ECB on StrongArm SA-1110

[3] Helger Lipmaa PlIl assembly handcoded + Intel Pentium Il (1.13 GHz) Datasheet

[4] gcc, 1 mW/MHz @ 120 Mhz Sparc - assumes 0.25 u CMOS

[5] Java on KVM (Sun J2ME, non-JIT) on 1 mW/MHz @ 120 MHz Sparc - assumes 0.25 u CMOS

Source: P Schaumont and | Verbauwhede, "Domain specific
codesign for embedded security," IEEE Computer 36(4), 2003
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Accelerator-Rich CMP (ARC) [DAC’12]

Accelerator +
DMA + SPM

GAM | Global Accelerator \
Manager N

GAM responsibility: | €---
Accelerator

* Sharing

* Virtualization
* Scheduling

) S

GAM, Accelerator, SPM, L2 Banks

DMA-C Synthesized from

C-based specification Core

(AutoESL/Xilinx + Memory
Synopsys DC) Cotroller

B Router

Overall Communication Scheme in AXR-CMP

CPU New ISA

Icacc-req t

Icacc-rsrv t, e

Icacc-cmd id, f, addr

Accelerator

Icacc-free id

Task

The core requests for a given type of accelerator (Icacc-req).

The GAM responds with a “list + waiting time” or NACK

The core reserves (Icacc-rsv) and waits.

The GAM ACK the reservation and send the core ID to accelerator

The core shares a task description with the accelerator through memory and starts it (Icacc-cmd).
The accelerator reads the task description, and begins working

When the accelerator finishes its current task it notifies the core.

The core then sends a message to the GAM freeing the accelerator (Icacc-free).

O NG EODN =
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Accelerator Virtualization

+ Chaining

= Efficient accelerator to
accelerator communication

Accelerator1 Accelerator2
! f v t
{ Scratchpad ‘ [ Scratchpad
H '

DMA controller

DMA controller

+ Composition

= Constructing virtual
accelerators

virtualization
3D FFT

M-point | [ M-point
1D FFT 1D FFT

N-point
2D FFT

XPilot: Behavioral-to-RTL Synthesis Flow [SOCC’2006]
(with GSRC and NSF supports from 2001 — 2006)

[ Behavioral spec.

J

in C/C++/SystemC
description

[RTL + constraints]

FPGAs/ASICs

¢ Advanced transformtion/optimizations
= Loop unrolling/shifting/pipelining

» Strength reduction / Tree height reduction

= Bitwidth analysis
s Memory analysis ...

+ Core behvior synthesis optimizations
= Scheduling

= Resource binding, e.g., functional unit
binding register/port binding

. pArch-ﬂenmtion & RTL/constraints
generation

» Verilog/VHDL/SystemC
s FPGASs: Altera, Xilinx
= ASICs: Magma, Synopsys, ...
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AutoPilot Compilation Tool (based UCLA xPilot system)

Design Specification

‘ || Myﬂomcl User Constraints
. ~ .

/ Compilation& | AytoPilot™
ADOTation

[Pmyn\holh Opumlnnom]

youaqjse] uowwion

]

C.) Behavioral & Communication
Synthesis and Optimizations

sisayjufs 1S3

RTL HDLs & |[Timing/Power/Layou
RTL SystemC

Constraints

BuidAjojoid pue ‘uonedlLIaA ‘UoReINWIS

g

|

T
Co-Processor

+ Platform-based C to FPGA
synthesis

+  Synthesize pure ANSI-C and C+
+, GCC-compatible compilation
flow

+  Full support of IEEE-754
floating point data types &
operations

+ Efficiently handle bit-accurate
fixed-point arithmetic

+ SDC-based scheduling
+  Automatic memory partitioning

QoR matches or exceeds manual
RTL for many designs

Developed by AutoESL, acquired by Xilinx in Jan. 2011
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Accelerator-Rich CMP (ARC) [DAC’12]

Accelerator +
DMA + SPM

GAM | Global Accelerator
Manager

\
\

GAM responsibility:
Accelerator

* Sharing

* Virtualization

* Scheduling

2~ -

GAM, Accelerator, SPM,
DMA-C Synthesized by:
* AutoESL (Xilinx Vivado
HLS)

* Synopsys Design

L2 Banks
Core

Memory
Cotroller

Compiler

B Router

Irregular NoC

Buffer in NUCA
(BiN)

