Programming with Angelic Nondeterminism

Shaon Barman' Rastislav Bodik'
Doug Kimelman*

TUniversity of California, Berkeley

Abstract

Angelic nondeterminism can play an important role in program de-
velopment. It simplifies specifications, for example in deriving pro-
grams with a refinement calculus; it is the formal basis of regular
expressions; and Floyd relied on it to concisely express backtrack-
ing algorithms such as N-queens.

We show that angelic nondeterminism is also useful during
the development of deterministic programs. The semantics of our
angelic operator are the same as Floyd’s but we use it as a substitute
for yet-to-be-written deterministic code; the final program is fully
deterministic. The angelic operator divines a value that makes the
program meet its specification, if possible. Because the operator is
executable, it allows the programmer to test incomplete programs:
if a program has no safe execution, it is already incorrect; if a
program does have a safe execution, the execution may reveal an
implementation strategy to the programmer.

We introduce refinement-based angelic programming, describe
our embedding of angelic operators into Scala, report on our imple-
mentation with bounded model checking, and describe our experi-
ence with two case studies. In one of the studies, we use angelic op-
erators to modularize the Deutsch-Schorr-Waite (DSW) algorithm.
The modularization is performed with the notion of a parasitic
stack, whose incomplete specification was instantiated for DSW
with angelic nondeterminism.

Categories and Subject Descriptors D.2.1 [Requirements/Spec-
ifications]: Methodologies; D.2.2 [Tools and Techniques]: Top-
down programming; D.2.4 [Software/Program Verification]: Vali-
dation

General Terms Design, Languages, Verification

Keywords Angelic non-determinism, constraints, bounded model-
checking, traces, refinement

1.

Model checking and testing leverage compute power to validate
complete programs. However, much less work has addressed the
issue of how to assist with the construction of a program. This
paper proposes using the clairvoyance of angelic nondetermin-
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ism in the solving of programming problems. The programmer
encodes his partial understanding of the programming problem
in an angelic program, relying on the (executable) nondetermin-
istic choose operator to produce values that the programmer is as
yet unable to compute. The system answers whether the angelic
program has a safe execution for a given input; if so, the sys-
tem outputs the program’s traces. The process of programming
with angelic nondeterminism amounts to (1) testing hypotheses
about plausible solutions by formulating angelic programs and,
as the understanding develops, (2) gradually refining the angelic
program until all angelic nondeterminism is removed.

An angelic program is a program with a choose operator. This
nondeterministic operator was first proposed by Floyd [7], who
intended it as programming abstraction for hiding implementa-
tion details of backtracking search, with the goal of allowing ab-
stract specifications of algorithms such as N-queens. The choose
operator divines a value that makes the program terminate with-
out violating an assertion, if possible. We say that an angelic pro-
gram is correct if such a safe execution exists for all inputs. The
operator is nondeterministic because it can evaluate to any suit-
able value; it is angelic because it collaborates with the program
against the environment (i.e., the input). The input sequence can
be seen as demonic nondeterminism, finding a value that might
make the program fail. The choose operator is clairvoyant in that
it looks ahead into the execution and returns a value that allows
further choose operators to return values that lead to a successful
execution, if possible. Angelic nondeterminism can be a deduc-
tive device (e.g., [4]) or it can be executable [7], with implemen-
tations relying on backtracking or constraint solving (Section 7).

Our choose operator is executable but, unlike Floyd, we pro-
pose to use it only during program development. It is used to ex-
press partially-developed programs; final programs are choose-
free. The choose operator stands for code that the programmer
has not yet implemented, either because he does not yet know
how to implement it or because he does not even know what
values it should produce. The choose operator produces values
based on a correctness condition; the final program will compute
these values with deterministic code fragments.

Executable angelic nondeterminism aids programming in
several ways. First, the programmer can test hypotheses about
his implementation strategies. He does so by formulating an an-
gelic program, using the choose operators as substitutes for as
yet unimplemented code fragments. An example of a hypothe-
sis that the programmer may test is whether there exists a way
to satisfy a postcondition in at most n iterations of a loop; the
loop will typically have angelic statements in the body. If no
safe angelic execution exists, the hypothesis is rejected. The op-
erator represents the most general way of computing a subtask,



but the programmer can declaratively (with assertions) constrain
it in ways that reflect his hypothesis. For example, the operator
may be prevented from visiting a graph node multiple times. The
envisioned benefit to the programmer is that the implementation
strategy can be safely aborted before the programmer understood
its infeasibility on his own.

Second, if the angelic program is correct, the system outputs
its safe traces. The traces serve as demonstrations of how to per-
form the desired task, for example: how to rotate nodes to es-
tablish the red-black property. Given these demonstrations, the
programmer is left with the hopefully simpler task of generaliz-
ing the traces into an algorithm that works for all inputs. These
demonstrations represent vast amounts of combinatorial reason-
ing that the programmer may otherwise have to carry out on his
own. The envisioned benefit of angelic demonstrations is a rev-
elation of an insight into how to carry out a computation under
given time or space constraints, potentially leading to faster dis-
covery of the algorithm.

An angelic program may, of course, generate many alterna-
tive traces, and most of the traces may be the result of choose
operators “abusing” their clairvoyance to complete the computa-
tion in an input-dependent fashion that does not correspond to an
easily encodable deterministic algorithm. The programmer can
exclude such irregular traces with assertions that limit nondeter-
ministic choices. For example, the operator may be required to
satisfy a data structure consistency invariant or to evaluate only
to values that have already been stored in memory.

Third, nondeterminism allows refinement-based program-
ming. The programmer can develop the program gradually in
several ways. As mentioned above, by adding assertions, he can
prune the set of safe traces, working towards a trace that corre-
sponds to a desired algorithm. The programmer can also focus on
one subproblem at a time, ignoring those subproblems expressed
with choose. In general, it is not possible to refine angelic opera-
tors independently of each other, but as we show in Section 5.2,
sometimes we can add sufficient constraints in the program for
them to be independent. The programmer can also implement the
choose operator with a subprogram that is itself nondeterminis-
tic, applying the methodology recursively until a deterministic
program is obtained.

Finally, the clairvoyance of the choose operator helps the
programmer avoid complex global reasoning. In Section 8, we
rely on this property to modularize the Deutsch-Schorr-Waite
(DSW) algorithm [15]. We refactor the algorithm to hide its
backtracking logic in a parasitic stack, a data structure that stores
its values in memory locations borrowed from the host data
structure, i.e., the graph being traversed. The hard decisions of
which memory locations the parasitic stack is allowed to borrow
and how to restore their values are left to choose operators.
The programmer has to solve only the more local problem of
how to implement the stack with these borrowed locations. In
fact, without the choose, we were unable to carry out this new
modularization of DSW.

This paper makes these contributions:

e We propose a program development methodology based on
refinement of angelic programs. In contrast to previous work
in program refinement, our methodology permits the exe-
cution of incomplete programs, which helps a programmer
in several ways, from rejecting infeasible implementation
strategies to making reasoning more local.

e We add the choose construct to the Scala programming lan-
guage [13]. We describe our implementation of angelic non-
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determinism. We also present experimental results on the ef-
ficiency of two different implementation strategies, one based
on backtracking and one on SAT solving.

e We present case studies of two classic problems: the Dutch
Flag problem [6, 10] and the Deutsch-Schorr-Waite graph
marking algorithm [15]. For the second problem, angelic pro-
gramming allowed us to develop a new way of modularizing
the algorithm that we believe is novel. We also include a case
study on recursive list manipulation.

