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1. Introduction

Today is the era of web applications. Google alone has brought
us Gmail, Google Maps, Google Docs, and Google Calendar, all
wildly popular. Similar offerings exist from Yahoo, Microsoft, Ap-
ple, Zoho, and a host of other software vendors. And of course we
cannot forget Facebook, YouTube, or Flickr.

The convenience the browser has brought to computing is hard to
overstate. Applications are whisked from faraway datacenters over
the Internet and onto our machines in the time it takes to click a
link. Data is effortlessly in sync and available from anywhere. From
the user’s perspective, software versions and upgrades have simply
ceased to exist. Web apps just work, regardless of your operating
system or processor architecture. The browser has delivered on
the thin client promise, and computing is more flexible, portable,
and low-maintenance than ever before. Soon, we are told, we’ll do
everything in the browser.

But if web applications offer all of these benefits, then why do na-
tive applications exist at all anymore? There are a number of fac-
tors: the work involved in porting large codebases to a new platform
and language can be tremendous, and the web’s reduced potential
for vendor lockin encourages a certain degree of inertia on the part
of incumbent players. Browser incompatibilities, user reluctance to
upgrade, and slow adoption of new standards make things difficult
even for new applications. If all these problems were overcome,
though, it still wouldn’t be feasible to write a credible competitor
to Adobe Photoshop, Autodesk Maya, or Ableton Live on the web
application stack available today, because the performance required
is just not available.

The browser doesn’t have just one performance problem, it has
many. Runtime performance of web applications is restricted by
the difficulty of optimizing JavaScript, by limitations on parallelism
imposed by the shared nature of the DOM, and by lack of access
to hardware acceleration features enjoyed by native applications.
Startup performance is impaired by the realities of application
delivery over a shared network and JavaScript’s delivery in source,
rather than compiled, form. For web applications to replace native
applications, we’ll need to solve or mitigate all of these problems.

In this report, we propose divide-and-conquer parsing as a tech-
nique to mitigate the impact on web application startup time caused
by the need to lex, parse, analyze, and compile JavaScript at page
load time. Web standards require that page rendering pause when
JavaScript code is encountered because its execution can affect
the context that the rest of the page is rendered in. JavaScript can
thus have a significant negative effect on page load time. Divide-
and-conquer parsing can greatly reduce this effect by partition-
ing JavaScript code into small, independent chunks which can be
parsed (and potentially analyzed and compiled) in parallel or on-
demand. The result is that JavaScript code can begin executing
sooner, the browser is able to resume rendering the page more
quickly, and the web application becomes responsive to the user
faster.

This report makes the following main contributions:

• Divide-and-conquer parsing, a generalization of existing tech-
niques for parsing text out-of-order

• A parallel divide-and-conquer parser capable of delivering
nearly 3x speedup on a machine with four hardware threads
in our tests

We also describe some other applications of divide-and-conquer
parsing:

• Lazy parsing, a technique for improving parsing performance
by avoiding work that isn’t immediately useful

• Speculative parsing, which extends lazy parsing by predicting
which work may be useful in the near future, allow laziness to
be combined with parallelism

The remainder of the report is organized as follows. We review
background information and discuss the limitations of traditional
parsers that we hope to address in section 2. Divide-and-conquer
parsing is introduced in section 3, and it is used to implement a
parallel parser in section 4. We evaluate an implementation of this
design in section 5. After discussing lazy parsing and speculative
parsing, other techniques which leverage divide-and-conquer pars-
ing, in section 6, we review related work in section 7. We summa-
rize the contributions of this report and conclude in section 8.

2. Background

To provide context for the following discussion, in this section we
review the parsing problem, the limitations of conventional parsers,
and the design constraints that led to our proposed solution. Section
2.1 summarizes the basics of parsing. We then describe the in-
order nature of efficient parsing algorithms and show the difficulties
involved in out-of-order parsing in section 2.2. We conclude this
section by exploring ways these difficulties can be overcome and
the tradeoffs of each approach in section 2.3.

2.1 Parsing

Parsers are programs that read a sequence of implicitly structured
symbols and produce a data structure that contains the same infor-
mation in an explicitly structured form that is easier for a computer
to manipulate. Conventionally, the symbols represent text — they
are either characters or words. They are imparted an implicit struc-
ture because the parser interprets them according to the syntax of
some language, such as English, first-order logic, or JavaScript.

A language’s syntax is described using a recursive system of rules
called a grammar. If we identify a language with the set of strings
that belong to that language — for example, if we identify En-
glish with the set of all valid English documents — then we can
think of a grammar as a concise description of that set which gives
rules for generating its elements instead of listing them explicitly.
To generate an element, one begins with a string containing only
an initial symbol (termed the grammar’s start symbol) and repeat-
edly applies the rules of the grammar. Each rule is of the form
α ::= β, where α and β are sequences of symbols; such a rule
means that when the string contains α, α can be replaced by β.
There can be more than one rule with α on the left-hand side, which
can be denoted using the short-hand notation α ::= β | γ; in this
case, the rule to apply can be chosen arbitrarily, allowing a sin-
gle grammar to generate many strings. Recursion occurs when β
contains α or can generate α through repeated rule application; a
recursive grammar can describe an infinitely large language. The
process of generating a string is complete when no more rules can
be applied, which occurs when the string contains no substring that
appears on the left-hand side of any rule.

A parser may use the grammar of a language to impose structure
on a string of symbols using two main strategies. In top-down
parsing, the parser simulates the process of generating a string in
the language. When there are multiple ways to proceed, the parser
makes a choice that is consistent with the sequence of symbols.
The parser’s choices can be summarized in a tree where an edge
exists from an α in one version of the generated string to the
each symbol in the β that replaces it in a later version. This tree
is called a parse tree; if the αs in the grammar are chosen to
describe meaningful syntactic units of the language (for example,
the subject and direct object of a sentence in English) then the parse
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tree conveniently describes the structure of the string it was created
from. Bottom-up parsing also generates such a parse tree, but it
works by looking for βs and replacing them with the corresponding
αs until the grammar’s start symbol is reached. The tree is thus
constructed from the leaves rather than from the root — hence the
term “bottom-up”.

