
DeNovo: A Software-Driven Rethinking
of the Memory Hierarchy

Sarita Adve, Vikram Adve,
Rob Bocchino, Byn Choi, Nima Honarmand, Rakesh Komuravelli, Maria Kotsifakou,

Matthew Sinclair, Robert Smolinski, Prakalp Srivastava, Hyojin Sung
University of Illinois at Urbana-Champaign

Nicholas Carter, Ching-Tsun Chou, Pablo Montesinos,
Tatiana Schpeisman, Adam Welc

Intel, Qualcomm

denovo@cs.illinois.edu

Parallelism

Specialization, heterogeneity, …

BUT large impact on
– Software
– Hardware
– Hardware-Software Interface

Silver Bullets for the Energy Crisis?

• Multicore parallelism today: shared-memory
– Complex, power- and performance-inefficient hardware

• Complex directory coherence, unnecessary traffic, ...

– Difficult programming model
• Data races, non-determinism, composability?, testing?

– Mismatched interface between HW and SW, a.k.a memory model
• Can’t specify “what value can read return”
• Data races defy acceptable semantics

Multicore Parallelism: Current Practice

Fundamentally broken for hardware & software

Specialization/Heterogeneity: Current Practice

6 different ISAs

7 different
parallelism models

Incompatible
memory systems

A modern smartphone
CPU, GPU, DSP, Vector Units, Multimedia, Audio-Video accelerators

Even more broken

How to (co-)design
– Software?
– Hardware?
– HW / SW Interface?

Energy Crisis Demands Rethinking HW, SW

Deterministic Parallel Java (DPJ)
DeNovo
Virtual Instruction Set Computing (VISC)

First focus on (homogeneous) parallelism

• Multicore parallelism today: shared-memory
– Complex, power- and performance-inefficient hardware

• Complex directory coherence, unnecessary traffic, ...

– Difficult programming model
• Data races, non-determinism, composability?, testing?

– Mismatched interface between HW and SW, a.k.a memory model
• Can’t specify “what value can read return”
• Data races defy acceptable semantics

Multicore Parallelism: Current Practice

Fundamentally broken for hardware & software

• Multicore parallelism today: shared-memory
– Complex, power- and performance-inefficient hardware
• Complex directory coherence, unnecessary traffic, ...

– Difficult programming model
• Data races, non-determinism, composability?, testing?

– Mismatched interface between HW and SW, a.k.a memory model
• Can’t specify “what value can read return”
• Data races defy acceptable semantics

Multicore Parallelism: Current Practice

Fundamentally broken for hardware & software

Banish shared memory?

• Multicore parallelism today: shared-memory
– Complex, power- and performance-inefficient hardware
• Complex directory coherence, unnecessary traffic, ...

– Difficult programming model
• Data races, non-determinism, composability?, testing?

– Mismatched interface between HW and SW, a.k.a memory model
• Can’t specify “what value can read return”
• Data races defy acceptable semantics

Multicore Parallelism: Current Practice

Fundamentally broken for hardware & software

Banish wild shared memory

Need disciplined shared memory!

Shared-Memory =

Global address space
+

Implicit, anywhere communication, synchronization

What is Shared-Memory?

Shared-Memory =

Global address space
+

Implicit, anywhere communication, synchronization

What is Shared-Memory?

Wild Shared-Memory =

Global address space
+

Implicit, anywhere communication, synchronization

What is Shared-Memory?

Wild Shared-Memory =

Global address space
+

Implicit, anywhere communication, synchronization

What is Shared-Memory?

Disciplined Shared-Memory =

Global address space
+

Implicit, anywhere communication, synchronization
Explicit, structured side-effects

What is Shared-Memory?

Simple programming model AND
Complexity, performance-, power-scalable hardware

Our Approach

Disciplined Shared Memory

Strong safety properties - Deterministic Parallel Java (DPJ)
• No data races, determinism-by-default, safe non-determinism
• Simple semantics, safety, and composability

Efficiency: complexity, performance, power - DeNovo
• Simplify coherence and consistency
• Optimize communication and storage layout

explicit effects +
structured

parallel control

explicit effects +
structured

parallel control

• Complexity
– Subtle races and numerous transient states in the protocol
– Hard to verify and extend for optimizations

• Storage overhead
– Directory overhead for sharer lists

• Performance and power inefficiencies
– Invalidation, ack messages
– Indirection through directory
– False sharing (cache-line based coherence)
– Bandwidth waste (cache-line based communication)
– Cache pollution (cache-line based allocation)

Current Hardware Limitations

• Complexity
− No transient states
− Simple to extend for optimizations

• Storage overhead
– Directory overhead for sharer lists

• Performance and power inefficiencies
– Invalidation, ack messages
– Indirection through directory
– False sharing (cache-line based coherence)
– Bandwidth waste (cache-line based communication)
– Cache pollution (cache-line based allocation)