Section 2 gives an overview of the programming methodol-
ogy using the case study of the Dutch Flag problem. Sections 3-5
formalize the methodology and give refinement transformations.
Section 6 compares our (algorithmic) methodology with the (de-
ductive) refinement of Morgan. Section 7 describes our imple-
mentation and Section 8§ reports on the case study of the DSW
algorithm. Related work is described in Section 9.

2. Overview

This section gives an overview of programming with angelic
nondeterminism on the Dutch Flag problem [6]. The section does
not give a beautified tutorial example; instead, we present rather
faithfully how a programmer used the programming methodol-
ogy. We highlight three aspects of angelic programming:

e How an angelic program can express a hypothesis about the
programmer’s implementation plan, which will be rejected if
it is guaranteed not to lead to a correct implementation.

e How the programmer improves his understanding of the
problem by observing angelic executions.

e How angelic programs are refined by constraining the angels
and by deterministically implementing them.

Dijkstra presents the Dutch Flag problem in [6]: given an
array of n pebbles, each of which is either red, white, or blue,
the algorithm must sort them in-place, in order of the colors in
the Dutch Flag: first red, then white, then blue. The algorithm
must examine the color of each pebble at most once and can only
move the pebbles by swapping. A crucial constraint is that only
a constant amount of storage can be used to remember the color
of pebbles that have been examined.

In traditional algorithm development, a programmer must
implement the entire algorithm first before he can test it. Perhaps
he can proceed bottom up, testing small subroutines first. With
angelic nondeterminism, one can proceed top down, starting with
a very nondeterministic program that implements coarse steps
of the entire algorithm. In the case of the Dutch Flag problem,
the programmer starts with this initial angelic program, which
tests the hypothesis that the problem can indeed be solved with a
sequence of swap operations.

Program P,

while ( choose ) {
swap(choose(n), choose(n))

assert isCorrect

The choose operator nondeterministically chooses a Boolean
value, and the expression choose(n) nondeterministically chooses
a value from the range [0, n).

This angelic program is correct (i.e. the angels can find a safe
execution that validates the hypothesis).' In thinking about how

' Our tester validates the hypothesis on only a small set of inputs, so the
best we can actually ascertain is that the hypothesis has not been rejected



to refine the program, the programmer prints information about
the choices being made by the angels.

Program Py’

angelicprint(input)
while ( choose ) {

i = choose(n)
j = choose(n)
swap(i.j)

angelicprint(i j)
assert isCorrect

The call angelicprint prints its arguments, but only on suc-
cessful executions. Henceforth, assume that all of our programs
are instrumented to print inputs and the indices of swapped peb-
bles on safe executions into a log. The following is the output of
one of the safe executions of this program:

Input: bwrwrwb

(0,2) (1.4) (2,5).

The following are swap sequences from two of the thousands of
other safe executions, one line per safe execution:

(4,0) (4,5) (2.1).
(0,1) (1,5) (4,1) (2,0).

In examining the executions, the programmer focuses on
which pebbles were swapped. Not surprisingly, he discovers that
the highly nondeterministic program Py swaps pebbles seem-
ingly arbitrarily.

Now the programmer hypothesizes the first plausible imple-
mentation strategy. Namely, he posits that it is possible to tra-
verse the array of pebbles left-to-right while swapping the cur-
rent pebble with a suitable counterpart.

Program P; — refines Program P
i=0
while ( choose ) {
swap(i, choose(n))
i+=1

assert isCorrect

In Py, a value that was previously provided by an angelic
operator (the first argument to swap in FPp) is now computed by
deterministic code. We say that choose(n) was implemented by
this deterministic code. Technically, P; is a refinement of Py in
that it removes some of the nondeterministic choices present in
Py. In other words, P; generates a subset of executions of Fj.

Program P; is correct, too. Below, we show the log from one
of the safe executions.

Input: bwrwrwb

(0,6) (1,0) (2,0) (3,1) (4,1) (5.,3) (6,5).

P still generates too many traces (the angels have too much
freedom) but the programmer notices a pattern in some of the
successful traces: towards the end of each run, the angels are
swapping red pebbles to the left end of the array and blue peb-
bles to the right end. The programmer hypothesizes that a more

on those inputs. Even if correctness is proven on all inputs, there is of
course no guarantee that a deterministic algorithm exists that can replace
the nondeterministic operators.
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deterministic program would be explicit about gathering red peb-
bles at the left end of the array and blue pebbles at the right from
the very beginning.

This observation leads to an implementation strategy, en-
coded in the next program, where the programmer implements
two zones of uniform color: red at the left end of the array and
blue at the right. The programmer further hypothesizes that a
zone of white pebbles in the middle of the array will simply “fall
out” as a consequence. (The idea of three zones turns out to be
exactly the insight that lead Dijkstra to his algorithm [6].)

Program P,
i=0
R = 0 // Pebbles to the left of R are red
B = n—1 // Pebbles to the right of B are blue
while ( choose ) {
c = pebbles(i) // examine color
ifc==red){j=R,R+=1}
else if (c ==blue) {j=B;B—=1}
else /+ (c == white) =/ {j=1i}
swan(i, J)
i+=1

assert isCorrect

In the next step, captured in program P», the angelic opera-
tor that provided the second argument to swap in P; has been
replaced by deterministic code. Program P» is, however, not cor-
rect, as it has no successful traces. P> is therefore not a proper
refinement of P;. Below is a log from a prefix of a failed trace:

Input: bwrwrwb
(0,6) (1,1) (2,0) (3,3) (4.1).

Examining the log, the programmer can see a problem: after
the swap (2,0), a blue pebble is brought into position 2, and the
algorithm then proceeds to examine the pebble in position 3,
leaving the blue pebble in position 2. This pebble is never re-
visited, and hence is never swapped to the right end of the array
where it belongs.

Generalizing from this observation, the programmer decides
that in some cases a pebble brought into position ¢ may need to be
handled before moving on to position 7 4- 1. He decides to handle
this by not advancing 7 in some cases. Since the programmer is
unsure of exactly when to advance 4, he uses an angelic choose
operator to make the decision.

The programmer returns to P;, which encoded an infeasible
implementation strategy because it allowed at most one swap per
position of the array. The programmer creates P;,—an alterna-
tive version of P; that is a less restrictive refinement of P.

Program P;, — refines Program P,
i=0
while ( choose ) {
j = choose(n)
swap(i, j)
if (choose )i +=1

assert isCorrect

Py, is also correct.
The programmer now again applies the refinement that intro-
duces zones of uniform color.



Program P; — refines Program P,
i=0
R = 0 // Pebbles to the left of this are red
B = n—1 // Pebbles to the right of this are blue
while ( choose ) {
c = pebbles(i) // examine color
ifc==red){j=R R+=1}
else if (c ==blue) {j=B;B—=1}
else /+ (c == white) =/ {j=1i}
swap(i, j)
if (choose )i +=1
}

assert isCorrect

One log for this correct program, including the values of ¢ as
well as swaps, is:

Input: bwrwrwb
i=0:(0,6) i=0:(0,5) i=1:(1,1) i=2:(2,0) i=3:(3,3) i=4:(4,1).

The next step is to implement the nondeterministic operator
that guards the advancement of . Logs reveal that i is not ad-
vanced when the current pebble (i.e., the i pebble before the
swap) is blue. On reflection, this is reasonable because when the
current pebble is blue, it is swapped with a pebble from farther
right in the array—a pebble whose color has not yet been exam-
ined and is not yet known. In contrast, when the current pebble
is red, it is swapped with a pebble of a known color.

The programmer now implements the angelic operator with
deterministic code, creating refinement Py.