Though both parsing strategies naturally produce parse trees, the
larger program making use of the parser may prefer a somewhat
different representation — for example, when parsing a mathemat-
ical expression it is useful to remove parentheses from the parse
tree, since the nesting they serve to express is already encoded in
the form of the parse tree itself. Parsers thus make use of “semantic
actions”, functions associated with each α in the grammar that take
an α vertex in the parse tree and return a domain-specific represen-
tation of that vertex.

The parsing concepts we have describe so far are very generic and
much more powerful than we need in practice for parsing com-
puter languages like JavaScript. We will restrict ourselves for the
remainder of this report to grammars with two special characteris-
tics. First, each α must consist of only one symbol, termed a non-
terminal, which is not among the symbols found in the language
itself, termed terminals; if a grammar has this property, it is de-
scribed as “context-free”. Second, each string in the language must
be generated by the grammar in exactly one way — that is, there
must be a one-to-one mapping between strings in the language and
parse trees produced by following the rules of the grammar — and
the parser must be able to determine the appropriate choices to gen-
erate the string while only considering a fixed number of symbols
per choice; a grammar with this property is described as “deter-
ministic”. Deterministic context-free grammars can be parsed effi-

ciently,1 and in practice most computer languages of interest can be
described by such grammars, including the languages used on the
web like HTML and JavaScript.

2.2 In-Order Parsing

Efficient parsing algorithms designed for use with deterministic
context-free grammars are traditionally in-order: they read symbols
from an input stream, interpret them in light of their internal state,
update that state, and invoke an appropriate semantic action to pro-
duce whatever sort of output is required by the larger application.
The in-order approach is simple and quite efficient, and deviating
from it can be costly in terms of performance. Consider the gram-

mar in Listing 1:2

1 A ::= b B | c C
2 B ::= x B | x
3 C ::= x C | x

Listing 1: A simple grammar.

This grammar generates the language {bx+ ∪ cx+} — that is, all
strings starting with a b or a c followed by one or more xs. An
application may intend different semantics for the xs generated
by B than for those generated by C, so it is important that the
parser recognize which kind of x it is faced with and execute the
appropriate semantic action. This will happen naturally if the parser
moves through the input in order. Consider the input bxxx, with the
parse tree shown in Figure 1a. The parser can see that the initial b
symbol must have been generated by the rule A ::= b B and will
parse the succeeding xs using the rule for B.

1 LR parsers can be used with any such grammar and run in time quadratic
in the length of the input.
2 We use the convention that the start symbol is the left-hand side of the first
rule.
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Figure 1: Parse trees.

Imagine, however, a parser that does not move through the input in
order; it might instead split the input into two fragments, bx and xx,
and attempt to parse xx first. It will immediately run into a problem:
how should the x symbol at the beginning of xx be interpreted?
It could have been generated by the rule for B or the rule for C,
and there is no information in this fragment that can resolve the
question. If the parser is allowed to read two characters backwards
in the input, into the previous fragment, it can find the b symbol and
understand how to proceed, but in the general case it might have to
read arbitrarily far, since there is no limit to the size of the strings
in this language. In this particular case the decision can be made by
examining the first symbol in the input, but things can get worse:

1 A ::= b B d | c C d
2 B ::= x B | A B | x
3 C ::= x C | A C | x

Listing 2: A grammar with nesting.

The grammar in Listing 2 allows nesting. Consider the input
bxcxdxd; the corresponding parse tree is shown in Figure 1b. In-
order parsing works in just the same way as before, but parsing the
input in arbitrary order is even more difficult here. Imagine that we
split the input into two fragments again: bxcxd and xd. How does
the parser know how to interpret the x symbol at the beginning of
xd? It can no longer simply check a symbol at a certain offset, like
it could with the previous grammar. It can’t even read backwards
in the input until it finds a b or a c; here it would first encounter the
c in bxcxd, suggesting that the x symbol was generated by the C
rule, but we know this is wrong because the d at the end of the first
fragment is generated after a C rule has been completely expanded.

To interpret the x symbol correctly, the parser must maintain a stack
as it reads backwards, pushing each d symbol onto the stack and
popping the stack when it encounters a b or a c, until it encounters
a b or a c while the stack is empty. Following this approach, the
parser pushes a d, pops it when it sees the c, and arrives at the b at
the beginning of the first fragment with an empty stack. This means
that the x symbol at the beginning of xd was generated by the B
rule.

In the general case reading backwards and manipulating a stack
like this is a lot of work, just to determine information that the
in-order parser gets “for free”. We may end up essentially parsing
the first fragment backwards before we can parse the second one
forwards, in which case it would clearly have been better just to
parse the fragments in order in the first place. Even worse, imagine
that the input had contained an additional level of nesting, so that
the first fragment became bxcxbxd and the second became xdxd.

2



Now there are two ambiguous xs in the second fragment, and we
have to work backwards twice to interpret them both correctly.

To parse fragments of the input in a different order than the usual
one, then, can be an expensive proposition if done naı̈vely. How-
ever, solving this problem will allow us to parse each fragment in-
dependently, in parallel or on-demand. We explore improvements
over the naı̈ve approach in the next section.

2.3 Out-of-Order Parsing

Parsing fragments of an input in arbitrary order requires that we
be able to reconstruct each fragment’s “initial state” — that is, the
state that an in-order parser would have had at the beginning of the
fragment. This state takes the form of knowledge about which rules
generated some or all of the current fragment, beginning in an ear-
lier fragment. Since there is no limit to the nesting depth recursive
rules may generate, the size of an initial state is unbounded in real-
world languages. We therefore refine the concept by noting that we
need only include information that is actually necessary to parse
the current fragment.