Hybrid
Cache

SIMICS
(Functional
model)
S oPAL
(T leterogeneity

ightly-coupled
accelerator

Accelerator Powerlarea  L0OSEly-coupled
Model (interface to accelerator
o (ARC, CHARM)

Heterogeneous Simulation Platform:
« Compute heterogeneity

» Memory/cache heterogeneity

+ Communication heterogeneity

« Built on top of Simics+GEMS
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Appllcatlon Domain: Medical Image Processing

Medicalimages exhibit sparsity, and can be sampled at
arate << classical Shannon - Nyquist theory :

gHARu S|+ loract)]

sampledpoints Vvoxels

$, 2
s
h

Vvoxel: u(i) = ( Ew,‘,f(j)] 207wy = Z()

voxel Evolume

vy
ot

v+ (4 V(7 -v)= [T -u) -RO) N T(x - 1)

=|V¢||F(data ¢)+Ad|v

surface(t) = {voxels X:gxt) = 0}

%+(v V)V =-Vp+vAv +f(x,t)

at i’:ﬁ: - 2v—+fxt

13
Area Overhead
1 1 1
0.012 2.01 0.49 0.69 3.85
182 0.567.0 0.02 3.4 0.8 1.2 6.5 2.4
[Total Accelerators + GAM + SPMs: 14.3 %
+ AutoESL (from Xilinx) for C to RTL synthesis
+ Synopsys for ASIC synthesis
= 32 nm Synopsys Educational library
+ CACTIfor L2
+ Orion for NoC
+ One UltraSparc llli core (area scaled to 32 nm)
= 178.5mm"2 in 0.13 um (http://en.wikipedia.org/wiki/UltraSPARC llI)
14
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Experimental Results - Performance
(N cores, N threads, N accelerators)

Speedup over SW-Only

400

350

300
g = Registation Performance improvement
S 150 | Deblur over SW only approaches:

100 Denoise

on average 168x, up to 380x
58 I I I I I B Segmentation g d P
1 2 4 8 16

Configuration (N cores, N threads, N accelerators)

Speedup over 0S-based
350
300

. 250
Performance improvement £ 200 ® Registration

over OS based approaches: & 150 | | Deblur
I I — I L - =
1 2 4 8 16

on average 51x, up to 292x 123

0

Denoise

¥ Segmentation

Configuration (N cores, N threads, N accelerators)

15
Experimental Results - Energy
(N cores, N threads, N accelerators)
Energy gain over SW-only version
700
600
500 .
= 400 B Registration Energy Improvement
8 223 Deblur over SW-only approaches:
100 Denoise on average 241x, up to 641x
0 | | | ] B ™ Segmentation
1 2 4 8 16
Configuration (N cores, N threads, N accelerators)
Energy gain over OS-based version
70
60
. 50
Energy improvement <10 = Regisiration
over 0S-based approaches: s Deblur
20 '
on average 17x, up to 63x 10 I Denoise
0 — - - - ™ B Segmentation
1 2 4 8 16
Configuration (N cores, N threads, N accelerators)
16
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What are the Problems with ARC?

+ Dedicated accelerators are inflexible

= An LCA may be useless for new algorithms or new domains

= Often under-utilized

= LCAs contain many replicated structures
* Things like fp-ALUs, DMA engines, SPM

« Unused when the accelerator is unused

+ We want flexibility and better resource utilization

= Solution: CHARM

+ Private SPM is wasteful
= Solution; BiN

Fine-grain Accelerator Composition +
Globally-managed Buffer in NUCA [ISLPED’12]

+ ABB
= Accelerator building blocks (ABB)
= Primitive components that can be
composed into accelerators

+ ABBislands
= Multiple ABBs
= Shared DMA controller, SPM and
NoC interface

+ ABC

= Accelerator Block Composer
(ABC)

* Runtime composition of virtual
accelerators from ABBs
* Arbitrate requests from cores
+ Other components
= Cores
= L2 Banks
= Memory controllers

M |$2|$2(C | C |$2($2|M
c|(c|jc|jc|cfcjc|c
$2 |1 ($2 |1 |$2| 1 [$2( 1
$2 (1 [$2) 1 [$2| 1 |$2] 1
$2 (1 [$2 ABC[$2 | I |$2| I
$2 (1 |$2 |1 [$2| 1 |$2] 1
c|icfcjc|jc|c|c
M |$2|82|C | C |$2($2| M

(]

s
’ m
->>>>>
| || oo| (00| |oo
N 00| (9| || |oo) o
N
N

a8V

Accelerator Block

L2

Bank

Composer

Memory
Controller

E‘ Core
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An Example of ABB Library (for Medical Imaging)

