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A few timing attacks

e Network timing attacks

o RSA keys leaked by decryption time, measured across
network [Brumley&Boneh'05]

o Load time of web page reveals login status,
size and contents of shopping cart [Bortz&Boneh'07]

e Cache timing attacks

o AES keys leaked by timing memory accesses [Osvik et al'06] from
~300 (!) encryptions. Even works across VMMs. [Zhang et al/12]

e Covert timing channels

o Transmit confidential data by controlling response time, e.g.,
combined with SQL injection [Meer&Slaviero'07]

e Timing channels : a serious threat




Security policies

o Security policy lattice

o Information has label describing intended confidentiality

e For this talk, a simple lattice:

e L=public, H=secret

e H should not flowto L

o Adversary powers

o Sees contents of low (L) memory (data/storage channel)

o Sees timing of updates to low memory (timing channel)




A timing channel

if (h)
sleep(1);

else
sleep(2);




A subtler example

if (h1) - “a
h2=[1; e
else

h2=12;

13=l1;

o Data cache affects timing!
o Adversary thread can probe |1 to learn h1




Beneath the surface
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A language-level abstraction (pior2)

Q : .
‘_ « Each operation has read label, write label

governing inseraction with machine

ehNrorme

[Lodu]

~ seenby

L 4 nvironment: state affecting
 adversary

=t invisible at language level

machine env.

logically Does not include

Partiti.onelzd b|y y ’ anguage-visible
Securlty eve : state (memor
(e.g. high cache vs. machine ( y)

low cache) enviropment




Read label

(X =€)y o1

abstracts how machine
environment affects
time taken by next
language-level step.

= upper bound on influence

(h1:=h2)[|_’ ]

L H
machine
environment




Write label

(X =€)y g,
(h1:=h2)[L,H)

abstracts how machine
environment is affected
by next language-level
step

= lower bound on effects




The contract

e Language implementation must satisfy
three (formally defined) properties:

1.Read label property L

2. Write label property %

3.Single-step noninterference: no leaks from
high environment to low environment L

e Realizable on commodity HW (no-fill mode)

e Provides guidance to designers of future secure
architectures




One realization (cache only)

o Cache splitinto H and L partitions
o H cache stores lines accessed from high contexts

e L cache stores lines accessed from low contexts

e Machine environment does not include data in
cache, only addresses

o Confidential information can be stored in low cache

o Low-read-label access to high cache must simulate miss




Type system

» We analyze programs using a type
system that tracks timing.

c: T = time to run c depends on

information of (at most) label T

o A “standard” information flow type |i

system, plus read and write labels.

o Standard part controls data (storage)
channels (e.g., forbids | := h)

o labels can be generated by inference,

Examples:
C(HL]: H

(hi=h2)iLLy: L
sleep(h) : H

iy
.h
~

(h2:=2)[L,H1;
(Lz:=11), L3

low cache read cannot

optimizer, programmer. be affected by h;




Formal results

e« Memory and machine environment
noninterference:

A well-typed program™* leaks nothing via
either internal or external timing
channels or data channels.

* using no timing mitigation




Language-level mitigation

mitigate(() { s }

label of running time mitigated command

 Executes s but adds time using predictive
mitigation [CCS10, CCS'11]

o New expressive power:
sleep(h):H but mitigate(l) { sleep (h)} :L

 Result: well-typed program using mitigate
has bounded leakage (e.g., O(log? T))




Evaluation Setup

« Simulated architecture satisfying security
properties with statically partitioned cache and
TLB

Name # of sets | 1ssue | block size latency

L1 Data Cache 128 4-way 32 byte I cycle
L2 Data Cache 1024 4-way 64 byte 6 cycles

L1 Inst. Cache 512 [-way 32 byte I cycle
L2 Inst. Cache 1024 4-way 64 byte 6 cycles
Data TLB 16 4-way 4KB 30 cycles
Instruction TLB 32 4-way 4KB 30 cycles

e Implemented on SimpleScalar simulator, v.3.0e




Web login example

e Valid usernames can be learned via
timing [Bortz&Boneh 07]

e Secret
o MD5 digest of valid (username, password) pairs
e Inputs

o 100 different (username, password) pairs
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Performance

e nopar: unmodified hardware
« moft: secure hardware, no mitigation

e mon: secure hardware with mitigation

nopar | moff mon

ave. time (valid) | 70618 | 78610 | 86132

ave. ttme (invalid) | 39593 | 43756 | 36147

overhead (valid) ] 1.11 1.22




Conclusions

e Timing channels should be
reflected at the software/
hardware boundary

« Read and write labels as a clean, general
abstraction of hardware timing behavior,
enabling software/hardware codesign

e Predictive mitigation, a dynamic 1] |
mechanism for bounding timing leakage | ]|

o Static analysis of timing behavior with strong
guarantees of bounded information leakage.