Since our focus is on deterministic context-free grammars, it’s
worth making this concrete in terms of the bottom-up LR[22]
parsers which are most often used to parse such grammars. In LR
parsers, state information is encoded in a stack; the top entry in
the stack represents the set of rules that could have most directly
generated the symbols at the current position in the input, the next
entry represents the set of rules that could have generated those
rules, and so on. Thus, a fragment’s initial state in an LR parser
consists of those n top-most elements on the stack which must be
consulted to successfully parse the fragment.

2.3.1 Naı̈ve Out-of-Order Parsing

In the previous section, we discussed a naı̈ve approach to parsing
out-of-order: work backwards from the start of the fragment until
the parser can uniquely determine the initial state. This method can
require, in the worst case, reading all the way back to the beginning
of the input, unneccessarily duplicating much of the work that will
be done to parse other fragments along the way.

2.3.2 Speculative Out-of-Order Parsing

Another alternative is to simply try every feasible initial state,
producing multiple parses for the same fragment. Once the final
state of the preceding fragment (and, transitively, every earlier
fragment) is known, the correct alternative can be selected, and its
parse tree can be joined to that produced by the earlier fragments.
This approach allows each fragment to be parsed independently as
long as a cleanup step is performed at the end, but like the naı̈ve
approach, it can be expensive.

Consider an LR parser. Every time the parser empties its stack
while parsing a fragment, it suddenly has no knowledge about
which rules could have generated the input it’s seeing, and must
guess what would have been on top of the stack if it had access to
the fragment’s initial state. It must always guess among at least two
possibilities — if there is only one possibility, after all, it’s not a
guess. Since the parser’s guess can affect the interpretation of the
rest of the fragment, each sequence of guessed choices forms a new
parse tree, and the number of such parse trees is exponential in the
number of guesses the parser must make.

Also problematic for this scheme are the limitations it places on
semantic actions; if the parser executes semantic actions while
constructing speculative parse trees, then the semantic actions must
not have any global effects (which are common for programming

languages which often track things like variables and types in tables
outside the parse tree) since there is no way to know at this point
which semantic actions are correct with respect to the true initial
state of the fragment.

There are some ways to mitigate these problems. The space require-
ments of storing an exponential number of parse trees can be made
linear in the length of the fragment if the parser records only in-
formation about which rules could have generated which portions

of the input.3 Unfortunately, the extra work is still exponential. We
can reduce its impact by statistical means — for example, we might
try the top n most likely alternatives for each guess, based on statis-
tics from real-world documents — or we can simply bet that most
guessed choices will fail quickly, but for our goal of improving per-
formance, exponential additional work seems less than ideal.

2.3.3 Conservative Out-of-Order Parsing

To avoid the costs of this guesswork, we may try a third approach:
the parser may scan forward through the fragment, looking for
subfragments that can be parsed without knowing the initial state.
The rest of the fragment can then be parsed when the final state
of the previous fragment is available, with the parse trees of the
subfragments merged in at appropriate places. Thus, this approach
uses out-of-order parsing for as much of the fragment as possible,
and in-order parsing where out-of-order parsing won’t work or is
too expensive.

2.3.4 Towards Divide-and-Conquer Parsing

We can eliminate in-order parsing totally if we run an initial pass
over the input to rewrite it in a form that is more amenable to out-
of-order parsing. It happens that LR parsers typically do not op-
erate on symbols that represent characters, but rather use symbols
representing larger units of meaning, like keywords in a program-
ming language. Thus, before an input consisting of characters can
be parsed by an LR parser, it must usually be translated into the
symbols that parser understands. This process is performed by a
program called a “lexer”. Since the lexer must rewrite the input
anyway, we can make it suitable for out-of-order processing with-
out needing to perform any extra passes. To do this, we modify the
lexer so that it identifies fragments of the input that can be parsed
independently and separates them out. This is performed hierarchi-
cally, so that the lexer identifiers fragments not just within the input
but also within other fragments. When the lexer finds a subfragment
that can be parsed independently within a larger fragment, it stores
that subfragment separately and replaces it in the larger fragment
with a special “reference symbol”.

The reference symbol serves two roles: it identifies the rule that
generated the subfragment it replaces, so that the larger fragment
can be parsed without inspecting the subfragment, and it contains a
reference to the memory location that will store the subfragment’s
parse tree once it is constructed. With this arrangement, the input is
decomposed completely into fragments that can all be parsed out-
of-order, and no reassembly step is necessary since the reference
symbols supply the edges that would otherwise be missing from the

parse tree after each fragment is parsed separately.4 The fragment
generated directly by the start symbol becomes the “root fragment”,
and the reference symbols ensure that its parse tree becomes the
complete parse tree of the input once every fragment has been
parsed.

3 This is the encoding used by chart parsers, such as the Earley and packrat
parsers.
4 The tree formed by the reference symbols is therefore a minor of the
original parse tree.
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The problem with this final method is implicit in the nature of
the reference symbols: since they encode a subset of the edges in
the parse tree, we can see that dividing the input into fragments
and linking them with reference symbols in this manner must
essentially require parsing the input! If we need to parse the input
in-order to parse it out-of-order, we haven’t accomplished much.
However, there is a way out of this predicament: we can divide the
input into independent fragments using simple criteria that the lexer
can check without performing any parsing. In section 3, we discuss
how this can be achieved in general and give a concrete example
for JavaScript.

3. Divide-and-Conquer Parsing

Divide-and-conquer parsing (“DAC parsing”) is an out-of-order
parsing technique appropriate for use with deterministic context-
free grammars. A DAC parser divides its input into fragments such
that each fragment can be parsed independently using standard,
efficient parsing algorithms. The fragments are augmented with
metadata in such a way that the same parse tree (or whatever data
structure is constructed by semantic actions) can be automatically
constructed when parsing the individual fragments, with no sepa-
rate pass required to join the fragments’ subtrees together.

