

Mini

Time

Mainframe

PC

L
o

g
 p

ri
c
e WS

Laptop

Handset

Ubiquitous

http://www.inference.phy.cam.ac.uk/dasher/

Handset

Mini

Time

Mainframe

PC

L
o

g
 p

ri
c
e WS

Laptop

Ubiquitous

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
e

rf
o

rm
a

n
c
e

 (
v
s
.

V
A

X
-1

1
/7

8
0

)

25%/year

52%/year

??%/year

Uniprocessor Performance (SPECint)

From Hennessy and Patterson,

Computer Architecture: A

Quantitative Approach, 4th edition,

2006

3X

 Old Conventional Wisdom: Power is free, Transistors
expensive

 New Conventional Wisdom: “Power wall”

Power is expensive, Transistors free
(Can put more on chip than can afford to turn on)

 Sea change in chip design: multiple “cores”
(2X processors per chip / ~ 2 years)

 More, simpler processors are more power efficient

“We are dedicating all of our future product development to
multicore designs. … This is a sea change in computing”

Paul Otellini, President, Intel (2005)

Conventional Wisdom in Computer Architecture

Multicores are Here

 Major microprocessor companies switch to Multicores
E.g. Intel Core 2 Duo (2 cores/chip, 1 thread/core)
Sun Niagra (8 cores/chip, 8 threads/core)

 Performance trends:
2X CPUs / 2 yrs parallelism for performance

2X sequential perf. / 5 yrs

 Given this new performance trend, in 10 years…
 Uniprocessor performance improves 4X

 Multicore performance improves 32x

Significant performance improvements continue

as long as applications become parallel

Potential Core Designs

 Fat cores: (general purpose) Out-of-order superscalar
for good single thread performance

 E.g. Intel’s Core2 Duo (Pentium pro) but fat core may be
even simpler in the future

 Consumes more power so can have less/chip

 Thin cores: (general purpose) In-order 1-2 issue cores
with vector/SIMD units

 E.g. simple RISC 5-stage pipeline, Larabee

 Lower power so can have 100s/chip

 GPU: (programmable domain-specific cores, no cache
coherence) Getting more programmable to support more
app domains

 E.g. NVIDIA G80

 Very low power, 100s of cores/chip

Heterogeneous Multicores in Future

 Heterogeneous architecture - mix of fat, thin, GPU in one
machine

 The more thin cores you can use, the lower

power you consume

NVIDIA
G80
GPU
Figure Credits:

NVIDIA

 128 way parallelism in the form of 16 processors, each of which
are 8 way SIMD

 High throughput: 128 * 1.35 GHz * 2 Flops/Hz = 346 GFlops
(IEEE SP)

 768 MB of memory, 6 channel GDDR3 => 86.4 GB/s

 90 nm, 680M Transistors, 480 mm2, 200 W

Intel’s Larabee (potential design)

 Greater than 30 thin cores/die + a few fat cores + fixed function
accelerators

 4 threads per simple core
 Vector units (16-wide)
 VLIW instructions
 Cache coherent L1 caches
 L2 unified cache w/ dynamic cache partitioning for private caches
 Primitives for synch.

Figure

Credits:

Intel

Logical View of ParLab Architecture

 Processing Element - core,
private L1 instruction and data
caches/RAMActive Message Network

Control/Barrier Network

L2/Coherence Network

Memory Network

Core

L1D$

L1I$

L2
RAM

L2
Tags

L2 Cntl.

Core

L1D$

L1I$

A
cc

e
le

ra
to

rs
 a

n
d
/o

r
I/

O
 i
n
te

rf
a
ce

s

MEMC

DRAM

I/O
PinsL2

RAM
L2

Tags

L2 Cntl.

MEMC

DRAM

MEMC

Flash

 Unified L2 cache/RAM

 Unified physical memory,

Flash replaces rotating disks

 Special function accelerators
(e.g. FFT, image
decompression)

and I/O interfaces

Physical View of Tiled Architecture

100+ tiles per chip

D
R
A
M

DRAM

D
R
A
M

Flash

Core

L1D$

L2$
Slice

L1I$
In

te
rc

o
n
.

Core

L1D$

L2$
Slice

L1I$

In
te

rco
n
.