Program P, — refines Program P;

i=0
R = 0 // Pebbles to the left of this are red
B = n—1 // Pebbles to the right of this are blue
while ( choose ) {
c = pebbles(i) // examine color
if(c==red){j=RiR+=1}
else if (c ==blue) {j=B;B—=1}
else /+ (c == white) =/ {j=i}
swap(i, j)
if (c !=blue) i +=1 // changed from choose in Ps

assert isCorrect

The final refinement must implement the non-deterministic
loop bound. The programmer might rashly replace the bound
with i < n. In this case, the programmer would find that the
program is incorrect, because ¢ would overrun the blue zone.
Logs would reveal that the correct bound is i <= B, as shown in
Ps, which is the final deterministic program.

Program P; — the final program; refines Program P,
i=0
R = 0 // Pebbles to the left of this are red
B = n—1 // Pebbles to the right of this are blue
while (i <= B ) { // changed from choose in Py
¢ = pebbles(i) // examine color
if(c==red){j=RiR+=1}
else if (c ==blue) {j=B;B—=1}
else /+ (c == white) =/ {j=i}
swap(i,
if (c!=blue)i+=1

assert isCorrect

The development of this solution to the Dutch Flag problem
showed how the programmer can pose hypotheses about his im-
plementation plans by writing and testing angelic programs and
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how he can develop the final deterministic program by gradu-
ally creating refinements that involve implementing angelic con-
structs with deterministic code.

3. An Angelic Programming Language

In this section we describe the syntax and semantics of a small
programming language for writing angelic programs. Note that
our actual implementation is written as an extension to Scala.
3.1 Core language

We consider the following core language:

stmt = v = expr (Assign)
assert b (Assert)
stmty ; stmta ;. ..; stmin (Sequence)
if (b) { stmt }else { stmt} (Conditional)
while (b) { stmt } (Loop)
expr = choose (Angelic)

Here v is a variable and b is a boolean-valued expression. (The
full language supports arrays and heap operations as well, but
their handling is routine and is ignored in this section.) A pro-
gram fails on assert false.

The only source of nondeterminism in the language is An-
gelic, which guesses a value in the domain of integers, addresses
or booleans as appropriate in the context. The values of choose
expressions are chosen so that, if at all possible, the execution
terminates without failing any assert statement encountered in
the execution.

3.2 Semantics

Following previous work [3], we give semantics of this language
using the wp predicate transformer [6]. Given a statement S and
a postcondition R, wp(S, R) is the weakest precondition such
that when S executes in a state satisfying that precondition, the
execution results in a state satisfying R. wp for statements in the
core language are straightforward:

wp(v = e,R) = Rle/v]
wp(v = choose, R) = 3Jv.R
wp(assertb,R) = bAR

The wp for assignment substitutes free occurrences of v in the
postcondition with the expression e. The wp for choose binds
free occurrences of v in R by existentially quantifying it: this
expresses the notion that if possible, an angel will supply a value
such that R is true. The assert statement conjoins its condition
b to the postcondition, so that the program fails if b is false.
The semantics of the control-flow statements are routine and are
omitted.?

3.3 Program correctness

A program is assumed to be parameterized by an input vector I,
which binds the initial values of variables. A program is assumed
to check for expected postconditions using assert statements. It
is not necessary, though, that assert statements are placed only at
the end of a program.

A correct program is one for which VI.wp(P(I), true) is sat-
isfiable. (We assume that all variables are defined before being

2 We assume that the programmer guarantees the existence of ranking func-
tions such that loops terminate independently of choose expressions.



read, so that the formula above does not contain any free vari-
ables.) The formula says that on any input there is a way in which
the angel can choose values for choose expressions such that no
assertion is violated in an execution of the program.

4. Traces and Program Refinement

A trace is a sequence of values produced by choose expressions
during a safe—i.e. not assert-failing and terminating—execution
of a program. Given an input and a recorded trace, the execu-
tion of an angelic program can be reconstructed faithfully. Be-
cause the program’s postconditions may only care about the final
state of variables, a particular input might result in multiple safe
traces. .

Define safetraces(P(I)) to be the set of safe traces for a
program P on input I. P is correct if

VI (safetraces(P(I)) # {})

This correctness condition corresponds to the wp-based condi-
tion from the previous subsection: each trace corresponds to the
values which when assigned to existentially quantified variables
in the wp-based condition would satisfy the condition.

The purpose of refinement is to decrease dependence on the
angel while carrying out effectively the same computation steps
as those computed by the angels. In particular, executions that a
programmer ruled out by eliminating choices available to an an-
gel (e.g., by adding assertions) should not reappear in successor
programs. If programs P and () contain identical set of choose
statements, then for Q) to refine P, it must be the case that:

VI.safetraces(Q(I)) C safetraces(P(I))

In general @@ will not contain an identical set of choose ex-
pressions as P, because a programmer typically eliminates some
choose expressions from P, implementing them in ) using de-
terministic code or possibly using additional choose expressions.
We define a set of program transformations that a programmer is
allowed to use for refinements, and for which we give a suitably
adjusted trace containment property.

4.1

We define three program transformations that, in combination,
can be used to determinize an angelic program. Two of the
transformations (T1 and T3) are correctness-preserving, i.e., they
preserve safe traces of an angelic program, while the correctness
of T2 must be validated with a checker (see Section 4.2).

Program transformations

T1. State inflation Consider a pair of angelic programs P and
Q. We say that () is obtained from P by state inflation if () adds
program variables and statements (including choose) in such a
way that @) does not alter the traces of P: there is no change in
data or control dependence of any of the statements of P. Let
proj p represent a projection of safe traces of @) to the choose
operators in P (all of which are also in @Q)). Then,

VI.proj p(safetraces(Q(I))) = safetraces(P(I))

The role of this preparatory step is to introduce meta-data
(ak.a. “book keeping”) required to implement a choose expres-
sion; an initial version of the program may not have included all
the meta-data it eventually needs.

T2. assert introduction 1If () is obtained from P by adding an
assert statement, where the (boolean) variable being asserted is
one that the program already defines, we have the property that:

=

VI.safetraces(Q(I)) C safetraces(P(I))
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This is true because the additional assert can only convert a trace
that was previously safe to unsafe.

T3. choose determinization If P contains choosev followed
immediately by assert (v = w) for some w, then we can replace
this pair of statements by assign v w to obtain program Q. If
traces of P are projected to choose expressions that are common
to P and Q (using projg) then:

VI.safetraces(Q(I)) = pron(safetraces(P(f)))
This is true because the angel for choose v in P could have
produced whatever value () generates in variable w.

Example 1. Suppose we are developing a program to reverse
a linked list, for which we hypothesize the following angelic
program works. The correctness postconditions (assertions) are
omitted for clarity.

while (choose) {

x = choose;
y = choose;
X.next =y,

Next, we might realize that we need a cursor variable cur. We
use T1 to introduce it.

cur = in

while (choose) {
x = choose;
y = choose;
cur = cur.next;
X.next =y,

}

Now we add an assert using T2 to constrain one of the angelic
choices to use this cur variable.

cur = in

while (choose) {
x = choose;
assert x ==
y = choose;
cur = cur.next;
X.next =y,

cur;

We can then use T3 to determinize and remove this choose
expression.

cur = in

while (choose) {
X = cur
y = choose;
cur = cur.next;
X.next =y,

}

4.2 Trace-based Refinement
Formally, we say P is refined by @, denoted P < @, if

1. @ is derived from P using zero or more of the above trans-
formations, and,

2. Qs correct, i.e. VI.(safetraces(Q(I)) # {}).



The refinement relation =< is reflexive and transitive.