In this section, we’ll discuss the details of DAC parsing and how
a DAC lexer and parser differ from conventional designs. To
make our discussion concrete, we will focus our examples on the
JavaScript programming language. Consider the JavaScript pro-
gram in Listing 3:

1 var a = 1;
2 var f = function(x)
3 {
4 function dbl(n) { return n * 2; }
5 return x + dbl(x);
6 }
7 var g = function(y) { return y - 2; }
8 var b = g(f(a));

Listing 3: A simple JavaScript program.

This program is so small that almost any parsing technique can
parse it efficiently, but it has enough complexity to serve as a use-
ful example input for a DAC parser. As we discuss the transforma-
tions the parser applies, we’ll illustrate each one with successive
transformed versions of this program.

The remainder of this section is organized as follows. Section 3.1
presents the design of a DAC lexer. The details of implementing
such a lexer depend on the evaluation strategy chosen for the parser;
we explain this choice and its effects in section 3.2. DAC parsers
use reference symbols to avoid the need for explicitly combined the
results of parsing the individual fragments; details are provided in
section 3.3. Section 3.4 concludes with a discussion of the DAC
parsing component itself.

3.1 Divide-and-Conquer Lexing

Parsing for deterministic context-free grammars conventionally be-
gins by running the input, in the form of textual characters, through
a lexer, which produces a transformed version of the input repre-
sented in terms of symbols. These symbols are selected from the
terminals of the grammar, and are often augmented with metadata.
For example, a grammar for the JavaScript language might use one
symbol for all numeric literals, with the metadata indicating the
particular number — 2, for example. The actual parsing work is
then performed on these symbols, rather than on the original text.

This arrangement is fortuitous for a DAC parser, because it needs
to identify independent fragments of the input — that is, fragments
that do not require any initial state to parse correctly — before it
can parse them. We achieve this without requiring an additional
pass over the input by performing this work in the lexer. The lexer
is modified to recognize sequences of characters that indicate the
beginning and end of independent fragments, and it extracts those
fragments to be parsed independently.

But how does the lexer find the fragment boundaries? Lexers are
conventionally regular automatons, with the recognition power of

a regular expression.5 This ensures that they are fast, taking time
linear in the input, but it also means that they have no notion of re-
cursion and so cannot recognize nested structures. If the fragments
we are interested in are not nested inside one another, and the sym-
bols that mark their boundaries cannot also occur inside them, then
we don’t have a problem. Unfortunately, few languages of real-
world interest make things so easy on us. Nesting is omnipresent in
programming languages, JavaScript included.

If we were able to decompose JavaScript programs into fragments
with no restrictions, we’d like our fragments to be large enough that
they make as much work as possible available for semantic actions
to do without requiring the inspection of subfragments which may
not have been parsed yet. We’d also like our fragments to provide a
fine-enough decomposition on real-world inputs that they are useful
for applications like parallelism or laziness. Finally, it would be
ideal if fragments are generated entirely by the rules for a single
nonterminal, so that we can parse them independently with the
same grammar by using that nonterminal as a start symbol. For
JavaScript, and many other programming languages, functions are
a natural fragment granularity given these requirements.

JavaScript functions begin with the function keyword followed
by a sequence of other symbols which vary depending on the
details of the function definition. The sequence always ends in a
left brace ({). A right brace (}) at the same nesting level as the
left brace terminates the function, but nested left and right braces
may occur within the function. For the lexer to recognize functions,
then, it must be able to recognize nested constructions. Regular
lexers cannot do this, but DAC lexers can, because they make use

of a counter.6 The counter is incremented when a left brace is
encountered, and decremented for a right brace. When the lexer
encounters the sequence indicating the beginning of a function, it
records the current nesting level. Every time it updates the counter,
it checks if the nesting level has returned to its value at the start
of the function. If so, then the lexer has arrived at the end of the
function, and has identified an independent fragment.

In JavaScript, functions can be nested, which means that this sim-
plistic approach isn’t quite enough. Indeed, because functions are
often used for namespacing in JavaScript, this mechanism will of-
ten reduce a JavaScript library to only a couple of fragments. To
support hierarchical functions, the DAC lexer uses a “fragment
stack”. Every time it locates the beginning of a function, corre-
sponding to the beginning of an independent fragment, it pushes the
current nesting level onto the stack. On counter updates it checks if
the current nesting level is the same as the value recorded on top of
the stack; if so, the lexer has arrived at the end of a function, and it
pops the stack.

5 This is not the same as a Perl-style regex, which are considerably more
powerful and correspondingly asymptotically slower.
6 This means that they are no longer regular automatons; they can instead
be regarded as nested word automatons.[18]
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3.2 Symbol Buffers and Evaluation Strategies

A normal lexer uses one of two approaches for storing the symbols
it creates, determined by the evaluation strategy of the parser it is
paired with. If it is used with a deferred parser, which won’t begin
parsing until the entire input is lexed, it stores all of the symbols
in the same large buffer in the order they are generated. For an
eager parser, which consumes each symbol as soon as it becomes
available, it uses no symbol buffer at all.

If a DAC lexer is paired with an eager parser, it too requires no
symbol buffer. A deferred parser, however, requires a different ap-
proach; the operation of the parser will be much simpler (and much
more cache-friendly) if the symbols for each fragment are arranged
contiguously in memory. Though a normal lexer cannot support it,
a DAC lexer can also be used with a lazy parser, which parses each
fragment only when it must do so because the fragment’s parse tree
is needed. Lazy parsers also benefit if fragments are contiguous.

Unfortunately, hierarchically nested fragments do not naturally ar-
rive arranged contiguously in memory. If the symbols for every
fragment are written to memory in the same order they appear in
the input text, many fragments will be separated into several pieces
scattered through memory. Consider the input-order layout of the
JavaScript program in Listing 3, shown in Figure 2. The fragment
representing the function f is separated into two pieces, and the
root fragment is separated into three!
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Figure 2: Hierarchically nested fragments are noncontiguous if
stored in input order.

To solve this problem, we could dynamically allocate a new buffer
to store each fragment into. However, dynamically allocating mem-
ory is expensive, and since we cannot know the final size of a frag-
ment until we are done processing it, we have to either perform
expensive resizing operations or allocate much more memory than
we really need, both of which increase memory fragmentation and
harm performance.

