
Synthesizing Programs with
Constraint Solvers
ASPLOS Symposium

Ras Bodik Division of Computer Science
University of California, Berkeley

Prepare your language for synthesis

2

spec: int foo (int x) {

return x + x;
}

sketch: int bar (int x) implements foo {

return x << ??;
}

result: int bar (int x) implements foo {

return x << 1;
}

Extend the language with two constructs

2

𝜙 𝑥, 𝑦 : 𝑦 = foo(𝑥)

?? substituted with an
int constant meeting 𝜙

instead of implements, assertions over safety properties can be used

Synthesis as search over candidate programs

Partial program (sketch) defines a candidate space

we search this space for a program that meets 𝜙

Usually can’t search this space by enumeration

space too large (≫ 1010)

Describe the space symbolically

solution to constraints encoded in a logical formula gives
values of holes, indirectly identifying a correct program

What constraints? Essentially encode semantics in SAT
3

Synthesis from partial programs

spec

sketch

program-to-formula
translator

𝜙 solver
“synthesis engine”

𝒉 ↦ 𝟏

code generator
sketch 𝑃[ℎ]

𝑃[𝟏]

Example: Parallel Matrix Transpose

5

Example: 4x4-matrix transpose with SIMD

a functional (executable) specification:

int[16] transpose(int[16] M) {

int[16] T = 0;

for (int i = 0; i < 4; i++)

for (int j = 0; j < 4; j++)

T[4 * i + j] = M[4 * j + i];

return T;

}

This example comes from a Sketch grad-student contest

66

Implementation idea: parallelize with SIMD

Intel SHUFP (shuffle parallel scalars) SIMD instruction:

return = shufps(x1, x2, imm8 :: bitvector8)

7

x1 x2

return

7

imm8[0:1]

High-level insight of the algorithm designer

Matrix 𝑀 transposed in two shuffle phases

Phase 1: shuffle 𝑀 into an intermediate matrix 𝑆 with some
number of shufps instructions

Phase 2: shuffle 𝑆 into an result matrix 𝑇 with some number
of shufps instructions

Synthesis with partial programs helps one to
complete their insight. Or prove it wrong.

8

The SIMD matrix transpose, sketched

int[16] trans_sse(int[16] M) implements trans {

int[16] S = 0, T = 0;

S[??::4] = shufps(M[??::4], M[??::4], ??);

S[??::4] = shufps(M[??::4], M[??::4], ??);

…

S[??::4] = shufps(M[??::4], M[??::4], ??);

T[??::4] = shufps(S[??::4], S[??::4], ??);

T[??::4] = shufps(S[??::4], S[??::4], ??);

…

T[??::4] = shufps(S[??::4], S[??::4], ??);

return T;

}
9

Phase 1

Phase 2

The SIMD matrix transpose, sketched

int[16] trans_sse(int[16] M) implements trans {

int[16] S = 0, T = 0;

repeat (??) S[??::4] = shufps(M[??::4], M[??::4], ??);

repeat (??) T[??::4] = shufps(S[??::4], S[??::4], ??);

return T;

}

int[16] trans_sse(int[16] M) implements trans { // synthesized code

S[4::4] = shufps(M[6::4], M[2::4], 11001000b);

S[0::4] = shufps(M[11::4], M[6::4], 10010110b);

S[12::4] = shufps(M[0::4], M[2::4], 10001101b);

S[8::4] = shufps(M[8::4], M[12::4], 11010111b);

T[4::4] = shufps(S[11::4], S[1::4], 10111100b);

T[12::4] = shufps(S[3::4], S[8::4], 11000011b);

T[8::4] = shufps(S[4::4], S[9::4], 11100010b);

T[0::4] = shufps(S[12::4], S[0::4], 10110100b);

}
10

From the contestant email:
Over the summer, I spent about 1/2

a day manually figuring it out.

Synthesis time: <5 minutes.

