Browsing Web 2.0 on 2.0 Watts

Why (mobile) web browsers must be parallel

Chris Jones, Rose Liu, Leo Meyerovich, Ras Bodik
with Krste Asanovic and the rest of Par Lab

i) \
APEN

UC Berkeley

We Live in Exciting Times

Log price

About to go from laptops to handhelds. ..
... when they provide a laptop-quality
experience

- -
L 2 N .
- #

L 4
. . N, T
Ubiquitous ® Y v oa

Time

Do we have the technology?

» For alaptop-quality browsmg experience, we need

- network: 50Mbps ¢ é
- display: at least 1024x768
- input: keyboard-like rate

» Allthree are forthcoming ...

We can build it!

A guy walks into a bar, asks for a cup, and starts his browser.

Let's see why this "tablet phone” may actually appear soon...

Texas Instruments, CES 2008

Input: idea for tablet input for a handhels

» Inspiration: mimio, a whiteboard recorder (mimio.com)

microphones light sensor

How mimio works:
triangulates in the same way that one measures lightning distance

1. marker simulates a lightning strike: simultaneously emits light and sound signals;
2. capture bar measures sound travel time: yields marker distance to each mic;
3. thetwodistances determine marker location on the whiteboard; goto step 1

Dasher + picomimio = keyboard-rate input

» Dasher: replacement for traditional keyboards
» Input rates up to ~30 words/minute

» Only needs 1 input axis (up/down) to work
- can be controlled by picomimio, eyes, tilt sensor, ...

« 0o

| e -

yOl
at

O

"’ma—"%':!ff_ﬂ'f

[o1]
|
!
| JUREE i e DS

c
h

See http://www.inference phy.cam.ac.uk/dasher/ for more info, online demo

http://www.inference.phy.cam.ac.uk/dasher/

What about CPU performance?

» Display: many alternatives

» Input: half as many

» Network: plenty fast soon (if we get better providers)

» CPU speed no longer considered a reason to upgrade ...

» Loading cnn.com on 1 Mbps and 2 Mbps network
T40 1.6GHz (a very old laptop; 2Mbps network) 7 sec
T40 1.6Ghz (laptop in battery mode, same network) 13 sec
iPhone 600MHz (1Mbps network) 40 sec
iPhone 600MHz (2Mbps network) 37 sec

@ CPU speed is important

Transition to handhelds is not so easy

Power Wall: Previous Bell steps
were easy. To make the net step,
however, we cannot wait for
smaller, lower power processors.
Instead, software must be
parallelized.

Log price

Handset @, %
L 4

L 4 * -*mm -
L 4 x
. . * ST
Ubiquitous Y v oa

Time

Key observations

» Current handheld browsers
~ far too slow to offer laptop experience

» ButBell's Law predicts fast, low-power handheld processors
- does the prediction hold?

» Good news: we should be able to get 50GOPS at 2W

- even in current 65nm technology (40p)/op)
- (compare with best laptops: ~20GOPS at 20W, more w/ SIMD)

& Bad news: the 50GOPS will come from 10-100 cores

& & & Must build a parallel browser

10

Talk Outline

« Browsers will be parallel

» Hardware trends

» Parallel Parsing

» Future Apps

» Parallel Browser Scripting
» Manycore 0S

Chris
Rose
Chris
Ras
Leo
Rose

Hardware Trends

In industry and in the Berkeley Par Lab

Performance (vs. VAX-11/780)

Uniprocessor Performance (SPECint)

10000

From Hennessy and Patterson,
Computer Architecture: A

Quantitative Approach, 4th edition,
1000 2006

??%lyeal

52%l/year

100

10

1 &— T T T T T T T T T T T T
1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Conventional Wisdom in Computer Architecture

m Old Conventional Wisdom: Power is free, Transistors
expensive

m New Conventional Wisdom: "Power wall”

Power is expensive, Transistors free
(Can put more on chip than can afford to turn on)