Note that assert-introduction may cause the second condition
to be violated. In this work, our intention is to use bounded-
model-checking to establish the second condition.

The goal of refinement is to reduce the nondeterminism in a
program. While state inflation of P into () can introduce into
new choose expressions, the non-determinism in () with respect
to P cannot increase with refinement because we do not reduce
constraints on the choose expressions already present in P. This
is because constraints on nondeterminism are relaxed only when
statements are removed (in T3) and we remove statements only
when their effect is already captured by an assertion.

Program development can be seen as creating a series of
programs, Py, ..., Pp, such that P; < P;1 1,0 < ¢ < n, where
Py is the first angelic program a programmer creates, and Py,
is free of any choose statements, i.e. a suitable deterministic
program that takes the intended computation steps.

Existence of such a sequence does not mean that a program-
mer will make only correct refinements. In practice, a program-
mer will occasionally need to revert to a previous version and try
some other transformation.

Adhering to the trace refinement methodology brings valu-
able software engineering benefits to the practical programmer;
we explain these in the next section.

4.3 Program Restructuring

Sometimes a programmer might wish to refine a partial program
in a way that is not expressible in terms of transformations T1-
T3. Suppose s is a statement in P. In program ), we wish to
replace s with a statement s”. We assume that s is choose-free but
s is permitted to introduce new choose expressions.® Program Q
will be a refinement of P if Q is correct and s’ does not afford
the choose operators in ) more freedom than they had in P. The
second condition corresponds to ensuring that () does not allow
new traces:

VI.proj p(safetraces(Q(I))) C safetraces(P(I))

To ensure this property, we enforce, by construction, two
properties:

1. The input values of s and s’ are the same in all safe execu-
tions. Assume that s’ has the same free variables as s. This
property ensures that any choose expressions executed prior
to s are constrained in @ at least as much as they were in P
(the constraints are the union of constraints imposed by s and
s, respectively).

2. The output values of s and s’ are the same in all safe exe-
cutions. Assume that s and s’ update identical “output” vari-
ables. This ensures that s and s’ end up in the same state,
ensuring that yet to be executed choose expressions in ) will
be constrained at least as much as they were in P (the con-
straints are the union of constraints of s and s’, respectively).

Note that s’ is free to contain any implementation; we do not
impose any constraints on the values computed at intermediate
points in s’.

The next two transformations are intended to allow safe re-
structuring.

T4. Coupling The goal of the construction is to assert equality
on input values to s and s, as well as on their output values. This

3 Note that occurrences of choose in the statement s can be removed by
lifting all instances of choose into a special argument of s, a list angels,
whose elements are read by s.
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is done by recording these values in P and asserting their equal-
ity in Q). We call this transformation coupling of programs P and
. Assume we can establish communication channels between
P and Q. Each channel supports a snd(v) operation to send a
value and a rcvandassert(v) operation that receives a value and
asserts it to be equal to the value given as its argument. Just be-
fore executing s, P communicates all its “input” values (to s)
to @ using a series of snd operations. () receives them using
rcvandassert operations just before entering s, supplying its in-
put values in the same sequence. Likewise, just after executing s,
P communicates its “output” values over to ), which compares
them against its own output values.

T5. Uncoupling When the refinement process arrives at a
choose-free program @), the channels attached to ) are discon-
nected and the ancestor programs on the other end of the chan-
nels are discarded. Because Q is choose-free, the constraints im-
posed by the channels are not needed as they are already implicit
in Q.

Henceforth, we consider this construction as part of our re-
finement toolset.

5. Programming with Angels

We assume that the programmer starts with a safe angelic pro-
gram. Note that he may start with a relaxed correctness condi-
tion, strengthening it during the refinement process.

5.1

As mentioned before, a programmer applies a succession of trace
refinement steps until a program does not contain any choose
expressions. Tool support helps in two ways:

Methodology

1. Testing hypotheses. When the programmer carries out a trans-
formation (T2 or T4) that adds constraints on the nondeter-
ministic choices, he checks whether the resulting program
maintains safety. If the program is not safe, the implemen-
tation strategy encoded in the angelic program is infeasible.
In our implementation, this validation is performed with a
bounded model checker.

2. Trace demonstration. The tool outputs the safe traces, which
the programmer can examine to learn about the steps taken by
the angel. In our case studies, these traces provided important
clues as to what further refinement steps to take.

We remind the reader that execution of the angelic program
is carried out on a small suite of test cases, which means that we
may fail to ascertain that an angelic program (or the final pro-
gram) is unsafe. As a result, it is possible that the programmer
makes incorrect refinement decisions. In this sense, we are pro-
viding no more guarantees than the classical (test-driven) pro-
gram development on which we wish to improve. However, as
corroborated by work on using bounded model checking for soft-
ware validation [8], a small test suite often reveals many software
errors.

Example 2. This example illustrates that the programmer can
discover that his implementation strategy is infeasible without
necessarily having to obtain an incorrect angelic program. Con-
sider Example 1, where we partially refined an angelic program
for linked list reversal. If our initial refinement step in Example 1
had been slightly different, we would have produced following
angelic program:



cur = in

while (choose) {
X = cur
y = choose;
X.next =vy;
cur = cur.next;

}

This program differs from the program produced in Example 1 in
that the last two statements inside the loop have been switched.
It is easy to write a program like this one (we did), considering
that programmers are used to incrementing the loop induction
variable at the very end of the loop.

This angelic program encodes an infeasible strategy. Specif-
ically, the program contains a bug in that it overwrites cur.next
before the old value of cur.next is read and used to obtain the
next node. As a result, the angelic program is prevented from
walking forward down the list. The angelic program is not incor-
rect, though, because some safe traces remain. For instance, in
the first loop iteration, the program can “travel” to the last node
and then walk the list backwards. The programmer can notice
that no safe traces correspond to a desired algorithm by observ-
ing that all traces require at least n + 1 steps for a list with n
elements. If desired, this observation can be confirmed by limit-
ing the angelic program to n loop iterations, at which point no
safe traces remain. The programmer then reverts to an earlier ver-
sion of the program and corrects the implementation of how the
induction variable cur is advanced through the list.

5.2 Removing angelic dependences

Informally, we say a choose expression c; is independent from a
choose expression ¢ if ¢; can make its choices without consid-
ering what choice has been (or will be) made by c2 in a given ex-
ecution. Angelic programs with only independent choose expres-
sions may lead to simpler algorithms because there is no need to
deterministically implement the “communication” that happens
between dependent choose expressions. We leave the full charac-
terization of angelic dependence for future work. Here, we give
only a sufficient condition for independence and discuss one of
its benefits.

A sufficient condition for independence of all choose expres-
sions in a program is that the program has only one safe trace per
input. If a choose expression has the choice of only one value at
any time it is evaluated, it need not consider the choices made by
other angels.

When angelic choices are independent we get the benefit that
choose expressions can be refined independently of each other.
That is, the implementation need not consider how the other
choices are determinized, as the next example illustrates.

Example 3. In Example 2, by examining traces returned by
the oracle, the programmer recognized that it might be useful
to enforce that the loop that reverses the elements in a linked list
executes n times for a list with n elements. He might enforce this
by writing the following program (with the bug from Example 2
fixed).

cur = in
while (n) (choose) {
X = cur

y = choose;
cur = cur.next;
X.next =y;

}
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Here, n is the number of elements in the list and while (n) is
syntactic sugar for a loop that performs no more than n iterations.