Results for Deterministic and Safe Non-Det Codes

16

DeNovo
20X faster to verify vs. MESI

Base DeNovo
20X faster to verify vs. MESI

• Complexity
− No transient states
− Simple to extend for optimizations

• Storage overhead
− No storage overhead for directory information

• Performance and power inefficiencies
– Invalidation, ack messages
– Indirection through directory
– False sharing (cache-line based coherence)
– Bandwidth waste (cache-line based communication)
– Cache pollution (cache-line based allocation)

Results for Deterministic and Safe Non-Det Codes

17

DeNovo
20X faster to verify vs. MESI

Base DeNovo
20X faster to verify vs. MESI

• Complexity
− No transient states
− Simple to extend for optimizations

• Storage overhead
− No storage overhead for directory information

• Performance and power inefficiencies
− No invalidation, ack messages
− No indirection through directory
− No false sharing: region based coherence
− Region, not cache-line, communication
− Region, not cache-line, allocation (ongoing)

Results for Deterministic and Safe Non-Det Codes

Up to 79% lower memory stall time
Up to 72% lower traffic

DeNovo
20X faster to verify vs. MESI

Base DeNovo
20X faster to verify vs. MESI

DPJ Overview
• Deterministic-by-default parallel language
– Extension of sequential Java
– Structured parallel control: nested fork-join
– Novel region-based type and effect system
– Speedups close to hand-written Java
– Expressive enough for irregular, dynamic parallelism

• Supports disciplined non-determinism
– Explicit, data race-free, isolated
– Non-deterministic, deterministic code co-exist safely (composable)

• Ongoing work addresses unanalyzable parallelism/effects

• Focus on deterministic codes for next few slides

DPJ Overview
• Deterministic-by-default parallel language [OOPSLA’09]
– Extension of sequential Java
– Structured parallel control: nested fork-join
– Novel region-based type and effect system
– Speedups close to hand-written Java
– Expressive enough for irregular, dynamic parallelism

• Supports disciplined non-determinism [POPL’11]
– Explicit, data race-free, isolated
– Non-deterministic, deterministic code co-exist safely (composable)

• Ongoing work addresses unanalyzable parallelism/effects

• Focus on deterministic codes for next few slides

Regions and Effects

• Region: a name for a set of memory locations
– Programmer assigns a region to each field and array cell
– Regions partition the heap

• Effect: a read or write on a region
– Programmer summarizes effects of method bodies

• Compiler checks that
– Region types are consistent, effect summaries are correct
– Parallel tasks are non-interfering (no conflicts)
– Simple, modular type checking (no inter-procedural ….)

• Programs that type-check are guaranteed determinism-by-default

Memory Consistency Model

• Guaranteed determinism
⇒ Read returns value of last write in sequential order
1. Same task in this parallel phase
2. Or before this parallel phase

LD 0xa

ST 0xa
Parallel
Phase

ST 0xaCoherence
Mechanism

Cache Coherence

• Coherence Enforcement
1. Invalidate stale copies in caches
2. Track one up-to-date copy

• Explicit effects
– Compiler knows all regions written in this parallel phase
– Cache can self-invalidate before next parallel phase

• Invalidates data in writeable regions not accessed by itself

• Registration
– Directory keeps track of one up-to-date copy
– Writer updates before next parallel phase

Basic DeNovo Coherence [PACT’11]

• Assume (for now): Private L1, shared L2; single word line
– Data-race freedom at word granularity

• L2 data arrays double as directory
– Keep valid data or registered core id, no space overhead

• L1/L2 states

• Touched bit set only if read in the phase

registry

Invalid Valid

Registered

Read

Write Write

Example Run

R X0 V Y0
R X1 V Y1
R X2 V Y2
V X3 V Y3
V X4 V Y4
V X5 V Y5

class S_type {
X in DeNovo-region ;
Y in DeNovo-region ;

}
S _type S[size];
...
Phase1 writes { // DeNovo effect

foreach i in 0, size {
S[i].X = …;

}
self_invalidate();

}

L1 of Core 1

R X0 V Y0
R X1 V Y1
R X2 V Y2
I X3 V Y3
I X4 V Y4
I X5 V Y5

L1 of Core 2

I X0 V Y0
I X1 V Y1
I X2 V Y2
R X3 V Y3
R X4 V Y4
R X5 V Y5

Shared L2

R C1 V Y0
R C1 V Y1
R C1 V Y2
R C2 V Y3
R C2 V Y4
R C2 V Y5

Registered
Valid
Invalid

V X0 V Y0
V X1 V Y1
V X2 V Y2
V X3 V Y3
V X4 V Y4
V X5 V Y5

V X0 V Y0
V X1 V Y1
V X2 V Y2
V X3 V Y3
V X4 V Y4
V X5 V Y5

V X0 V Y0
V X1 V Y1
V X2 V Y2
V X3 V Y3
V X4 V Y4
V X5 V Y5

V X0 V Y0
V X1 V Y1
V X2 V Y2
R X3 V Y3
R X4 V Y4
R X5 V Y5

Registration Registration

Ack Ack

Current Hardware Limitations
• Complexity

– Subtle races and numerous transient sates in the protocol
– Hard to extend for optimizations