Core

L1D$

L2$
Slice

L1I$
In

te
rc

o
n
.

Core

L1D$

L2$
Slice

L1I$

In
te

rco
n
.

I/
O

Specialized On-chip networks

Active Message Network

Control/Barrier Network

L2/Coherence Network

Memory Network

Core

L1D$

L1I$

L2
RAM

L2
Tags

L2 Cntl.

Core

L1D$

L1I$

A
cc

e
le

ra
to

rs
 a

n
d
/o

r
I/

O
 i
n
te

rf
a
ce

s

MEMC

DRAM

I/O
PinsL2

RAM
L2

Tags

L2 Cntl.

MEMC

DRAM

MEMC

Flash

 Control networks combine 1-
bit signals in combinational
tree for interrupts & barriers

 Active message networks carry
messages between cores
(register-level RPC) – e.g.
increment remote register

 L2/Coherence network
connects L1 caches to L2 slices
and indirectly to memory

 Memory network connects L2
slices to memory controllers

 Flash memory

Networks provide quality of
service (QoS) on
bandwidth

HW Trend Takeaways
 Heterogeneous Design – mix of thin, fat, or GPU (special domain)

 Even fat cores will be simpler than current cores

 Parallelism will drive performance improvements -> the more
thin cores used the better

 Spatial partitioning opens possibilities
 less context switches/time multiplexing, more messaging

 provides better isolation/protection/security

 QoS guarantees on resources (capacity, bandwidth)

Fixed

Function

Accelerators

Fat

Cores Thin Cores GPU

Tasks/Joule

Generality/Ease of Programming

1 2
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(Informal) Performance of Firefox 3

HTML File Size (MB)

T
im

e
 (

s
)

Content ::= [^<]+

ETag ::= </[^>]*>

STag ::= <[^>]*>

72

Ras Bodik, CS 164, Fall 2007

73

74

http://www.youtube.com/watch?v=ZD7QraljRfM

Ras Bodik, CS 164, Fall 2007

75

76

77

http://www.youtube.com/watch?v=ysEVYwa-vHM
http://www.youtube.com/watch?v=ysEVYwa-vHM
http://www.youtube.com/watch?v=ysEVYwa-vHM

78

79

Implicitly Parallel Web Apps

or

Web Designers Don’t Do Semaphores

[Strawman]

Ideal Parallelization

Plugins: Independent video playback

– sd

Scripts: Internal component animations

– Resizing of movies

• maybe, with loop dependence analysis

– Fish eye menu in video

• No, pointer alias analysis

Layout: Resizing of table based off all movies

– maybe, but optimistic concurrency

Is Parallelism Exposed Today?

Plugins: Independent video playback

– YES, but annotation must be trusted

Scripts: Internal component animations

– Resizing of movies

MAYBE, with loop dependence analysis

– Fish eye menu in video

NO, pointer alias analysis

Layout: Resizing of table based off all movies

– MAYBE, with optimistic concurrency

Goals for Parallel Web Language

Implicit Parallelism:

– sequential reasoning, but expose parallelism

Abstractions for Web Apps:

– abstractions over time for animation

– abstractions for writing asynchronous code

Declarative QoS:

– ex: grid is smooth, videos quality proportional
to size

Calm [wait:300ms] filterRepeat

text input

xmlHttpRequest [json]

Format [“http://youtube?” + p1]

XPath [p1.videos...src]

url

searchTags

videos

video

GridLayout

function toSize …

src

dataSource

x,y

datum

row,col

row,col

width,height

videoUrls :: [String]

Benefits

Expressive

– asynchronous flows clearly connected

– rich yet static enough to be visualized
• animation, tangible values

– composition

Implicit Structure Aiding Performance

– parallelization: state, if any, localized to node

– DOM writes: single write stream!