This program has exactly one trace (to see this, note that each
of the n nodes in the list must have its next field overwritten,
and by design the loop iterates at most n times, so to generate a
safe trace the oracle must set each node’s next field to the cor-
rect final value). With this, we are guaranteed to have removed
the angelic dependence mentioned above. The programmer can
thus consider implementing the two remaining angelic choices
separately.

The loop condition is relatively easy: we know that we must
ensure that cur is not null, and by examining the traces returned
by the oracle we can see that this is indeed the correct condition.
We can thus use T2 and T3 to generate the following program.

cur = in
while (n) (cur !'= null) {
X = cur;
y = choose;
cur = cur.next;
X.next =y,

}

For the remaining angelic choice, by examining the safe trace
we notice that y is always chosen as the element before cur in
the original list. With this insight, we can recognize that we must
use T1 to introduce a new variable and have it walk down the list
(as well as remove the now-unnecessary bounded loop), T2 to
assert that y is chosen to be equal to it, and then T3 to generate
the following fully-deterministic correct program.

cur = in

prev = null

while (cur !'= null) {
X = cur;
y = prey;
cur = cur.next;
X.next =y,
prev = x;

5.3 Example of Program Restructuring

The next example illustrates transformations T4 and T5. Recall
that, in contrast to T1-T3, the transformation T4 does not im-
plement an instance of choose, but instead substitutes some de-
terministic code in program P with another (potentially angelic)
code. The constraints on nondeterminism present in P are im-
posed on @ using communication channels between the two pro-
grams. T5 is a cleanup transformation.

Example 4. We partially develop an implementation of the
ZipReverse problem assigned by Olivier Danvy at a sum-
mer school. Given two lists « and y, the problem is to com-
pute zip(z, reverse(y)). For example, given x = [1, 2, 3, 4] and
y = [a, b, ¢, d], the program outputs [(1,d), (2,c), (3,b), (4,a)].
The requirements are: neither list can be traversed more than
once; the lists cannot be copied; the length of the lists is not
known a priori; and lists must be manipulated with the low-level
operations car, cdr and cons.

The first angelic program tests a hypothesis that the result can
be computed with a sequence of cons operations. When x is a list,
choose(x) selects an element from the list.



r = nil
while (choose) {

r = cons((choose(x), choose(y)), r)
}

The hypothesis tested by the program is admittedly trivial but
the program is nonetheless a useful start for refinement. This is
because it has only one safe trace for each input. Considering
that a list can only be created with cons, this trace shows the
steps that final implementation will have to take.

The programmer then attempts to refine this program by im-
plementing choose(x) and choose(y) with code that traverses the
two lists by maintaining pointers that advance down the lists. The
lists are traversed according to the restrictions of the problem
statement but nondeterminism allows all legal traversals. This
attempt at refinement, not shown, has no safe trace, so the pro-
grammer concludes that a recursive procedure needs to be used in
place of the iterative one. This recursive angelic program, shown
below, can be refined into a deterministic program; thanks to
recursion, the list y can be traversed in the opposite direction,
which was not possible in the iterative version.

r = nil
descent()

def descent() {
if (choose) return
descent()
r = cons((choose(x), choose(y)), r)

}

How is this program a refinement of the first program? The
programmer can make it so by invoking transformation T4. The
program that couples the two programs can be written as follows:

r = nil

r = nil descent()

chl = choose

snd(chl) def descent() {

while (chl) { chl = choose
ch2 = choose(x) rcvandassert(chl)
snd(ch2) if (chl) return
ch3 = choose(y) Il descent()
snd(ch3) ch2 = choose(x)
r = cons((ch2, ch3), r) rcvandassert(ch2)
chl = choose ch3 = choose(y)
snd(chl) rcvandassert(ch3)

} r = cons((ch2, ch3), r)
ch4 = pack(r) }
snd(ch4) ch4 = pack(r)

rcvandassert(ch4)

The program on the left is the first program, with inserted
channel send operations; on the right is the second program, with
inserted channel receives. The output of the statement that we
have replaced with T4 is the list r, which is packed with pack(r)
before it is sent across a channel. (The output of the second
program is considered to be the output of the entire program.)

Superficially, we violated the conditions of T4: the program
on the the left contains choose statements while T4 requires that
the replaced statement be choose-free. However, conceptually
we could have collected angelic values in advance in an array
angels and read from it.

Once the program on the right is developed into deterministic
code (not shown for lack of space), we can use T5 to disconnect
the program on the left and remove the channels.
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6. Comparison to Deductive Refinement

We briefly review Morgan’s [11] refinement methodology, and
then contrast it with ours. We note at the outset that Morgan’s
methodology is geared towards developing a proof of a program
as it is being developed, whereas our intention is to help the
programmer develop a program that is correct within the confines
of bounded model checking.

In Morgan’s methodology, one develops programs using re-
finement of specification statements. A specification statement is
of the form ¥ : [pre, post], and it can be used any place an or-
dinary statement may be used. The meaning of this statement is
that, if executed in a state in which pre holds, it modifies state
variables in ¢/ such that post holds. The specification statement
is a demonic non-deterministic statement: al/ values that satisfy
post must suffice. The wp-semantics of a specification statement
are given as:

wp(U[pre, post], R) = pre A (VU.post = R)

Refinement of a specification statement is either a determin-
istic statement or another specification statement that could be
used in place of the original one. For P to be correctly refined by
Q, denoted P < @,

VR, wP(P>R) g ’U)p(Q,R)

where wp is the weakest precondition operator and R is a post-
condition.

Semantically, our definition of trace-based refinement (=) is
a special case of the refinement defined above (<).

In Morgan’s methodology, a programmer makes a sequence
of refinement steps until the program is completely free of non-
deterministic statements. Rather than prove correctness of refine-
ment steps from the principle above, the programmer can use a
set of proven refinement laws, some of which we show here:

e [t is always legal to strengthen the postcondition or weaken
the precondition.

¢ One of the laws for introduction of a sequential composition
requires a suitable intermediate condition (mid below): U :
[pre, post] — U : [pre,mid];T : [mid, post]. The mid
should be suitable in that further refinement of the two new
specification statements is feasible.

e The law for introduction of a loop requires a specification to
be brought in of the form: [pre A I, post A I], where I is a
suitable loop invariant. (We omit the actual transformation;
see [11].)

An attractive property of Morgan’s refinement is that occur-
rences of specification statements in a program can be refined
independently of each other (Theorem 2, pg 8, in Morgan and
Vickers [12]). This makes the approach compositional.

However, from the perspective of a practical programmer, this
is also the main problem in using Morgan’s methodology: in-
dividual specification statements must have sufficiently power-
ful postconditions and correct invariants for the programmer to
make progress. If the programmer does not figure out the correct
loop invariant, the methodology might get stuck later during de-
velopment, and even the correct invariant must often be modified
in later steps. This is not surprising: a programmer is developing
arigorous proof simultaneously with the program.

Angelic specification statements have also been suggested in
the literature (e.g. Celiku and Wright [4], Ward and Hayes [20]).
Ward and Hayes used angelic refinement to prove correctness of
backtracking algorithms. Let us denote an angelic specification



statement as ¢ : {pre, post}, meaning that the ¥ must be assigned
in such a way that post holds, and moreover, the values are cho-
sen cooperatively to make the rest of the program run correctly.
Formally,

wp(v{pre, post}, R) = pre A (3.post A R)

At first glance, this seems to free the programmer from the
necessity of providing suitable post, because the angel would al-
ways select a value that suits the rest of the computation (in addi-
tion to satisfying whatever postcondition is provided manifestly
in the specification statement.). However, local refinement of an-
gelic specifications, i.e. a refinement that can be applied oblivi-
ous to the rest of the program, is only allowed to increase choices
available to the angel. This does not help the programmer to get
to a deterministic program. (As stated above, their purpose was
to prove correctness of backtracking algorithms.)