• Storage overhead
– Directory overhead for sharer lists

• Performance and power inefficiencies
– Invalidation, ack messages
– Indirection through directory
– False sharing (cache-line based coherence)
– Traffic (cache-line based communication)
– Cache pollution (cache-line based allocation)

✔

✔

✔

✔

Flexible, Direct Communication

Insights

1. Traditional directory must be updated at every transfer
DeNovo can copy valid data around freely

2. Traditional systems send cache line at a time
DeNovo uses regions to transfer only relevant data
Effect of AoS-to-SoA transformation w/o programmer/compiler

Flexible, Direct Communication

L1 of Core 1
…

…

R X0 V Y0 V Z0
R X1 V Y1 V Z1
R X2 V Y2 V Z2
I X3 V Y3 V Z3
I X4 V Y4 V Z4
I X5 V Y5 V Z5

L1 of Core 2
…

…

I X0 V Y0 V Z0
I X1 V Y1 V Z1
I X2 V Y2 V Z2
R X3 V Y3 V Z3
R X4 V Y4 V Z4
R X5 V Y5 V Z5

Shared L2
…

…

R C1 V Y0 V Z0
R C1 V Y1 V Z1
R C1 V Y2 V Z2
R C2 V Y3 V Z3
R C2 V Y4 V Z4
R C2 V Y5 V Z5

Registered
Valid
Invalid

X3

LD X3

Y3 Z3

L1 of Core 1
…

…

R X0 V Y0 V Z0
R X1 V Y1 V Z1
R X2 V Y2 V Z2
I X3 V Y3 V Z3
I X4 V Y4 V Z4
I X5 V Y5 V Z5

L1 of Core 2
…

…

I X0 V Y0 V Z0
I X1 V Y1 V Z1
I X2 V Y2 V Z2
R X3 V Y3 V Z3
R X4 V Y4 V Z4
R X5 V Y5 V Z5

Shared L2
…

…

R C1 V Y0 V Z0
R C1 V Y1 V Z1
R C1 V Y2 V Z2
R C2 V Y3 V Z3
R C2 V Y4 V Z4
R C2 V Y5 V Z5

Registered
Valid
Invalid

X3
X4
X5

R X0 V Y0 V Z0
R X1 V Y1 V Z1
R X2 V Y2 V Z2
V X3 V Y3 V Z3
V X4 V Y4 V Z4
V X5 V Y5 V Z5

LD X3

Flexible, Direct CommunicationFlexible, Direct Communication

Current Hardware Limitations
• Complexity

– Subtle races and numerous transient sates in the protocol
– Hard to extend for optimizations

• Storage overhead
– Directory overhead for sharer lists

• Performance and power inefficiencies
– Invalidation, ack messages
– Indirection through directory
– False sharing (cache-line based coherence)
– Traffic (cache-line based communication)
– Cache pollution (cache-line based allocation)

✔

✔

✔

✔

✔

✔

✔
ongoing

DeNovo
20X faster to verify vs. MESI

Base DeNovo
20X faster to verify vs. MESI

Up to 79% lower memory stall time
Up to 72% lower traffic

Extended to non-deterministic codes; pipelined/unstructured codes ongoing

Specialization/Heterogeneity

6 different ISAs

7 different
parallelism models

Incompatible
memory systems

A modern smartphone
CPU, GPU, DSP, Vector Units, Multimedia, Audio-Video accelerators

Virtual Instruction Set Computing (VISC)
– Low-level, language neutral virtual ISA (LLVM++)
– Abstract away hardware differences
• Few parallelism models
• Uniform memory abstractions

Region-driven heterogeneous memory
– (Reconfigurable) scratchpads, caches, FIFOs, …
– Unified address space
– Coherent a la DeNovo
– Flexible data transfer a la DeNovo

Our Approach [HotPar’12]

Languages, librariesLanguages, libraries

General
purpose

cores
GPUs

A/V

ML

TPM

Speech

A/V

ML

TPM

Speech

Custom
Silicon

FPGAs

…

Virtual ISA

Applications

Goal: Higher energy efficiency + Simpler programming model

• Parallelism and specialization may solve energy crisis, but
– Require rethinking software, hardware, interface

• Disciplined parallel programming allows
– Safe programming
– Complexity-, performance-, power-efficient hardware
– DPJ, DeNovo

• Virtual instruction set computing allows
– Easier programmability, portability
– Effiicient memory system
– LLVM++, DeNovo++

Summary