We can avoid allocating a buffer for each fragment by noting that
because our fragments are properly nested, a new fragment at a
given nesting depth will never begin until the previous fragment
at that nesting depth has ended. If we allocate one buffer per
fragment stack entry, and store the symbols for a fragment into
the buffer on top of the stack, every fragment can be contiguous.
If the fragment stack entries are retained when the stack is popped
and reused the stack is pushed, the number of buffers that must
be allocated is equal to the maximum number of nested fragments
encountered in the input. Although these buffers will have to be
resized occasionally, the usual approach of exponentially growing
the buffer on every resize will keep the total number of resizes to a
minimum, and copying can be avoided with an appropriate choice

of data structure;7 the same issue and the same solutions arise in the
conventional deferred parsing case. With this approach, the code in
Listing 3 will have the memory layout shown in Figure 3.

root

f

dbl

f

root

g

rootRoot

Depth 1

Depth 2

var a
 = 1;

var f 
=

functio
n(x) {

functio
n dbl(n

) { 
return n * 2

; }

return x + dbl(x
); }

var g
 =

functio
n g(y) { 

return y - 2
; }

var b
 = g(f(a

));

Figure 3: Hierarchically nested fragments are contiguous if frag-
ment stack buffers are used.

3.3 Reference Symbols

When a nested fragment is separated out from its parent, the hole
left in the parent fragment cannot simply remain empty. The parser
may perceived these holes as syntax errors; even if it doesn’t, it
will produce an incorrect parse tree that does not include the nested
fragment’s subtree.

Instead, when the DAC lexer separates a nested fragment from
its parent, it substitutes a reference symbol. Reference symbols,
from the perspective of the parser, are just normal symbols — new
terminals that we have introduced into the grammar. Each reference
symbol is mechanically introduced into the grammar; whenever
a nonterminal that generates fragments appears in the right-hand
side of a parse rule, it is replaced by its own distinct reference
symbol. Because the reference symbols are terminals, the parser
can complete its task without ever consulting the nested fragments
they replace. In this way the grammar is partitioned into two or
more subgrammars, one for each nonterminal that generates a type
of fragment. The original start symbol can be regarded as creating a
subgrammar in the same way; its only distinction is that it happens
to generate the root fragment.

A reference symbol also includes as metadata a “subtree pointer”
that points to the root of the parse tree of the subfragment it
replaces. This parse tree may not yet be constructed, which can
be indicated by a special value stored at the location the subtree
pointer indicates. When the subfragment is parsed, the subtree’s
root node is stored at the location indicated by the subtree pointer,
so it will always become valid by the time parsing is complete.
The DAC parser knows where to store the root node because it is
a location agreed upon in advance — for example, space may be
reserved at the beginning of each fragment to hold the root node.
In this way, the parse trees of all fragments are automatically and
implicitly joined to form the complete parse tree without the need
for any separate pass to combine them.

7 An unrolled linked list is one possibility.
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In the case of JavaScript, we have only one type of fragment: the
function. If functions are generated by the nonterminal Function
in the grammar, as in Listing 4, then we may introduce the reference
symbol functionref by transforming the grammar as shown in
Listing 5.

1 Program ::= Expressions | Statements
2 ...
3 Expression ::= MathExpression | LogicExpression

| Function
4 Statement ::= LoopStatement |

ConditionalStatement | Function
5 Function ::= function Arguments { Body }
6 ...

Listing 4: A portion of a JavaScript grammar.

1 Program ::= Expressions | Statements
2 ...
3 Expression ::= MathExpression | LogicExpression

| functionref
4 Statement ::= LoopStatement |

ConditionalStatement | functionref
5
6 Function ::= function Arguments { Body }
7 ...

Listing 5: After reference symbols are introduced.

After the DAC lexer processes the JavaScript code in Listing 3,
its representation changes from a string of characters to a group
of fragments, each containing a sequence of symbols. The original
nested structure of the code is expressed implicitly by the reference
symbols which the lexer has introduced. If the lexer keeps the
symbols for fragment continuous using fragment stack buffers, the
resulting data structure will resemble Figure 4.

var id: a = num: 1 ; var id: f = var id: g =

var id: b = id: g ( id: f ( id: a ) ) ;

function ( id: x ) { return id: x + id: dbl ( id: x ) ; }

function ( id: y ) { return id: y - num: 2 ; }

function id: dbl ( id: n ) return id: n{ * num: 2 ; }

Root

Depth 1

Depth 2

Figure 4: Output of the DAC lexer. Circles represent reference
symbols, diamonds represent placeholders for parse tree roots, and
the arrows connecting them represent subtree pointers..

3.4 Divide-and-Conquer Parsing

Divide-and-conquer parsing is a system that includes both lexing
and parsing components. Most of the changes from standard prac-
tice are found in the lexer; modifying a parser to work with the
DAC lexer is not much harder than integrating it with any other
lexer. This is an advantage of this approach to out-of-order pars-
ing; once the input can be divided into fragments, any algorithm
that can handle the grammar can be used to parse the fragments. In
this report we focus on LR parsers, but LL parsers or even ad-hoc
handwritten parsers can be used.

One of the few restrictions is that the parser must be able to store
the root node of the parse tree it generates in a location chosen by
the lexer. Even if a parser does not natively support this feature,
though, a wrapper function can usually correct the problem.

Some fragments produced by the DAC lexer may need to be parsed
with a different start symbol than the root fragment requires. Some-
times the independently parseable units of the grammar can use the
same start symbol that the original grammar used, which is very
convenient. JavaScript has this property if fragments contain only
function bodies, because the statements inside a function can be
parsed in the same way as the statements at the outermost level of
the JavaScript code. If the fragments are selected in such a way that

this won’t work, the simplest approach is to generate one parser8

for each needed start symbol. The parser itself can also be modi-
fied to allow the use of different start symbols, which may improve
performance by putting less pressure on the CPU cache. This ap-
proach abandons the benefit of using an unmodified off-the-shelf
parser, though, and it is unlikely to produce any performance gains
unless there are many different types of fragments.