Celiku and Wright propose strengthening the postconditions
of angelic specifications in such a way that they essentially be-
come demonic specifications, which can then be refined using
Morgan-like methodology. The process of converting angelic to
demonic specification requires manual, non-local, whole pro-
gram reasoning. More formally, the following conversion can be
carried out for a strong enough ¢:

U{pre, post}; assert ¢ — U[pre, post A @]

The problem for the programmer is to determine the ¢ that would
capture the “expectation” of the rest of the program.

Our methodology is intended as a practical tool for program
development, not as a proof procedure. In our methodology, we
do not have compositionality: by default, angelic choose expres-
sions cannot be refined obliviously to each other. (Removing an-
gelic correlation, as we discussed in Section 5.2, is similar to
converting angelic to demonic nondeterminism.)

7.

We have embedded the angelic choice construct into the Scala
programming language [13]. The programmer passes to the an-
gelic choice operator a list of values from which a parallel back-
tracking solver selects one that leads to a safe trace. The solver
computes all safe traces, which can then be browsed with a user
interface. The angelic choice operator ranges over arbitrary prim-
itives or references to heap-allocated variables and can be used
on arbitrary programs. We have used our implementation to de-
velop the examples in this paper as well as several others. The
rest of this section discusses our backtracking solver, as well as a
more scalable SAT solver. We conclude by comparing their scal-
ability.

Implementation

7.1 Parallel Backtracking Solver

Our backtracking solver performs a depth-first traversal over the
space of traces, searching for safe traces. The solver executes a
program and whenever it encounters a choice operator, it pushes
a new entry corresponding to the dynamic instance of this opera-
tor to a stack. It then tries the first value for the entry on the top of
the stack by executing the program further. On an assertion fail-
ure, the solver backtracks to the execution point associated with
the top of the stack and tries the next value. If there are no values
left for this entry, it is popped from the stack and the execution
backtracks to the execution point corresponding to the previous
entry on the stack, continuing the process. A safe trace is found
when the execution terminates without failing an assertion.
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Figure 1. Time taken (in seconds) by the SAT solver and the
backtracking solver when inserting a number of nodes into an
initially empty binary tree.

Our backtracking solver explores the trace space in parallel.
Each task receives from the dispatcher a prefix of a trace, includ-
ing the corresponding stack that captures the state of the angelic
operators executed on that prefix. The stack captures which val-
ues have already been tried for these operators, and it is thus an
efficient way of representing the part of the space that has already
been explored. Each parallel task is responsible for exploring all
suffixes of the prefix. Except for communicating with the dis-
patcher, the tasks are independent, so the parallel computation is
very efficient. Our solver is efficient in its memory use so most
of its time is spent executing the program.

Backtracking is not a good fit for problems that contain as-
sertions mostly at the end of the execution because the search
takes a long time to encounter a failure. SAT solvers, on the
other hand, propagate constraints and can generate new con-
straints (conflict clauses) as they explore the search space. The
backtracking solver’s scalability on these problems can be im-
proved by adding assertions with intermediate invariants, which
can drastically prune the search space.

7.2 SAT-based Angelic Solver

Our second solver is based on symbolically unrolling the pro-
gram for given inputs and representing the bounded execution as
a SAT formula. The satisfying assignment then gives the val-
ues of the angelic operators on these inputs. We use the pro-
gram translator developed as part of the SKETCH synthesizer
project [18], which achieves scalability by representing integers
in sparse unary encoding, thus optimizing the SAT formula for
the small values that one is likely to see during program devel-
opment based on unit testing. This solver is not yet connected
to our Scala-based frontend but angelic programs for that solver
can be written in the SKETCH language by using simple macros.

7.3 Solver Efficiency Study

All experiments presented in this paper were performed on
the backtracking solver, whose scalability was sufficient (its
response was usually interactive). It is interesting to evaluate
whether the SAT-based angelic solver allows us to scale to harder
problems. While individual problems vary widely, some exper-
imental performance numbers may be helpful to compare the
scalability of angelic solver techniques. In Figure 1, the time
of the backtracking and SAT solvers is shown on an angelic
program that inserts nodes into a binary search tree. The an-
gel chooses any node in the tree and then chooses whether to
insert the new node below the left child or the right child. As-
suming that we only insert into nodes already in the tree, this
is a search space of 2"~1p1 where n is the number of nodes



to insert. There is only one correct solution in this space. The
backtracking solver is usable until the search space is about 10°,
while the SAT-based angelic solver scales to 8 * 10%°, or more
than ten orders of magnitude higher. This gives us hope that an-
gelic refinement based on executable agents may be usable on a
range of realistic programs.

8. Case Study: Modularizing DSW

This section describes a case study where angelic programming
aided in modularizing the Deutsch-Schorr-Waite (DSW) graph
marking algorithm [15]. This algorithm has long been consid-
ered one of the most challenging pointer algorithms to reason
about [2]. We modularize DSW with a new generic abstraction,
called the parasitic stack, which is parameterized for DSW with
angelic operators. Our case study shows that (i) modulariza-
tion of DSW simplifies reasoning about the algorithm because
the parasitic stack separates concerns intertwined in DSW; and
(it) choose operators allow the algorithm designer to sidestep
global reasoning. We conjecture that modularization by angel-
ically parameterizing an abstraction may be applicable more
widely to other complex algorithms.

The DSW algorithm solves the problem of marking nodes
reachable from the root of a directed graph. The crucial re-
quirement is to do so with only constant-size additional stor-
age. (One exception is that a node can store an index into its
list of children.) This requirement is motivated by garbage col-
lection where object tracing is invoked when the system cannot
offer more than constant-size memory. If linear-size additional
memory were available, one could perform a DFS traversal of
the graph, using a stack for backtracking. The DSW trick is to
guide the DFS traversal by temporarily “rewiring” child point-
ers in nodes being visited. The price for the space efficiency is
intertwining of the two parts of the DFS traversal:

e [terative graph traversal. Because recursive DFS traversal is
ruled out, DSW relies on the more involved iterative traversal.

e Backtracking structure. Because an explicit stack is ruled out,
DSW encodes a backtracking structure in the child pointers
of graph nodes.

Ideally, these aspects should be separated, for example by hid-
ing the backtracking structure under an abstraction. However,
as shown in Figure 2, this separation seems difficult. We do
not ask the reader to understand the algorithm in Figure 2;
we merely want to point out the essence of what complicates
modularization. In particular, note that the memory location
current.children[current.idx] serves two roles: on the right-hand
side of the first parallel assignment, the location stores an edge
of the graph; on the left-hand side, it serves as storage for the
backtracking structure. Because the role of the location changes
in the middle of an assignment, it is not obvious how to hide one
role under a procedural abstraction.