– scheduling:

Other Concerns (another day)

• Data
prefetching, sharing, consistency

• Security
policies, capabilities, delegation, anonymity (e-cash)

• Adoption
standards, virtual machines, ES4

• Sequential Optimization
types, partial evaluation, runtime tricks

Inspiration

Flapjax (flapjax-lang.org)

functional reactive programming (more

dynamic, text based, compiled in JS)

Max/MSP

data flow system for live music synthesis &

manipulation

More event & web languages

Flex, ES4, FrTime, LabVIEW, Esterel, …

Current Platforms

Hardware

BrowserExcel WinAmp

OS is in charge of
1. resource mechanism (to securely multiplex apps onto resources)

2. resource policies (How to use resources –

When to run threads and which to run together,

which pages swapped to disk)

policies

mechanisms
OS

 Monolithic OS is large and complex

Currently, Apps have limited control…

Hardware

BrowserExcel WinAmp

policies

mechanisms
OS

How can a browser easily specify and obtain the following?

 Browser wants 30 % of cpus regardless of what dvd
ripper/virus scanner does.

 Browser wants some threads to be scheduled regularly
(eg. Mouse event, decoder – run every frame)

 Browser wants threads to be always scheduled on same
cores to find data in caches

We can modify existing OS to do this

but its messy….

Let’s re-think the OS architecture

• flexible policies to suite app needs

• simplify OS to improve security

• scale OS for multicores

Recall: Future HW supports
Spatial Partitioning

Active Message Network

Control/Barrier Network

L2/Coherence Network

Memory Network

Core

L1D$

L1I$

L2
RAM

L2
Tags

L2 Cntl.

Core

L1D$

L1I$

A
cc

e
le

ra
to

rs
 a

n
d
/o

r
I/

O
 i
n
te

rf
a
ce

s

MEMC

DRAM

I/O
PinsL2

RAM
L2

Tags

L2 Cntl.

MEMC

DRAM

MEMC

Flash

Partition 1 Partition 2

 Software specifies how
resources are partitioned

 Each resource can be
partitioned
independently of others

 Partition allocation can
be changed without re-
starting app

ParLab OS Architecture

Hypervisor (mechanisms only)

Hardware

ParLab OS Architecture

Hypervisor (mechanisms only)

Hardware

BrowserI/O Serv WinAmp

policies policies policies

Root Partition Manager

Policies

ParLab OS Architecture

Hypervisor (mechanisms only)

Hardware

BrowserI/O Serv WinAmp

policies policies policies

Policies

ParLab OS Architecture

Hypervisor (mechanisms only)

Hardware

BrowserI/O Serv WinAmp

policies policies policies

Root Partition Manazer

Policies

Partitioning provides

Quality of Service (QoS)

Guarantees for App

1. Capacity (how much)

2. Latency (when)

3. Throughput (bandwidth)

Applications implement

policies on resource

management and usage

Inside a partition

Partition - Cores, Memory,

Memory bandwidth

allocation

Domain Specific

Resource Management

Libraries:

• Thread management

• Memory management

• virtual-phys mapping

•swapping pages to disk

HW Partition

Policies

Browser

Hypervisor

Bare-metal execution provides

optimized and predictable

performance

Support for hierarchical partitions

HW Partition

Hypervisor

Policies

Browser

Plugin

A

Policies

Plugin

B

Policies

Web App (script)

Policies

Support for hierarchical partitions

HW Partition

Hypervisor

Policies

Browser

Plugin

A

Policies

Plugin

B

Policies

Web App (script)

Policies
Increase

Framerate

Support for hierarchical partitions

HW Partition

Hypervisor

Policies

Browser

Plugin

A

Policies

Plugin

B

Policies

Web App (script)

Policies
Increase

Framerate

Need

More

Cores

Support for hierarchical partitions

HW Partition

Hypervisor

Policies

Browser

Plugin

A

Policies

Plugin

B

Policies

Web App (script)

Policies
Increase

Framerate

Need

More

Cores

Cores

Granted

Support for hierarchical partitions

HW Partition

Hypervisor

Policies

Browser

Plugin

A

Policies

Plugin

B

Policies

Web App (script)

Policies

OS Takeaways

 Partitioning brings opportunities

 Better QoS guarantees on resources

 Better isolation/protection/security – codec crashes but web
page Ok.

 Simplifies hypervisor fewer bugs, more secure

 Application will have better control over resource
management and usage supported by domain specific

resource management libraries

 New communication mechanisms

 Between partitions

 Across cores within partition

 Synchronization mechanisms