Demo: transpose on Sketch

Try Sketch online at http://bit.ly/sketch-language

11

http://bit.ly/sketch-language

Demo notes (1)

In the demo, we accelerated synthesis by changing

repeat(??) loop body

repeat(??) loop body

to

int steps = ??

repeat(steps) loop body

repeat(steps) loop body

→ can improve efficiency by adding more “insight”

here, the “insight” constraints state that both loops have
same (unknown) number of iterations

12

Demo notes (2)

How did the student come up with the insight that
two phases are sufficient?

We don’t know but the synthesizer can prove that one
phase is insufficient (a one-phase sketch has no solution)

13

Program Synthesis
with Constraint Solvers

14

What to do with a program as a formula?

Assume a formula SP(x,y) which holds iff program P(x)
outputs value y

program: f(x) { return x + x }

formula: 𝑆𝑓 𝑥, 𝑦 : 𝑦 = 𝑥 + 𝑥

This formula is created as in program verification with
concrete semantics [CMBC, Java Pathfinder, …]

15

With program as a formula, solver is versatile

Solver as an interpreter: given x, evaluate f(x)

𝑆 𝑥, 𝑦 ∧ 𝑥 = 3 solve for 𝑦 𝒚 ↦ 𝟔

Solver as a program inverter: given f(x), find x

𝑆 𝑥, 𝑦 ∧ 𝑦 = 6 solve for 𝑥 𝒙 ↦ 𝟑

This solver “bidirectionality” enables synthesis

16

Search of candidates as constraint solving

𝑆𝑃(𝑥, ℎ, 𝑦) holds iff sketch 𝑃[ℎ](𝑥) outputs 𝑦.
spec(x) { return x + x }

sketch(x) { return x << ?? } 𝑆𝑠𝑘𝑒𝑡𝑐ℎ 𝑥, 𝑦, ℎ : 𝑦 = 𝑥 ∗ 2ℎ

The solver computes h, thus synthesizing a program
correct for the given x (here, x=2)

𝑆𝑠𝑘𝑒𝑡𝑐ℎ 𝑥, 𝑦, ℎ ∧ 𝑥 = 2 ∧ 𝑦 = 4 solve for ℎ 𝒉 ↦ 𝟏

Sometimes h must be constrained on several inputs

𝑆 𝑥1, 𝑦1, ℎ ∧ 𝑥1 = 0 ∧ 𝑦1 = 0 ∧
𝑆 𝑥2, 𝑦2, ℎ ∧ 𝑥2 = 3 ∧ 𝑦2 = 6 solve for ℎ 𝒉 ↦ 𝟏

17

Inductive synthesis

Our constraints encode inductive synthesis:

We ask for a program 𝑃 correct on a few inputs.

We hope (or test, verify) that 𝑃 is correct on rest of inputs.

How to select suitable inputs?

Verify a candidate program. If it fails verification, the
counterexample (input) is added as an input to synthesis

18

More information

Learn:

- CAV 2012 invited tutorial (with Emina Torlak)

- graduate seminar (cs294-fa12)

Play:

- SKETCH synthesizer

- Rosette lightweight synthesizer

19

Acknowledgements

UC Berkeley
Gilad Arnold

Shaon Barman

Prof. Ras Bodik

Prof. Bob Brayton

Joel Galenson

Thibaud Hottelier

Sagar Jain

Chris Jones

Ali Sinan Koksal

Leo Meyerovich

Evan Pu

20

MIT
Prof. Armando Solar-Lezama

Rishabh Singh

Kuat Yesenov

Jean Yung

Zhiley Xu

IBM
Satish Chandra

Kemal Ebcioglu

Rodric Rabbah

Vijay Saraswat

Vivek Sarkar

Casey Rodarmor

Prof. Koushik Sen

Prof. Sanjit Seshia

Lexin Shan

Saurabh Srivastava

Liviu Tancau

Nicholas Tung

