
A software-hardware
contract for controlling cache

and timing channels.

Andrew Myers
Cornell University

(with Danfeng Zhang, Aslan Askarov)

Timing channels:
Known to exist
Hard to detect
Hard to prevent

e adversary can learn (a lot)
from side channels.

system
input

output

Side channels:
time

power
EM radiation

. . .

A few timing attacks
• Network timing attacks

• RSA keys leaked by decryption time, measured across
network [Brumley&Boneh’05]

• Load time of web page reveals login status,
size and contents of shopping cart [Bortz&Boneh’07]

• Cache timing attacks
• AES keys leaked by timing memory accesses [Osvik et al’06] from

~300 (!) encryptions. Even works across VMMs. [Zhang et al.’12]

• Covert timing channels
• Transmit confidential data by controlling response time, e.g.,

combined with SQL injection [Meer&Slaviero’07]

• Timing channels : a serious threat

Security policies
• Security policy lattice

• Information has label describing intended confidentiality

• For this talk, a simple lattice:

• L=public, H=secret

• H should not flow to L

• Adversary powers

• Sees contents of low (L) memory (data/storage channel)

• Sees timing of updates to low memory (timing channel)

H

L

A timing channel
if (h)
 sleep(1);
else
 sleep(2);

A subtler example
if (h1)
 h2=l1;
else
 h2=l2;
l3=l1;

• Data cache affects timing!
• Adversary thread can probe l1 to learn h1

Beneath the surface
if (h1)
 h2=l1;
else
 h2=l2;
l3=l1; compiler

optimizations

data/
instruction

cache

branch
target
buffer

data/
instruction

TLB

A language-level abstraction [PLDI’12]

L H
machine

environment

• Each operation has read label, write label
governing interaction with machine
environment(x := e)

[ℓr,ℓw]

machine env.
logically

partitioned by
security level

(e.g. high cache vs.
low cache)

Does not include
language-visible
state (memory)

Machine environment: state affecting
timing but invisible at language level

seen by
adversary

Read label

abstracts how machine
environment affects
time taken by next
language-level step.

= upper bound on influence

(x := e)[ℓr,ℓw]

L H

machine
environment

(h1:=h2)[L, ℓw]

Write label

abstracts how machine
environment is affected
by next language-level
step

= lower bound on effects
L H

machine
environment

(x := e)[ℓr,ℓw]

(h1:=h2)[L,H]

e contract
• Language implementation must satisfy

three (formally defined) properties:
1. Read label property

2. Write label property

3.Single-step noninterference: no leaks from
high environment to low environment

• Realizable on commodity HW (no-fill mode)

• Provides guidance to designers of future secure
architectures

L H

L’ H

One realization (cache only)
• Cache split into H and L partitions

• H cache stores lines accessed from high contexts

• L cache stores lines accessed from low contexts

• Machine environment does not include data in
cache, only addresses

• Confidential information can be stored in low cache

• Low-read-label access to high cache must simulate miss

L H
machine

environment

Type system
• We analyze programs using a type

system that tracks timing.

c : T ⇒ time to run c depends on
information of (at most) label T

• A “standard” information flow type
system, plus read and write labels.

• Standard part controls data (storage)
channels (e.g., forbids l := h)

• labels can be generated by inference,
optimizer, programmer.

Examples:
c[H,L] : H
(h1:=h2)[L,L] : L
sleep(h) : H

if (h1)
 (h2:=l1)[L,H];
else
 (h2:=l2)[L,H];
(l3:=l1)[L,L]

low cache read cannot
be affected by h1

A well-typed program* leaks nothing via
either internal or external timing
channels or data channels.

Formal results
• Memory and machine environment

noninterference:

* using no timing mitigation

Language-level mitigation

• Executes s but adds time using predictive
mitigation [CCS’10, CCS’11]

• New expressive power:
sleep(h) : H but mitigate(l) { sleep (h) } : L

• Result: well-typed program using mitigate
has bounded leakage (e.g., O(log2 T))

mitigate(l) { s }

label of running time mitigated command

Evaluation Setup
• Simulated architecture satisfying security

properties with statically partitioned cache and
TLB

• Implemented on SimpleScalar simulator, v.3.0e

Web login example

• Valid usernames can be learned via
timing [Bortz&Boneh 07]

• Secret

• MD5 digest of valid (username, password) pairs

• Inputs

• 100 different (username, password) pairs

Login behavior

Performance
• nopar: unmodified hardware

• moff: secure hardware, no mitigation

• mon: secure hardware with mitigation

L H

Conclusions
• Timing channels should be

reflected at the software/
hardware boundary

• Read and write labels as a clean, general
abstraction of hardware timing behavior,
enabling software/hardware codesign

• Predictive mitigation, a dynamic
mechanism for bounding timing leakage

• Static analysis of timing behavior with strong
guarantees of bounded information leakage.

[ℓr, ℓw]