Denoise | Deblur | Registration | Segmentation
ABBs
Float Reciprocal (FInv) v v v
Float Square-Root (FSqrt) v v v v
Float Polynomial-16 (Poly16) v v v v
Float Divide (FDiv) v v v v
NoC interface
Internal y oo
DMA-C SPM Bank o -
of Poly I
Id Id1 Id Id ctrl1 =
ADD/SUB/MUL
ASM ASM ASM ASM (ASM)
ASM ASM Frox‘(:;;ecgqoc
Asm) 1t YrTrrT Veeaa.
T 1d[3:0] e
19
Example of ABB Flow-Graph (Denoise)
6
. 2
1 Xi—Y)
i=0
20

11/4/12

10



Example of ABB Flow-Graph (Denoise)

6 2
1/ Z(Xi —v)
i=0

21

Example of ABB Flow-Graph (Denoise)

6 2
1/ Z(Xi —v)
i=0

ABB3: Sqrt
ABB4: Inv

e

22
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6

1/ Z(Xi —y)?

i=0

ABB3: Sqrt

ABB4: Inv

Decomposed Denoise LCA

Example of ABB Flow-Graph (Denoise)

1

ABB1, Type = Poly
Input: Mem, Output:ABB2
Function:(x0-x1),(x2-x3), ...

I

ABB2, Type = Poly
Input: ABB1, Output: ABB3
Function: x0*x1+x2*x3+....

!

ABB3, Type = Sqrt
Input: ABB2, Output: ABB4
Function: sqrt(x0)

!

ABB4, Type = Finv
Input: ABB3, Output: Mem
Function: 1/x0

23

LCA Composition Process

Core
asB X asg X
ISLAND1 ISLAND2
y w
ABC
ABB £ asg Y
ISLAND3 ISLAND4
w Y4

24
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LCA Composition Process

1. Core initiation

= Core sends the task description: task flow-
graph of the desired LCA to ABC together with
polyhedral space for input and output

Core
aBB X agg X
Task description ISLAND1 ISLAND2
v y w
X ABC
z
ABB Z asg Y
10x10 input and output ISLAND3 ISLAND4
w Z
25
LCA Composition Process
2. Task-flow parsing and task-list creation
= ABC parses the task-flow graph and breaks the request
into a set of tasks with smaller data size and fills the
task list
Core
aBB X agg X
ISLAND1 ISLAND2
y w
ABC generates internally
ABC
ABB 2 asg Y
*Needed ABBs: “x”, “y”, “2” ISLAND3 ISLAND4
w Z
=With task size of 5x5 block,
ABC generates 4 tasks
26

13
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LCA Composition Process
3. Dynamic ABB mapping

= ABC uses a pattern matching algorithm to
assign ABBs to islands

= Fills the composed LCA table and resource
allocation table

Core
agg X A X
ISLAND1 ISLAND2
R 1
i ABC
1 X 1 Free
1 y 1 Free
2 X 1 Free ABB 4 ABB y
2 w ! Free ISLAND3 ISLAND4
3 z 1 Free w Z
3 w 1 Free
4 Yy 1 Free
4 z 1 Free o
LCA Composition Process
3. Dynamic ABB mapping
= ABC uses a pattern matching algorithm to
assign ABBs to islands
= Fills the composed LCA table and resource
allocation table
Core X
ABB ABB
ISLA Q ISLAND2
R '
i ABC
1 X 1 Busy \»
1 y 1 Busy
2 X 1 Free ABB Q ABB y
2 w ! Free ISLAND3 ISLAND4
3 z 1 Busy w Z
3 w 1 Free
4 Yy 1 Free
4 z 1 Free 28

14
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LCA Composition Process
4. LCA cloning

= Repeat to generate more LCAs if ABBs are
available

ABB ABB

ISLA ISLA
v
el PP

Type ABC

- \ \

1 1 Busy v Vv

1 y 1 Busy Q

2 1 Busy ABB ABB

2 w 1 Free ISLAND3 ISLAND4

3 z 1 Busy w

3 w 1 Free

4 Yy 1 Busy

4 z 1 Busy 29

LCA Composition Process
5. ABBs finishing task
= When ABBs finish, they signal the ABC. If DONE
ABC has another task it sends otherwise it o o e
frees the ABBs P S~ N
v d
P N
&
Core /’
4 ABB ABB