— Sea change in chip design: multiple “cores”
(2X processors per chip / ~ 2 years)

= More, simpler processors are more power efficient

“We are dedicating all of our future product development to
multicore designs. ... This is a sea change in computing”

Paul Otellini, President, Intel (2005)

= B
Multicores are Here

m Major microprocessor companies switch to Multicores
E.g. Intel Core 2 Duo (2 cores/chip, 1 thread/core)
Sun Niagra (8 cores/chip, 8 threads/core)

m Performance trends:
2X CPUs / 2 yrs =» parallelism for performance
2X sequential perf. / 5 yrs

m Given this new performance trend, in 10 years...

Uniprocessor performance improves 4X
Multicore performance improves 32x

Significant performance improvements continue
as long as applications become parallel

Potential Core Designs

m Fat cores: (general purpose) Out-of-order superscalar
for good single thread performance
E.g. Intel’'s Core2 Duo (Pentium pro) but fat core may be
even simpler in the future
Consumes more power so can have less/chip

m Thin cores: (general purpose) In-order 1-2 issue cores
with vector/SIMD units

E.g. simple RISC 5-stage pipeline, Larabee
Lower power so can have 100s/chip

m GPU: (programmable domain-specific cores, no cache
coherence) Getting more programmable to support more
app domains

E.g. NVIDIA G80
Very low power, 100s of cores/chip

"
Heterogeneous Multicores in Future

m Heterogeneous architecture - mix of fat, thin, GPU in one
machine

- The more thin cores you can use, the lower
power you consume

NVIDIA GeForce 8800 Architecture
G80
GPU

Figure Credits: 1 e e L) |

NVIDIA sis ajn walu ZIZIIIII-lll % (6% wm ey ale Al e e
W Es/mn SBEE (WW @8 =8 S5
| S smse Emam == sE '

m 128 way parallelism in the form of 16 processors, each of which
are 8 way SIMD

m High throughput: 128 * 1.35 GHz * 2 Flops/Hz = 346 GFlops
(IEEE SP)

m /68 MB of memory, 6 channel GDDR3 => 86.4 GB/s
90 nm, 680M Transistors, 480 mm2, 200 W

Figure : in Orosr Pfh?%‘rd‘if

. ; 4 Trreads | 2 Threads | & Threads | £ Threads
Credits: B Bl s
Intel

In Order In Order In Order
£ Threads | 2 ds § £ Threads
IS o8 o sl e

Greater than 30 thin cores/die + a few fat cores + fixed function
accelerators

4 threads per simple core

Vector units (16-wide)

VLIW instructions

Cache coherent L1 caches

L2 unified cache w/ dynamic cache partitioning for private caches
Primitives for synch.

" S
Logical View of ParLab Architecture”

m Processing Element - core,

Control/Barrier Network d private L1 instruction and data
Active Messadge Network z caches/RAM
(115 (115 I= = Unified L2 cache/RAM
Core Core g Unified physical memory,
L1D$ L1D$ S Flash replaces rotating disks
L.2/Coherence Network S Special function accelerators
2-Chil 2-Chl 5 O (e.g. FFT, image
_I_LZ_I'DT_Z LLZ_‘_LZ © ins decompression)
LECEIRETEN | MESEI and I/0 interfaces

Memory. Network
MEMC| |[MEMC| |[MEMC

A

DRAM| |DRAM| | Flash

A

" S
Physical View of Tiled Architecture

100+ tiles per chip

[
e S |$ar]|$dr| < .
i R ETGp | EXo) B2 s
$21(8 = I EYa
o S |SITY $IT1] S =
; <—x --c—x—b é
=< 1o S |L1I$ |L1IS$ S‘ 5 a)
(D (@)
Slice § LClo[;e flo[;e 4:1:_% Slice
= $. $ L -----o—M—» g
N * * Y