The evaluation strategy used by the parser is dictated largely by
code in the larger application. Deferred evaluation, for example, is
implemented by applying the parser to every fragment produced
by the lexer after lexing is complete. Lazy evaluation requires that
the application call the parser only when it needs the contents of
a particular fragment. Eager evaluation requires only that the lexer
call the parser directly whenever it has work for the parser to do.

The semantic actions called by the parser to construct the parse tree
may require a little more customization than the parser itself in the
face of changing evaluation strategies, though. In particular, with
the eager strategy, semantic actions can assume that any subfrag-
ments have been parsed, since a child fragment will always finish
lexing before its parent, and can inspect their parse trees. With the
other strategies, fragments may be parsed in any order, so semantic
actions must be written with the possibility that the parse trees of
subfragments may not be accessible.

Divide-and-conquer parsing is really just a foundation. It’s a
generic mechanism for parsing out-of-order that opens up many
parsing evaluation strategies that aren’t possible with in-order pars-
ing. It’s the evaluation strategies that can provide the real bene-
fit, though, by improving parsing performance or by reducing the
amount of work that the parser has to do. The main contribution
of this paper is a parser that takes advantage of multiple hardware
threads to speed up parsing; it’s presented in section 4. We explore
some of the other benefits DAC parsing can provide in section 6.

4. Parallel Parsing

A divide-and-conquer parser can separate its input into fragments
that can be parsed in any order. Once this foundation is available,
it’s not hard to build a parallel parser on top of it: divide the
fragments between the available hardware threads and parse them
concurrently. As with most projects involving parallelism, however,
getting good speedup is more difficult than it seems.

In this section we present a design for a parallel divide-and-conquer
parser. We begin by briefly reviewing our experiences with the most
obvious approaches in section 4.1. Most of the work of implement-
ing a parallel DAC parser takes place in the lexer; we present the ba-
sic design in section 4.2. Reference tables, which allow each thread
to combine its work into the final parse tree, are presented in sec-
tion 4.3. Finally, issues related to the parser and semantic actions
are discussed in section 4.4.

4.1 Parser-Only Parallelism

The parallel divide-and-conquer parser design presented in this
report employs a multithreaded lexer instead of the more obvious

8 Or one copy of the parser data structures, for data-driven parsers.
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approach of using a single-threaded lexer to create fragments that
can be parsed in parallel in other threads. The problem with the
obvious approach is that generating fragments sequentially fast
enough to keep several hardware threads constantly supplied with
useful work is very difficult. The result is that all of the variations
of this approach we tried delivered poor performance.

4.1.1 Static Load Balancing

After the DAC lexer completes execution, it returns a list of frag-
ments. These fragments are then distributed evenly among the
available hardware threads. This is the simplest strategy from an
implementation perspective, but it fails to produce useful speedup.
However, if we ignored the time it took the lexer to run, and com-
pared the time required to parse the fragments in one thread versus
that required for four threads, we observed a speedup of about 2x
for a 4K test file, and around 3.4x for our test files over 100K. This
approach does produce a great deal of parallelism, then — it’s just
that none of the other threads get anything done while the main
thread is running the lexer. Since lexing is much faster than pars-
ing, this might be a viable approach with large enough inputs, but
it wasn’t effective at the input sizes we target in this report.

4.1.2 Dynamic Load Balancing

We implemented a revised DAC lexer using Apple’s Grand Cen-
tral Dispatch library, which provides a task queue abstraction for
managing thread pools. Submitting a task is very cheap with this
library, requiring only 15 CPU instructions[1]; given this figure, it
seemed reasonable to create a task for each fragment as soon as the
lexer finished creating it. Unfortunately, the overall overhead in-
volved is such that we observed no speedup, despite fully utilizing
all cores in our test machine. Larger-grained tasks didn’t help; the
synchronization between threads required by the task queue made
this approach unworkable for the input sizes we are interested in.

4.1.3 Speculative Load Balancing

To eliminate any requirement for synchronization, we implemented
a DAC lexer that simulated static load balancing without waiting for
the input to be lexed completely. It assumed that the total number
of symbols an input file will generate is a fixed fraction of the
input’s length; it could then keep track of the number of symbols
actually generated and spawn a thread as soon as a fair share of
work becomes available. It retains the last share of parsing work
for itself.

Given a reasonable choice of ratio between symbols and input

length,9 this method yields a speedup of as much as 2.3x for the
input sizes we tested. This is a great improvement over the previous
methods, but it still exploits only a little over half of the thread-level
parallelism available on our quad-core test machine. The limited
speedup is chiefly caused by the significant average delay until a
parsing thread starts; on a quad-core machine at least one thread
will be idle until 3/4 of the input has been lexed. Unfortunately,
subdividing the work further so that tasks were available more
frequently did more harm than good in our tests.

4.2 Parallel DAC Lexing

Our parallel DAC parser design obtains concurrency from both
parsing and lexing. The input is split into blocks, distributed evenly
among the available hardware threads, and a separate lexer runs on
each thread. Each lexer locates every independent fragment it can

9 We found that 0.35 was effective for our tests.

find in its block, lexes it, and parses it while the symbols are still in
the CPU cache.

Each lexer is assigned a block of the input. The block that starts
at the beginning of the input is lexed using the same approach as
a conventional DAC lexer with an eager evaluation strategy. The
other lexers have to work differently because they are confronted
with the problem of missing initial state that we describe for parsers
in section 2.3. However, because lexers are so much simpler than
parsers, and nesting is not an issue because symbols cannot contain
symbols, the problem is less severe. The lexer uses essentially the
same strategy as a conservative out-of-order parser (section 2.3.3)
— it searches forward through the input, locating fragments that it
believes can be lexed and parsed independently.

