A software-hardware
contract for controlling cache
and timing channels.

Andrew Myers
Cornell University
(with Danfeng Zhang, Aslan Askarov)

N

Side channels:

time
power
EM radiation

(P

The adversary can learn (a lot)
from side channels.

iInput

output

Timing channels:
Known to exist
Hard to detect

Hard to prevent

A few timing attacks

e Network timing attacks

o RSA keys leaked by decryption time, measured across
network [Brumley&Boneh'05]

o Load time of web page reveals login status,
size and contents of shopping cart [Bortz&Boneh'07]

e Cache timing attacks

o AES keys leaked by timing memory accesses [Osvik et al'06] from
~300 (!) encryptions. Even works across VMMs. [Zhang et al/12]

e Covert timing channels

o Transmit confidential data by controlling response time, e.g.,
combined with SQL injection [Meer&Slaviero'07]

e Timing channels : a serious threat

Security policies

o Security policy lattice

o Information has label describing intended confidentiality

e For this talk, a simple lattice:

e L=public, H=secret

e H should not flowto L

o Adversary powers

o Sees contents of low (L) memory (data/storage channel)

o Sees timing of updates to low memory (timing channel)

A timing channel

if (h)
sleep(1);

else
sleep(2);

A subtler example

if (h1) - “a
h2=[1; e
else

h2=12;

13=l1;

o Data cache affects timing!
o Adversary thread can probe |1 to learn h1

Beneath the surface

compiler

optimizations -

data/ ; . branch

v “
.

Instruction | target
cache buffer
4 data/ o
 instruction
" TLB

A language-level abstraction (pior2)

Q : .
‘_ « Each operation has read label, write label

governing inseraction with machine

ehNrorme

[Lodu]

~ seenby

L 4 nvironment: state affecting
 adversary

=t invisible at language level

machine env.

logically Does not include

Partiti.onelzd b|y y ’ anguage-visible
Securlty eve : state (memor
(e.g. high cache vs. machine (y)

low cache) enviropment

Read label

(X =€)y o1

abstracts how machine
environment affects
time taken by next
language-level step.

= upper bound on influence

(h1:=h2)[|_’]

L H
machine
environment

Write label

(X =€)y g,
(h1:=h2)[L,H)

abstracts how machine
environment is affected
by next language-level
step

= lower bound on effects

The contract

e Language implementation must satisfy
three (formally defined) properties:

1.Read label property L

2. Write label property %

3.Single-step noninterference: no leaks from
high environment to low environment L

e Realizable on commodity HW (no-fill mode)

e Provides guidance to designers of future secure
architectures

One realization (cache only)

o Cache splitinto H and L partitions
o H cache stores lines accessed from high contexts

e L cache stores lines accessed from low contexts

e Machine environment does not include data in
cache, only addresses

o Confidential information can be stored in low cache

o Low-read-label access to high cache must simulate miss

Type system

» We analyze programs using a type
system that tracks timing.

c: T = time to run c depends on

information of (at most) label T

o A “standard” information flow type |i

system, plus read and write labels.

o Standard part controls data (storage)
channels (e.g., forbids | := h)

o labels can be generated by inference,

Examples:
C(HL]: H

(hi=h2)iLLy: L
sleep(h) : H

iy
.h
~

(h2:=2)[L,H1;
(Lz:=11), L3

low cache read cannot

optimizer, programmer. be affected by h;

Formal results

e« Memory and machine environment
noninterference:

A well-typed program™* leaks nothing via
either internal or external timing
channels or data channels.

* using no timing mitigation

Language-level mitigation

mitigate(() { s }

label of running time mitigated command

 Executes s but adds time using predictive
mitigation [CCS10, CCS'11]

o New expressive power:
sleep(h):H but mitigate(l) { sleep (h)} :L

 Result: well-typed program using mitigate
has bounded leakage (e.g., O(log? T))

Evaluation Setup

« Simulated architecture satisfying security
properties with statically partitioned cache and
TLB

Name # of sets | 1ssue | block size latency

L1 Data Cache 128 4-way 32 byte I cycle
L2 Data Cache 1024 4-way 64 byte 6 cycles

L1 Inst. Cache 512 [-way 32 byte I cycle
L2 Inst. Cache 1024 4-way 64 byte 6 cycles
Data TLB 16 4-way 4KB 30 cycles
Instruction TLB 32 4-way 4KB 30 cycles

e Implemented on SimpleScalar simulator, v.3.0e

Web login example

e Valid usernames can be learned via
timing [Bortz&Boneh 07]

e Secret
o MD5 digest of valid (username, password) pairs
e Inputs

o 100 different (username, password) pairs

login time (in # of clock cycles)

Login behavior

valid usernames

100 —— 50 === 10 =eeer
29000 no mitigation
71500 r\jfv\uaﬁfxﬁﬁ
71000 H ’
70500 | V
70000 - :
69500 | : :
40400 | i . s than, s : g
40200 = iftaeme e g 4z SRR L A AR BT, 0k
40000 - §uT % R R IR PR
39800 |- 7 ah aRsuYouis GRS FHE LA
39600 |- 7 3 H T
87045 | | | | | | | W|t|h mlthatlon
87030 | & ’ A ﬁ i
e LAMMAAMALALAARLA
87000 L—*¢ | | N

0O 10 20 30 40 50 60 70 80 90 100

usernames

Performance

e nopar: unmodified hardware
« moft: secure hardware, no mitigation

e mon: secure hardware with mitigation

nopar | moff mon

ave. time (valid) | 70618 | 78610 | 86132

ave. ttme (invalid) | 39593 | 43756 | 36147

overhead (valid)] 1.11 1.22

Conclusions

e Timing channels should be
reflected at the software/
hardware boundary

« Read and write labels as a clean, general
abstraction of hardware timing behavior,
enabling software/hardware codesign

e Predictive mitigation, a dynamic 1] |
mechanism for bounding timing leakage |]|

o Static analysis of timing behavior with strong
guarantees of bounded information leakage.