DRAM Flash

Specialized On-chip networks /

Control networks combine 1-
bit signals in combinational

%_

Control/Barrier Network

O . .
Active Messade Network d:ug\ tree for interrupts & barriers
2 m Active message networks carry
L11$ L11$ = messages between cores
Core Core = (register-level RPC) - e.q.
L1D$ L1D$ § increment remote register
|j I % 1o connects L1 caches to L2 slices
LL22 Cnlt_z LL22 Cnfz S Pi/ns and indirectly to memory
(O
Tags| RAM | | | Tags | RAM Lo = Memory network connects L2
3 slices to memory controllers
Memory Network < Flash memory
MEMC MEMC MEMC Networks provide quality of
- % % % / service (QoS) on
bandwidth

DRAM| |DRAM| | Flash

.
HW Trend Takeaways ~ T

m Heterogeneous Design — mix of thin, fat, or GPU (special domain)
Even fat cores will be simpler than current cores

Parallelism will drive performance improvements -> the more
thin cores used the better

Fixed
Fat _ Function
Cores Thin Cores GPU Accelerators
—
——————————— Tasks/Joule "= =========>
€C——————— - Generality/Ease of Programming = = = = =

m Spatial partitioning opens possibilities
less context switches/time multiplexing, more messaging
provides better isolation/protection/security

m QoS guarantees on resources (capacity, bandwidth)

Parallel Lexing and Parsing

Initial results and future work

What fraction is HTML compilation?

(Informal) Performance of Firefox 3

15

» 10-40% of time spentin 1,
lexing, parsing, syntax- 1,
directed translatio

» (remainder in layout/rendering)

» loading a fark.com page from
disk cache; little JavaScript

4
» on (old) debug build of Firefox 3 2:

1_

0

1 | 2
HTML File Size (MB)

= HTML compilation must be parallelized

35

Preliminary work: parallel lexical anaIYSis‘-.._

For the thin-core Cell processor on the Playstation 3
- the Cell has 1 “fat” core and 8 "thin” cores

The lexer is essentially a finite state machine
- considered inherently sequential ("embarrassingly serial”)

Goal: efficiently run this “sequential” code on thin cores

We parallelized lexing by algorithm-level speculation
Preliminary results: ~linear speedup up to 6 cores

- if lexing can be run in parallel on thin cores ...

36

Lexing, from 10,000 feet

Goal: given lexical specification and input, find lexemes

Content ::= ["<]+
ETag = </ [">]*>
STag = L[>]F>

37

Problem: lexing seems “inherently sequentlal"

» To know automaton state at input position j+7

» We need to know the automaton state at position /!

¢ N

I | I+1

<|b|>/Ble|r|k|e|l|e|y|!|<|/]|b]|>

STag Content

Ideal solution

» Divide input among the processors

» For each processor starting at position j+7
- Ask an oracle in which state the neighbor at / finished
- Scanin parallel from next state, ati+7

» Finally, merge theresults

Practical solution: guess! (speculate)

How can we quess from position /+7 the state at position /?

» (1) Could have been every automaton state
- © the "speculation” is always correct (not really a guess)
- © canyield O (log n) algorithm [Hillis and Steele] ...
- ® ... but prohibitively expensive in practice
» (2) Was one of a "likely set” of automaton states
- © can be more efficient than algorithm (1)
- © can fine-tune speculation based on language and workload
- ® speculation can be wrong
- @ still can be expensive (memory overhead, bad guesses)

« Butwe can do better...