ABB ABB ID /4
R swpll
1 X 1 Busy w
1 y 1 Busy ABC
2 1 Busy \» \‘\'
2 w 1 Free
3 z 1 Busy ABB Q ABB
3 w 1 Free ISLAND3 ISLAND4
4 Yy 1 Busy w
4 z 1 Busy

30

15
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LCA Composition Process

5. ABBs being freed
= When an ABB finishes, it signals the ABC. If
ABC has another task it sends otherwise it

frees the ABBs
Core ? x
ABB ABB
ABB ABB ID
1 X 1 Busy Q w
1 y 1 Busy ABC
2 1 Free \»
2 w 1 Free
3 z 1 Busy ABB Q ABB y
3 w 1 Free ISLAND3 ISLAND4
4 y 1 Free w Z
4 z 1 Free
31
LCA Composition Process
6. Core notified of end of task
= When the LCA finishes ABC signals the
core
Core
as X aBB X
ABB ABB ID A
1 X 1 Free y w
1 y 1 Free ABC
2 1 Free
2 w 1 Free
3 z 1 Free ABB z ABB y
3 w 1 Free ISLAND3 ISLAND4
4 y 1 Free w Z
4 z 1 Free
32

16



CHARM Software Infrastructure
+ ABB type extraction

Domain
= |nput: compute-intensive kernels Kemels
from different application
= Qutput: ABB Super-patterns ABB Typs Extraction

= Currently semi-automatic

+ ABB template mapping
= |nput: Kernels + ABB types ABB Template Mapping

= Qutput: Covered kernels as an

ABB flow-graph

Graph Y

+ CHARM uProgram
generation CHARM

u-Program Generation

ABB Types

Compilation Flow

= Input: ABB flow-graph
= Qutput;
uProgram

33

ABB Template Mapping

+ Scalability problem
= NP-complete

* The flow in [S. Mahlke, et.al. CASE'06] takes ~ 30 min for segmentation (1147 connected
ABB candidates)

= Solution: only consider maximal ABB candidates + efficient pruning techniques
+ Maximal ABB candidate identification
= Input: Kernels + ABB types
= Qutput: Maximal ABB candidates
+ Maximal ABB mapping
= |nput: Kernels + maximal ABB candidates
= Output: Covered kernels as an ABB flow-graph
+ Mapping efficiency
= Up to 26X reduction on total number of ABB candidates in the mapping phase
= QObtain the optimal solution in less than 6 sec. with ~ 1200 ABB candidates

34
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Area Overhead Analysis

NoC interface

+ Area-equivalent

—
[owacld sPmBank | o
I

= The total area consumed by
the ABBs equals the total area
of all LCAs required to run a
single instance of each
benchmark

i 0, Name A®@W?®) | P(mW) | Total#
+ Total CHARM area is 14% Name L AG) [ POn) | Tota
of the 1cmxicm Chlp Polyl6 | 38276 | 1.608 | 96
Flnv 3503 0.141 12
= Abit less than LCA-based FSqrt [S8683] 183 [ 8
. SPM-4KB IR/W | 13591 17.6 288
deS|gn SPM-768B 1IR/W | 2545 7 72
ABC 8383 0.066 1
Core NoC Cache & Dir | CHARM-HW | CHARM-Total | LCA HW | LCA Total
10.8mm? 0.3mm* | 39.8mm* 8 3mm- 59 2mm?> 8.5mm* | 59.4mm>
(scaled to 32nm) (Orion) (Cacti) (14%) ( 14.3 %)

35

ADD/SUB/MUL
(Asm)

Results: Improvement Over LCA-based Design

+ Use same area as LCA
(loosely coupled accelerators) ™
based design

+ Performance
= 2.5X vs. LCA+GAM (max 5X)
= 476X vs Multi-core (max 1800 X)

+ Energy :

o

Deb

Normalized Performance

Den

Reg Seg

Normalized Energy

5||IIII|I|II||III -
0 ABB+ABC

Ix 2x 4x 8x | Ix 2x 4x 8x |1x 2x 4x 8x | 1x 2x 4x 8x

= 1.9Xvs. LCA+GAM (max 3.4X) 05 | | | | I | | | | | I | | I I I LCA+GAM
0 ABB+ABC

2x 4x 8x|1x 2x 4x 8x

= 381X vs. Multi-core (max 1300X) 1% 2¢ 4x 8x 1x 2x 4x 8x | 1x

+ ABB+ABC has better energy oo
and performance

Den

Reg Seg

- CHARM vs

= ABC starts composing ABBs to
create new LCAs

= Creates more parallelism

R

and Energy

36
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Results: Platform Flexibility