The original goal of our case study was not to modularize
DSW; we started by asking simply whether angelic program-
ming could aid in discovering and implementing the classical
(flat) DSW algorithm. We explained the trick in DSW to a few
students and then gave them access to the Scala language ex-
tended with choose operators. The insight was explained by
telling them to “use the child fields in the graph nodes to encode
the backtracking stack needed in DFS traversal.” As students ex-
plored algorithmic ideas, it became clear that it was difficult to
design DSW even with angelic nondeterminism. The reason was
that the programmer found it hard to explain how the angels ma-
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def DSW(g) {
val vroot = new Node(g.root)
var up, current = vroot, g.root

while (current != vroot) {
if (!current.visited) current.visited = true
if (current has unvisited children) {
current.idx = index of first unvisited child
// the child slot changes roles in this assignment
up, current, current.children[current.idx] =
current, current.children[current.idx], up
} else {
// the child slot restores its role
up, current, up.children[up.idx] =
up.children[up.idx], up, current

Figure 2. The classical (flat) DSW algorithm.

def DSW(g) {
val vroot = new Node(g.root)
var current = g.root
ParasiticStack.push(vroot, List(vroot,g.root))

while (current != vroot) {
if (!current.visited) current.visited = true
if (current has unvisited children) {
current.idx = index of first unvisited child
val child = current.children[current.idx]
ParasiticStack.push(current, List(current, child))
current = child

} else {

current = ParasiticStack.pop(List(current))
}

3
}

Figure 3. The parasitic (modular) DSW algorithm.

nipulated the individual pointer fields. It became apparent that it
was necessary to raise the level of the programming abstraction
so that one could observe the angelic decisions at a more mean-
ingful semantic level. Unfortunately, as we pointed out, DSW
does not seem to permit such modularization.

It occurred to us that it might be possible to express DSW as
using a special stack-like data structure. Like a regular stack, this
data structure would support the push and pop operations with
the usual semantics. Unlike a regular stack, this data structure
would be implemented by borrowing memory locations from its
host — in our case, the graph being traversed. The hope was that
the metaphor of borrowing a location would allow us to express
the transition between roles in a systematic fashion. We termed
this data structure a parasitic stack because it borrows locations
from its hosts and eventually restores them (parasites do not
destroy their host). The challenge was how to express DSW with
a parasitic stack, if that was at all possible.

The parasitic stack has the interface shown below. As usual,
the pop operation returns the value x stored in the corresponding
push operation. The nodes argument to push passes into the stack
the environment of the parasitic stack’s client. Through this ar-
gument, the traversal code “loans” the nodes referenced by in-
scope variables to the stack. The environment is also passed into
pop, where the values may be useful for restoring the values of



ParasiticStack {

e = new Location // constant—size storage (one location suffices to support DSW)

push(x,nodes) { // 'nodes’ is the set of nodes offered "on loan" by the host data structure
n = choose(nodes) // angelically select which node to borrow from the host ...
¢ = choose(n.children.length) // ... and which child slot in that node to use as the location

n.idx2 = ¢ // remember the index of the borrowed child slot

v = n.children[n.idx2] // read the value in the borrowed location; it may be needed for restoring the borrowed slot in pop()
// angelically select values to store in the two locations available to us ('e’ and the borrowed location)

e, n.children[n.idx2] = angelicallySemiPermute(x, n, v, €)

pop(nodes) {

n = choose(nodes, €) // the borrowed location better be in either 'e" or in 'nodes’

v = n.children[n.idx2] // 'v' is the value we stored in the borrowed location

// select what value to return and update the two locations we work with (the borrowed child slot and 'e’)

r, n.children[n.idx2], e = angelicallySemiPermute(n, v, e, *nodes) // '«nodes’ unpacks arguments from list 'nodes’

return r

¥
}

Figure 4. An angelic implementation of the parasitic stack, ParasiticStacko.

borrowed memory locations when the stack returns them to the
host.

// parasitic stack can borrow a field in some node from 'nodes’
push(x:Node, nodes:List[Node])

// values in 'nodes’ may be useful in returning storage to host
pop(nodes:List[Node]) : Node

With the parasitic stack in hand, DSW can be expressed as
shown in Figure 3; it can be derived almost mechanically from a
recursive DFS traversal procedure. If one ignores the additional
arguments to push and pop, this parasitic DSW appears to use a
regular stack that has private storage. The parasitic DSW is thus
modular in that it abstracts away the details of how the parasitic
stack is implemented.

Note that at this point of our user study, we did not yet know
whether DSW was expressible on top of such a stack interface.
The challenge behind answering this question was to determine

e which location the parasitic stack can borrow from the host—
it must be a location the host does not need until the location
is returned to the host by the parasitic stack;

¢ how to restore the value in this location when returning it to
the host; and

¢ how to use this location to implement the push/pop interface.

These three questions are formulated as nondeterministic
choices in the implementation of the parasitic stack. We were
not able to answer these questions without angelic help.

The reader might wonder if we simply substituted one hard
problem, namely implementing DSW using low-level pointer
manipulations, with another equally hard one, namely imple-
menting the parasitic stack. What we achieved is that an angelic
formulation of the three questions (for parasitic stack) is rela-
tively straightforward. Furthermore, we found that the angelic
answers to these questions can be interpreted by the program-
mer more easily than when the angels implement the low-level
DSW pointer manipulations because the questions raise the level
of abstraction.

The three questions are encoded in the angelic implementa-
tion of the parasitic stack, shown in Figure 4. As we discuss
this code, it will be obvious that the three questions, answered
by angels, capture the global reasoning necessary to make the
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parasitic stack operate correctly. As a result, the programmer is
freed to constrain himself to local reasoning, whose goal is to de-
scribe how a generic parasitic stack might operate. Genericity is
achieved with angelic nondeterminism. The next two paragraphs
describe the angelic parasitic stack. We then use refinement to
parameterize this angelic parasitic stack for DSW.

The parasitic stack in Figure 4 keeps only a single memory lo-
cation (e). The push method first angelically selects which mem-
ory location to borrow from the host. This is done by selecting
a suitable node n and a child slot c in that node. The borrowed
location is n.children[c]. The stack (deterministically) stores the
selected child slot index in the node itself, as that is allowed by
the constraints of the DSW problem. Next, push reads the value
in the borrowed location since it will need to be restored later and
so may need to be saved. Finally, there is a hard decision. The
stack has four values that it may need to remember: the pushed
value x, the reference to the borrowed location n, the value in
that location v, and the value in the extra location e. However,
there are only two locations available to the stack: the borrowed
location n and the extra location e. Clearly, only two of the four
values can be stored. Perhaps the value of e is not needed, but the
remaining three values are essential.

A little reasoning reveals that the parasitic stack is plausible
only if the value that push must throw away is available at the
time of pop from the variables of the enclosing traversal code.
Therefore, we decided to make the environment of the client
available to pop. The pop method first guesses which location
was borrowed in the corresponding push. This location is either
n or is in nodes; no other alternatives exist. Next, pop reads
the value from the borrowed location. Finally, pop angelically
decides (i) which value to return, (ii) how to update the extra
locations, and (iii) how to restore the borrowed location. As in
the case of push, it must select from among four values.

The benefits of clairvoyance should now be clear: while the
human found it hard to make the global decisions necessary
to instantiate the parasitic stack for DSW, these decisions were
rather straightforward to formulate as nondeterministic choices.

Next, we instantiated the parasitic stack for DSW by refin-
ing it into a deterministic program. To arrive at the first refine-
ment, we observed how the angels permuted the values. We iden-
tified a trace in which the angels performed the same permuta-
tion throughout the entire execution, except in the first call to



push. This first call was an outlier because our parasitic DSW
algorithm (Figure 3) originally invoked the first push incorrectly,
with the reversed environment, as follows:
ParasiticStack.push(current, List(g.root,vroot)).

After we modified the parasitic DSW, we were able to implement
the permutations with deterministic code, shown below. We no-
ticed that the value v of the borrowed location was not saved by
the angel and that it was later obtained from nodes[0] in pop.
This answered the question of how to restore the value in the
borrowed location.