In the case of JavaScript, the lexer searches for the string “func-
tion” in its section of the input, which it speculates corresponds to
the JavaScript keyword function. It attempts to lex the input start-
ing at that location in the same way that a normal DAC lexer would,
parsing the resulting symbols immediately if it finds the right brace
that should terminate the function. If parsing succeeds, the lexer
continues searching for “function” starting from just after the ter-
minating right brace. If lexing or parsing fails, however, the lexer
can establish little other than that it could not recognize a function
at that particular point in the input; in this case, it resumes searching
immediately after the “function” string that led it astray.

In this way, each lexer will lex and parse every independently
parseable fragment that lies within its block. Unfortunately, a
JavaScript lexer runs the risk of being mislead into parsing func-
tions that do not really exist. If a comment spans a block boundary
and the portion in the later block contains a valid JavaScript func-
tion, there’ll be no way to distinguish the commented function from
one that is actually used. The same problem can occur with func-
tions embedded in strings or regexes. Even though this is possible,
however, it’s unlikely to be a problem in practice. Functions embed-
ded in strings and regexes are rare, and commented-out functions,
while not unlikely, are a low risk in production JavaScript code
due to widespread use of minification (discussed in more detail in
section 5).

4.3 Reference Tables

As a lexer parses fragments, it records the subtree pointers of top-
level fragments in its “reference table” so that other lexers can
access them. In the same way that a reference symbol connects
the parse trees of different fragments, a reference table connects
the parse trees of fragments originating in different blocks. A top-
level fragment is either the root fragment or a fragment which is
not embedded in another fragment that starts in the same block;
these are the only fragments that are needed to reconstruct the
entire parse tree, since they contain reference symbols that connect
them to all the fragments nested inside them. Each entry in the
reference table contains three values: the subtree pointer for the
corresponding fragment, the index in the input where the fragment
starts, and the index where the fragment ends.

After a lexer records information in its reference table, it never
looks at it again; the information in the table is exclusively for the
benefit of other lexers. Every lexer begins execution with pointers
to the reference tables of the other lexers. When a lexer encounters
the end of a block while lexing a potential fragment, it begins to
read from the reference table of the lexer which owns the new block
it has entered. Every time the lexer encounters a subfragment in
the new block, it advances to the next entry in the reference table
and checks it to obtain the subfragment’s parse tree and ending
index. This allows the lexer to insert a reference symbol for that
subfragment into the fragment it’s working on and skip over it
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without repeating any work. Since the subfragment can be large,
and may itself contain many subfragments, this can allow the lexer
to jump forward quite far in the input.

The reference table records potential fragments that parsed success-
fully, which is a superset of the fragments that a normal lexer would
see. In a scenario like the JavaScript case where a function is em-
bedded in a comment that spans a block boundary, as discussed in
4.2, the reference table may contain a superfluous entry. A lexer
coming from a previous block and reading that reference table is
likely to have seen the beginning of the comment and ignored the
embedded function. When it accesses the superfluous reference ta-
ble entry, then, it will be to obtain the subtree pointer for some
function located later in the block. Checking the starting index al-
lows it to detect this situation and move on to later entries in the
table, ensuring that the reference symbols the lexer creates refer to
the right parse trees.

Reference tables are not protected by any kind of lock. They are
write-once data structures that do not have to support concurrent
updates, and every value in an entry is word-sized, so that reads

and writes of values are atomic.10 All that is required is to detect if a
value has already been written or not. To allow this, reference tables
are zeroed out before parsing starts. Reading any value is accom-
plished by busy-waiting, retrying over and over until the value’s

contents are no longer zero11. The implementation is structured so
that reading a value from a reference table entry is a blocking oper-
ation; this simplifies the design of the rest of the lexer.

Reference tables have a fixed size, since if a thread resized its
reference table it could expose other threads to intermediate states
or unpredictable copying delays. To accomodate large numbers of
top-level fragments safely, reference tables have a reserved entry
that indicates where the next part of that reference table is stored,
much like a linked list. Other lexers know when a reference table
has run out of space because all reference tables are the same size;
when they’ve read enough entries, they can jump to the next part
of the reference table by reading the reserved entry in the same
blocking fashion that’s used for reading any reference table value.

Reference tables provide two services to a lexer reading their en-
tries; they give it access to parse trees created by other threads, and
they let it skip over large parts of the input. Though other threads
make use of them, these services are employed the most by the
lexer handling the root fragment, which must always traverse the
entire input. Few other fragments cross block boundaries; for ex-
ample, in our ejdesktop test input (see section 5), which is one
of the largest at 1.3 MB, only 5 of 3948 fragments did so. The root
fragment always spans every block, but because most content is in
its child fragments, the lexer handling it is able to skip over most of
the input from each block.

To understand the association between reference table entries, frag-
ments, and blocks, it may help to have a concrete example. Figure
5 demonstrates how entries are added as lexers progress through a
small JavaScript program which has been divided into three blocks.

In Figure 5a, no lexer has encountered any fragments yet, and all
reference tables are empty. In Figure 5b, each lexer has reached the
end of its own block. No reference table entries are yet filled in.
The first lexer has finished parsing function f , but because the first
block contains the root fragment, f is not top-level and does not get
stored in the reference table.

10 At least on recent x86 architectures.
11 To implement this in C, reference tables must be accessed through
volatile pointers

function f(x) { return 0; } function g(y) { return function h(z) { return 1 }; }

Block 1 Block 2 Block 3

Reference Tables

(a)

function f(x) { return 0; } function g(y) { return function h(z) { return 1 }; }

Block 1 Block 2 Block 3

Reference Tables

(b)

function f(x) { return 0; } function g(y) { return function h(z) { return 1 }; }

27 78

Block 1 Block 2 Block 3

Reference Tables

(c)

function f(x) { return 0; } function g(y) { return function h(z) { return 1 }; }

0 78 27 78

Block 1 Block 2 Block 3

Reference Tables

(d)

Figure 5: Blocks and reference tables. Wedges represent lexers;
diamonds represent subtree pointers.