+ Two applications from two Normalized Performance
unrelated domains to Ml "~ = LCAYGAM = LCASABC = ABB+ABE
= Computer vision 08 |
* Log-Polar Coordinate Image - i
Patches (LPCIP) 0z N
= Navigation *T e [exesim] wop [eesuam| wap | excsiam
« Extended Kalman Filter-based 1xData ize 2xData size x Data size
Simultaneous Localization and
Mapping (EKF-SLAM) MAX Benefit over
+ Only one ABB is added LCA+GAM 3.64X
= Indexed Vector Load . Be:i;f/i\tn:ver “ 2.46X

37

Memory Management for Accelerator-Rich
Architectures [ISLPED’2012]

+ Providing a private buffer for each accelerator is very inefficient.
= Large private buffers: occupy a considerable amount of chip area
= Small private buffers: less effective for reducing off-chip bandwidth

+ Not all accelerators are powered-on at the same time
= Shared buffer [Lyonsy et al. TACO'12]

= Allocate the buffers in the cache on-demand [Fajardo et al. DAC'11][Cong et al.
ISLPED11]

+ Our solution
= BiN: A Buffer-in-NUCA Scheme for Accelerator-Rich CMPs

38
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Buffer Size vs. Off-chip Memory Access Bandwidth

+ Buffer size 1 - off-chip memory bandwidth |: covering longer reuse distance [Cong et al.
ICCAD11]

+ Buffer size vs. bandwidth curve: BB-Curve

+ Buffer utilization efficiency
= Different for various accelerators
= Different for various inputs for one accelerator

+ Prior work: no consideration of global allocation at runtime
= Accept fixed-size buffer allocation requests
= Rely on the compiler to select a single, ‘best’ point in the BB-Curve

2,500,000

4 .

2 Denoise

g 2,000,000

g . T . .

= 1,500,000 \ High buffer utilization efficiency iroe cwes)
E —=— inputimage: cube(52)
£ 1,000,000 \\ —a— input image: cube(76)
o

‘S 500,000 — —

S 0 ;

L 9 . / 27 119 693
Low buffer utilization efficiéncy 5 e size (ka)

39

Resource Fragmentation

+ Prior work allocates a contiguous space to each buffer to simplify buffer access
+ Requested buffers have unpredictable space demand and come in dynamically:
resource fragmentation
+ NUCA complicates buffer allocations in cache
= The distance of the cache bank to the accelerator also matters
+ To support fragmented resources: paged allocation
= Analogous to a typical OS-managed virtual memory
+ Challenges:

= Large private page tables have high energy and area overhead
= |ndirect access to a shared page table has high latency overhead

| Shared buffer space: 15KB | | - |

Buffer 1: 5KB, duration: 1K cycles

_ Buffer 2: 5KB, duration: 2K cycles
_ Buffer 3: 10KB, duration: 2K cycles

40
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BiN: Buffer-in-NUCA
+ Goals of Buffer-in-NUCA (BiN)

= Towards optimal on-chip storage utilization
= Dynamically allocate buffer space in the NUCA among a large number of competing
accelerators
+ Contributions of BiN:

= Dynamic interval-based global (DIG) buffer allocation: address the buffer resource
contention

= Flexible paged buffer allocation: address the buffer resource fragmentation

41

Accelerator-Rich CMP with BiN

Overall architecture of ARC [Cong et al. DAC

C $2 C 32/ C 2 C g2
2011] with BiN A |52 [A|s2 A |52 A [s2
= Cores (with private L1 caches) A [s2 (A |52 A |]s2 A |82
= Accelerators ol EE B ES S BN NS
. Accelerator logic ol (B I |58 o) BE E | RE
. DMA-controller o[5S BN 0SB BE ERE
. Asmall storage for the control structure NRCNR N
= The accelerator and BiN manager (ABM) AL AL AR AL
. Arbitration over accelerator resources €| core $2 L2Bank eRouter
. Allocates buffers in the shared cache (BiN Al Accelerator  EEI ©Cabm
management) Manager

= NUCA (shared L2 cache) banks
( ) (1) The core sends the accelerator and buffer allocation

request with the BB-Curve to ABM.

(2) ABM performs accelerator allocation, buffer allocation
in NUCA, and acknowledges the core.

(7), The core sends the control structure to the accelerator.

(1) >

(L2 Cache Banks) The accelerator signals to the core when it finishes.