Our solution (1/2)

Observation: in "real” lexers, the DFA converges to a stable,
recurring state (think "start state”), from multiple initial
states, after a small number k of characters

Lexing: <|b|>|Ble|r|k|le|l]ely|!|<|/]|b]|>
From: K

r A

“start’ s0 ——| s1 | s4 SS/\
5

“inSTag’, s4 ——| s4|s4|s

' s6|s6|s6|s6|s6|s6|[s6[s6[s6|sT|s2|s2]|s3
‘inETag’, s2 ——{s2|s2 53\%‘

“in Content’ s6 ——| s1|s4|s5

%= Only need to follow one DFA path instead of several

41

Our solution (2/2)

« Sketch of our algorithm:
- splitinput into blocks with k-character overlap
- scan blocks in parallel, each starting from “good” initial state

Processor 2

Our solution (2/2)

« Sketch of our algorithm:
- splitinput into blocks with k-character overlap
- scan blocks in parallel, each starting from “good” initial state
- find if blocks converge: expected in k-overlap
- speculation may fail; if so, block is rescanned

Preliminary results: speedup over flex

» flex: optimized, single-thread lexer on fat Cell core
» Speedup computed by flex time / cellex time

-

future page

sizes: 5 cores

are 6x faster
than flex

Speedup over flex for various numbers of cores

L

N

today’s page

sizes: 5 cores

are 4.5x faster
than flex

2cores —+——

| 7 cores

3 cores
4 cores —x— -
Scores —=—
6 cores

| | |
25 3 35 4
File size (MB)

45 5

44

The parser

» Harder than Finite State Machine computation
- lexer: FSM

- parser: "FSM” where states are stack configurations

Hence, we can't directly reuse lexer parallelization

But we have ideas on parallelizing these algorithms:
« CYK

- © general: handles all context-free languages
- ® dynamic programming = O(n3) time, O(n?) space
Packrat

- @ less general: like CYK, but with some restrictions
- © restrictions + DP = 0O(n) time and space

45

Lexing/parsing summary

» Lexing seems sequential ...
- ... but can be parallelized by algorithm-level speculation
- and the parser appears amenable to the same

» Parallel lexing performs well:
- when designed for “thin-core” platform (Cell)

» We will apply lessons learned from lexing to parsing
- And target GPUs

= Parallel algorithms for thin core = high performance

Characteristics of Future Web Applications

Why speculate about application domains?

» Performance needs
- influences HW architecture, compilation, plugin architecture

» Programming abstractions
- DOM + S originally intended for mostly static 2D documents
- is this model suitable for future apps?

72

Future apps

» Future web apps will be like desktop apps and more ...
- browser = the new windows manager =» tabs outdated
- browser =new OS (local storage, refined security policies)
- new usage modes (multi-touch, camera-based input, data)

» We want to identify domains that a browser can support
- hypertext documents and media
- office suites
- simpler games
- rich visualization, for data presentation (eq search results)

Ras Bodik, CS 164, Fall 2007
73

Example 1: Baryl Desktop Manager

74

http://www.youtube.com/watch?v=ZD7QraljRfM

Example 2: ManyTube mockup demo

» Example of a new media app

¥) Strawman Application Skeleton - Mozilla Firefox =] o)
File Edit View History Bookmarks Tools Help R bodik@cs.berkeley.edu ~
2 @ {l} ‘»‘_] file:///C:/Users/Rastislav/Documents/renderl.html ‘j‘;‘ ‘V}Gcw:g\e r?\ "®; b

” ManyTube

Searchil]
HEE B = HEEEEEEEERN

Read i.ytimg.com & 0
= R
DEOBYO8 s Z'P3Wnd. v O Stawma. (@ Microsoft.. ' [@ Inbox- M... [EE <E@ 3G AE NE6G 851AM

xample 3: 0S X Time Machine

n early example of visualizing time-varying data

el AT

podioc)

Lol Preferences

Date Mo hed
Yesterday
Yesterday
sple Addre slis Yesterday
spple AddresiSock plist Yestarday
w aople AppleShareChers 2 Yesterday, 2:33 PMY
aoplearchivewnlity pho Yesterday L
wple be 5 Yesterday 18P
apple dash . 1 Yesterday, 351 PM
sepleda Yestesday, 351 PM
spple.desk Yesterday, 4:15 PM