ParasiticStack, — refines ParasiticStackg

ParasiticStack {
e = new Location

push(x,nodes) {
n = choose(nodes)
¢ = choose(n.children.length)
n.idx2 = c
// rhs was 'angelicallySemiPermute(x, v, e, n)’
e, n.children[n.idx2] = x, e

ks
pop(nodes) {
n = e // rhs was 'choose(nodes, e)’
v = n.children[n.idx2]
// rhs was 'angelicallySemiPermute(n, v, e, *nodes)’
r, n.children[n.idx2], e = e, nodes[0], v
return r

}
¥

To arrive at the second refinement, we observed how the
angels selected the borrowed node (the value n in push). We
tested if the choice was consistent across all instances of push
(it was), and then we implemented the angelic choice.

ParasiticStacko — refines ParasiticStack

ParasiticStack {
e = new Location

push(x,nodes) {
n = nodes[0] // rhs was 'choose(nodes)’
¢ = choose(n.children.length)
n.idx2 = ¢
e, n.children[n.idx2] = x, e

pop(nodes) { ... unchanged ... }

To perform the last refinement step, we examined how the re-
maining angel selected the child slot to borrow from the selected
node n. We learned that it selected a slot whose value equaled
nodes[1], the second variable passed to push from the traversal
code. This implied that c equaled the value of n.idx maintained in
the traversal code. Therefore, maintaining a separate field n.idx2
was not necessary. We turned this observation into the determin-
istic code shown below. This completed the construction of par-
asitic DSW.
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ParasiticStacks — refines ParasiticStacks

ParasiticStack {
e = new Location

push(x,nodes) {
n = nodes|[0]
// invariant: n.children[c] == nodes[1],
// hence ¢ == n.idx == n.idx2
// was 'c = choose(n.children.length); n.idx2 = ¢’
e, n.children[n.idx] = x, e

pop(nodes) {
n=e
v

n.children[n.idx] // was n.idx2
r, n.children[n.idx], e = e, nodes[0], v
return r

}
}

Angelic nondeterminism has simplified implementation of
the DSW algorithm. The parasitic DSW still takes some ef-
fort to understand but the comprehension task has been broken
down into three smaller questions: how the stack is implemented,
which location the stack is borrowing, and how its value is re-
stored. It would be interesting to consider whether this modular-
ization of DSW leads to a simpler deductive proof of correctness.

9. Related Work

Floyd was one of the first to propose using angelic nondetermin-
ism as a programming construct [7]. The concept appears also in
formal languages, e.g., in nondeterministic automata [14]. An-
gelic non-determinism also allowed abstracting specifications by
non-deterministically coordinating concurrent components [16].
In the rest of this section, we focus on work related to systematic
program development.

J-R. Abrial has presented a very successful methodology for
construction of event-based systems [1] and showed that the
same methodology works for pointer manipulating programs [2].
Abrial’s methodology starts with a declarative specification of
the desired program and gives a set of laws by which specifi-
cations can be translated to lower-level specifications until they
reach the level of basic program statements orchestrated by the
usual control-flow constructs. At each step, his methodology
asks a programmer to discharge a number of proof obligations,
some of which can be automated. However, the methodology is
intended primarily for programmers who are well-versed in the
use of automated theorem provers.

His derivation of DSW does not modularize the constituent
concepts of the backtracking structure, the graph, and the traver-
sal order [2]. He defines the backtracking structure as closely
tied with the traversal order: the structure is a list of nodes cur-
rently being visited. This characterization is then refined by im-
plementing the list as a rewiring of the graph. Therefore, the
content of the structure remains intimately linked with the graph
structure.

Angelic nondeterminism has been used in refinement-based
program development methodology proposed by Back, Wright,
Morgan, and others. Back and von Wright [3] simplified problem
decomposition in program refinement [11], using angelic nonde-
terminism to satisfy intermediate conditions that the programmer
would be able to spell out only later in the development process.

In contrast to deductive angelic refinement, our angelic pro-
grams are executable, as in Floyd [7]. This allows a test of the
correctness of angelic programs. If the test fails, we have con-
clusively proved that the angelic program is incorrect and cannot



be successfully refined. A passing test is not conclusive (we rely
on bounded model checking [5]), but the executable angel shows
us a demonstration of how to execute the program. Safe angelic
traces thus serve as demonstrations of what steps the angel takes
to execute the program, which has the benefit of increasing pro-
gram understanding.

Celiku and Wright [4] show how to refine angelic nondeter-
ministic statements to demonic ones, with the goal of being able
to refine them independently. In order to achieve this goal, they
prove, manually, sufficient postconditions that an angelic state-
ment must satisfy. In general, however, angelic correctness is es-
tablished with a proof that is obtained by effectively completing
the refinement process all the way to the deterministic program.
While such a deductive process provides a proof of the final
program, it does not seem to enhance programmer productivity.
Our approach changes the problem: we side-step the intermedi-
ate stage of obtaining an equivalent demonic nondeterministic
program. Instead, we aim to refine to a deterministic program
directly, which we achieve by making the choose operator exe-
cutable.

There has been a long tradition of specification-based pro-
gramming at Oxford University, and Morgan’s work represents
that school of thought. The Z programming methodology [19] is
closely related to that of Morgan. A complete description of re-
lated work in this tradition is well outside the scope of this paper,
but [11] is a good reference.

The work presented in this paper can be viewed as an evolu-
tion of the SKETCH project [18, 17]. In SKETCH, a program-
mer leaves syntactic “holes” in a program, which can later be
filled automatically by a family of expressions. SKETCH has
been shown to work very well in several application domains, in
particular bit-manipulating programs, in which it is easy to give
a specification of an unoptimized program but difficult to de-
velop a correct optimized program. One of the limitations of the
SKETCH work is that it requires a substantial amount of work
on the part of a programmer to write the incomplete program,
since holes are substitutes for only a very limited family of ex-
pressions. This not only is work for the programmer, but it also
creates the possibility of making human mistakes that can cause
a SKETCH synthesizer to not be able to fill in the holes. The
present work addresses both criticisms.

The work presented in this paper was in part inspired by the
work of Lau et al., who synthesize editing macro programs from
user demonstrations of executions (i.e., traces) of the desired
macros [9]. We realized that such demonstrations are useful not
only for synthesis but also for gaining understanding about an
algorithm that is under construction. In fact, if an oracle gave
the programmers a trace of the program that they are developing,
they might find it easier to debug the program as well as develop
it in the first place. Program development could then be viewed
as generalizing the algorithm from demonstrations. Our next
observation was that such oracular traces could be created by
angelic programs, which led to the work presented in this paper.

10. Conclusion

We have demonstrated that an executable implementation of an-
gelic nondeterminism may help in program development. First,
the programmer can evaluate hypotheses about his implementa-
tion strategy by testing whether his incomplete program can be
executed angelically. If angelic operators cannot complete the
program with values that lead to a successful execution, neither
will be the programmer, and so the program follows an infeasi-
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ble implementation strategy. Second, if an incomplete program
can be completed angelically, the successful angelic executions
may reveal steps that the incomplete algorithm should follow.
The traces computed by the angelic operators may thus lead the
programmer to an a-ha moment. Third, angelic operators support
refinement-based programming, where the programmer develops
the program gradually, by replacing angelic operators with pro-
gressively more deterministic implementations.

In contrast to angelic nondeterminism that is purely a proof
device, the ability to execute, test and observe angelic programs
allows the programmer to refine programs and develop abstrac-
tions, such as the parasitic stack, that seem difficult for humans
without the computational power of the oracle.
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