The core sends the free-resource message to ABM.

@)

Accelerator (4) l NUCA g; The accelerator starts working with its allocated buffer.
()
(7) ABM frees the accelerator and buffer in NUCA.

42
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Dynamic Interval-based Global (DIG) Allocation

+Perform global allocation for buffer allocation requests in an interval
= Keep the interval short (10K cycles): Minimize waiting-in-interval
= |f 8 or more buffer requests, the DIG allocation will start immediately

+An example: 2 buffer allocation requests
= Each point (b, s)
s: buffer size
b: corresponding bandwidth requirement at s
Buffer utilization efficiency at each point: (b, =8,;.1)) /(s; = Si;-n))
= The points are in non-decreasing order of buffer size
b (Band*‘Lidth requirement) b (Band\nhdth requirement)

(Do Soo) (big>51)
\ Step 1

(bm _bno)

(So1 = 800)

(b7

(8117816

(bll’sll)

(bm’s(u)

500 b=ty
Gems)  SEPE

s (Size of the buffer)

(S0 =)

s (Size of the buffer)

Buffer request 0 Buffer request 1 43
Flexible Paged Allocation
+ Set the page size according to buffer size: Fixed total number of pages for each buffer
+ BiN manager locally keep the information of the current contiguous buffer space in each L2 bank
= Since all of the buffer allocation and free operations are performed by BiN manager
+ Allocation: starting from the nearest L2 bank to this accelerator, to the farthest
+ We allow the last page (source of page fragments) of a buffer to be smaller than the other
pages of this buffer
= No impact on the page table lookup
= The max page fragment will be smaller than the min-page
= The page fragments do not waste capacity since they can be used by cache
Router yaN Cacr?)e set
AcceleratorQ O " $5¢] % E::; g
L | e
Accelerator2 g E::;z
AcceleratorO pages Accelerator1 pages
[F] Accelerator2 pages Page fragments
44
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Reference Design Schemes

+ Accelerator Store (AS) [Lyonsy, et al. TACO'12]
= Separate cache and shared buffer module
= Set the buffer size 32% larger than maximum buffer size in BiN: overhead of buffer-in-cache
= Partition the shared buffer into 32 banks distributed them to the 32 NoC nodes
+ BIiC [Fajardo, et al. DAC’11]
= BiC dynamically allocates contiguous cache space to a buffer
= Upper bound: limiting buffer allocation to at most half of each cache bank
= Buffers can span multiple cache banks

+ BiN-Paged
= Only has the proposed paged allocation scheme
+ BiN-Dyn
= Based on BiN-Paged, it also performs dynamic allocation without consideration of near future buffer
requests

= Itresponds to a request immediately by greedily satisfying the request with the current available resources

+ BiN-Full
= This is the entire proposed BiN scheme

45

Impact of Dynamic Interval-based Global Allocation

+ BiN-Full consistently outperforms

14

the other schemes 212
T 10
= The only exception: 4P-mix3 € 08
. 8 o0s
. 1.32X larger capacity of the AS € o4
can accommodate all buffer = 3§

requests PEESPE SIS PSS S8, '@iz@\@

+ Overall, compared to the WBIC mBiN-Paged 1 BiN-Dyn = BiN-Full

accelerator store and BiC, BiN-Full Comparison results of runtime

reduces the runtime reduction by

32% and 35%, respectively

Normalized Off-chip mem
access counts
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Comparison results of off-chip memory accesses
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Impact on Energy

AS consumes the least per-cache/buffer access energy and the least unit leakage
= Because in the accelerator store the buffer and cache are two separate units
BiN-Dyn
= Saves energy in cases where it can reduce the off-chip memory accesses and runtime
= Results in a large energy overhead in cases where it significantly increases the runtime
Compared with the AS, BiN-Full reduces the energy by 12% on average
= Exception: 4P-mix-{2,3}
The 1.32X capacity of AS can better satisfy buffer requests
Compared with BiC, Bin-Full reduces the energy by 29% on average

1.8
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g 214 1 [ |
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mBiC mBiN-Paged m BiN-Dyn = BiN-Full 7
Concluding Remarks

+ Platform-based design methodology for accelerator-rich CMPs
(ARCs)

= Enabled by GSRC support over past 15 years

+ ARCs provide huge opportunity for performance/energy
improvement

+ Runtime accelerator composition offers
= Flexibility in application adaptation
= Better resource utilization for scalable parallelism support

+ Compilation and runtime supports are critical
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