Yesterday 3 P

Datva sterday, 241 PM

4 driver AppleiDMOuse phst vday, 2:20 PM
A Aschcation

ohcationy Nnder.phar day 11pM

Documerts help dov

Wl f.p day
day

L A1 E) selncinit 47 .06 CA asadatie

Yesterday at 4:35 P\

Example 4: Multi-touch interfaces

I

http://www.youtube.com/watch?v=ysEVYwa-vHM
http://www.youtube.com/watch?v=ysEVYwa-vHM
http://www.youtube.com/watch?v=ysEVYwa-vHM

Example 5: Stereoscopic displays (VR)

» May force us to rethink the desktop metaphor

78

What should the programming model support?

« 2.5D and/or 3D

- web page =logical structure + script-produced 3D view
» What will a 3D nytimes.com look like? The 3D will ease browsing.

- Q: how to project a part of 3D scene for 2D viewing/reading?

» Animation with physical properties (both GUI and games)
- property changes over time, stated declaratively
- trajectories: how to declare them?

- physical properties: stretching, gravity, friction, but maybe
also flow, fracture

» QoS:

- latency specifications for GUI responsiveness
- video frame rate, etc

79

Parallel Browser Scripting

Implicitly Parallel Web Apps

or

Web Designers Don’t Do Semaphores

| Strawman |

ldeal Parallelization
Plugins: Independent video playback

Scripts: Internal component animations
— Resizing of movies

— Fish eye menu in video

Layout: Resizing of table based off all movies

Is Parallelism Exposed Today?

Plugins: Independent video playback
YES, but annotation must be trusted

Scripts: Internal component animations

— Resizing of movies
, with loop dependence analysis

— Fish eye menu in video
NO, pointer alias analysis
Layout: Resizing of table based off all movies

— , with optimistic concurrency

Goals for Parallel Web Language

Implicit Parallelism:
— sequential reasoning, but expose parallelism

Abstractions for Web Apps:
— abstractions over time for animation
— abstractions for writing asynchronous code

Declarative QoS:

— ex: grid is smooth, videos quality proportional
to size

©000

O

filterRepeat

input

text

> @

Calm

[wait:300ms]

©000

©000

©000

v
@)

(1] Tube

Broadcast Yourself

searchTags

c

Format [“http://youtube?” + p1]

0
iurl

xmlHttpRequest [json]

Broadcast Yourself

videos

videoUrls :: [String]

oo

dataSource

GridLayout o row,col
<|> datum | ';[t'}

*_SI‘C

[@ video

@ width,height 0 row,col @ X,y

function toSize ...
0

Benefits

Expressive
— asynchronous flows clearly connected

— rich yet static enough to be visualized
e animation, tangible values

— composition
Implicit Structure Aiding Performance
— parallelization: state, if any, localized to node
— DOM writes: single write stream!
— scheduling:

Other Concerns (another day)

Data
prefetching, sharing, consistency

Security
policies, capabilities, delegation, anonymity (e-cash)

Adoption
standards, virtual machines, ES4

Sequential Optimization
types, partial evaluation, runtime tricks

Inspiration

Flapjax (flapjax-lang.org)

functional reactive programming (more
dynamic, text based, compiled in JS)

Max/MSP

data flow system for live music synthesis &
manipulation

More event & web languages
Flex, ES4, FrTime, LabVIEW, Esterel, ...

Mitosys: many-core OS

" S
Current Platforms g B%

OS is in charge of
1. resource mechanism (to securely multiplex apps onto resources)
2. resource policies (How to use resources —
When to run threads and which to run together,
which pages swapped to disk)

- Monolithic OS is large and complex

‘ Excel ‘m ‘ WlnAmp‘

policies

mechanisms

‘ Hardware ‘

" A
Currently, Apps have limited control...

How can a browser easily specify and obtain the following?

m Browser wants 30 % of cpus regardless of what dvd
ripper/virus scanner does.

m Browser wants some threads to be scheduled regularly
(eg. Mouse event, decoder — run every frame)

m Browser wants threads to be always scheduled on same
cores to find data in caches

_ We can modify existing OS to do this
Excel ‘WlnAmp‘ but its messy....
S

_policies _ _ _ _ 0

————————— Let’s re-think the OS architecture
mechanisms - flexible policies to suite app needs

‘ simplify OS to improve security
 scale OS for multicores

‘ Hardware

Recall: Future HW supports

Spatial Partitioning

Contiol/Barrier Network

J

Activl Messade Network
L1I L1I
Cor Core

Accelerators and/or I/O interfaces

L1D L1D
izl/Coher nde Network
Cntl, Cntl,
L2 | L2 L2 | L2
Tags| RAM ags| RAM
Me ory. etworlk
MEMC C EMC
J

g

DRAM| |DRAM ash

Partition 1

N\
Partition 2

m Software specifies how

I/0
Pins

resources are partitioned

Each resource can be
partitioned
independently of others

Partition allocation can
be changed without re-
starting app

ParLab OS Architecture o BN

| Hype!visor (mechanismsl,I only) |

I Hardware] ‘

"
ParLab OS Architecture

policies

Hype!visor (mechanisms: only)

Hardware

"
ParLab OS Architecture

Root Partition Manager

Policies

T
/0 Sery| WinAmp
policies || policies

[Hypetvisor (mechanismalonly) |

h |
[_rewee 1|

ParLab OS Architecture

Applications implement
policies on resource
management and usage

Partitioning provides
Quality of Service (QoS)
Guarantees for App

1. Capacity (how much)
2. Latency (when)

Root Partition Manazer

3. Throughput (bandwidth)

* S
Inside a partition

Bare-metal execution provides ﬂ
optimized and predictable
)/ performance

Domain Specific
Resource Management
Libraries:
--------------- * Thread management
 Memory management
* virtual-phys mapping
*swapping pages to disk

Browser

Policies

Hypervisor

Partition - Cores, Memory,
HW Partition > Memory bandwidth
allocation

Support for hierarchical partitions

|
H\’v Partition

Browser
. r Tamm mmm T mem oemm e mem mem s e
Policies : Web App (script)
1| Policies
| | h—————
I | Plugin '| Plugin
[I A i B
I ------- If--------
I I Policies 1| Policies
: I—{*pervisor : :: 1 I
I .
[

Support for hierarchical partitions

| : BT
pervisor | | I

1 . [
HW Partition : I

Browser
e e r Tamm mmm mam am o e e e e e s
Policies 1| Web App (script)
] . Increase _ _
1| Policies Framerate
I = ===
I | Plugin
[I A
I I==-=-==-
I : Policies
I
[
[
I

Support for hierarchical partitions

Browser

Policies 1| Web App (script)
.Increase _ _

1| Policies Framerate
| ;

I -
' Need : Plugin
: More : . _F’ _____
Cores Policies

!
[
I—{yperwsor Iy 1I
i 'I
I

H\’v Partition : '

Support for hierarchical partitions

Browser

Policies

Wel -ores

[
I = - = Granted
[Politico

Ipt)
.Increase _ _
Framerate

Policies

Support for hierarchical partitions

Browser
= r Y

Policies 1| Web App (script)
T
1| Policies
|F======= =—====3
I Plugin | || Plugin
I A l B
IFkr—-------- IF-—--—-----
I Policies 1| Policies
: I Hypervisor : :: 1I
l

| HW Partition

" S
OS Takeaways

m Partitioning brings opportunities
Better QoS guarantees on resources

Better isolation/protection/security — codec crashes but web
page OK.

Simplifies hypervisor - fewer bugs, more secure

m Application will have better control over resource

management and usage > supported by domain specific
resource management libraries

m New communication mechanisms
Between partitions
Across cores within partition
Synchronization mechanisms