In Figure 5c, the second lexer has reached the end of the input. It
has fully parsed function g, which began in its own block, so Block
2 now has a reference table entry filled in. The entry is associated
with the block where the function starts, where the first lexer will
read it once it becomes available, allowing it to jump to the end of
the input. The second lexer also parsed function h; again, however,
it isn’t top-level.

Finally, in Figure 5d all three lexers have made it to the end of the
input. Only now does Block 1 get an entry in its reference table; this
entry is for the root fragment, which spans the whole input. Block
3 never gets an entry because no function starts in that block.

The larger program which employs the parallel DAC parser can get
access to the full parse tree by reading the root fragment entry from
Block 1’s reference table. In a production implementation, a simple
wrapper function could be used to make the parse tree available
without exposing the internal details of the parallel DAC parser’s
implementation.

4.4 Parallel DAC Parsing

One advantage of the scheme presented here is that we keep the
complexity in the lexer. This is advantageous from a complexity
perspective because lexers are simpler than parsers, and it allows
us the same flexibility to use almost any parser that we have with
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a normal DAC lexer. This means that there is little to say about
the parsing process itself in a parallel DAC parser; the parsing
algorithm doesn’t need to be aware of concurrency at all.

Indeed, the semantic actions don’t even need to be aware of con-
currency unless they touch global state. Each thread uses an eager
evaluation order, in which every fragment is parsed as soon as it’s
lexed. Furthermore, a fragment is never completed and parsed un-
til its children have finished being parsed. This means that parse
trees produced by child fragments are available for use in the se-
mantic actions of the parent fragment. With the other approaches
to parallel DAC parsing described in section 4.1, this could not be
guaranteed, because although a parent fragment would always be
constructed after its children, there would be no reference table-
like mechanism preventing the parent from actually being parsed
first.

This section has presented a design for a parallel divide-and-
conquer parser, but it hasn’t made any claims as to its performance.
We tackle that question in section 5.

5. Evaluation

The parallel divide-and-conquer parser is intended to improve
JavaScript parsing performance, resulting in a better web brows-
ing experience for users. In this section, we investigate how well it
has achieved this goal by comparing its performance with that of
three open source parsers:

ANTLR[28] 3.3 is a widely used lexer and parser generator, in-
tended to have a flexibility and ease of use that makes it suitable
for rapid development and teaching. ANTLR generates an LL(*)
parser, which is an infinite lookahead version of the more widely
known LL(k) top-down parsing algorithm. ANTLR the parser used
in the open source JavaScript interpreter Jint[2]. ANTLR can gener-
ate code in many languages, including Java, C#, and C++; however,
an ANTLR grammar definition generally includes semantic actions
written in a particular language, which means that most ANTLR
grammars are not language agnostic. To evaluate ANTLR we use
a BSD-licensed JavaScript grammar[3] which compiles into Java
code; we execute the code using OpenJDK[4] 1.6.0’s client VM.

Nitro[5] is the JavaScript engine used in recent versions of WebKit[6].
The version we evaluate in this report is from WebKit 533.19;
it uses a parser generated by GNU Bison[7] 2.4.1, paired with
a lexer generated by Flex[8] 2.5.35. Bison can generate either a
LALR parser, a member of the LR family of bottom-up parsing
algorithms, or a GLR parser, which generalizes LR parsing to al-
low nondeterminism and ambiguity. The grammar used in Nitro
is LALR; our implementation uses a modified version of the same
grammar, although we naturally do not use the same lexer or parser.

SpiderMonkey[9] is Mozilla’s JavaScript engine, used in Firefox
and many other applications. SpiderMonkey uses a custom, ad-hoc
JavaScript lexer and parser written in C++ instead of relying on a
parser generator. We evaluate version 1.8.5.

All software was executed on a 3 GHz quad-core AMD Phenom
II with 512 KB L2 cache per core, running Ubuntu Linux 10.10.
Experiments that measurement time are always run 11 times for
each input, with the first run ignored; the reported value is the
arithmetic mean of the remaining runs.

We present our test inputs in Table 1. hello is a simple JavaScript
program with a single function that prints “Hello world!” and exits;
it’s the only input created just for this report. dojomob, jquery,
and prototype are widely-used real world libraries for creating
rich web applications with JavaScript. All are structured as a base
library which can be combined with various modules or plugins;

our test input consists only of the base library. yui and closure
are similar libraries created by Yahoo! and Google respectively.
They differ from the other libraries in that there is no canonical
base library; all code is either loaded dynamically or “baked” into
a custom library containing only what is needed for a particular ap-
plication. Our test inputs consist of all modules from the standard
distributions of these libraries; this approach is somewhat unrealis-
tic, as few applications today are likely to use all the modules these
libraries provide, but as web applications increase in complexity
code of this size is likely to become more prevalent. box2d is a
physics library frequently used for implementing JavaScript sim-
ulations and games. jqcal and ejdesktop are demo web appli-
cations build using the jQuery and ExtJS frameworks respectively;
they are representative of the kinds of applications these frame-
works are made to facilitate.

“Minification” is a common technique in JavaScript development
which reduces bandwidth costs, improves page load time, and ob-
fuscates code to protect the intellectual property of its creators. All
whitespace and inline comments are removed from the source code,
and any local identifiers are replaced with generated names that use
as few characters as possible. Since this technique is standard in the
real world, we used minified versions of inputs whenever a choice
was available; all of the libraries listed above except for box2d are
minified. hello, jqcal, and ejdesktop are not minified.

5.1 Results

We summarize the results of our experiments in Table 2. Parsing
times for each input are compared for each of the parsers in Fig-
ure 6. Because the times range from tens of microseconds to sec-
onds, the graph is presented in a log scale. We depict the speedup
achieved by the parallel divide-and-conquer parser on each input in
Figure 7.
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Figure 6: Parsing times for all parsers and inputs, in milliseconds.
Log scale.

ANTLR is clearly the poorest performer. Its performance problems
are not exclusive to Java code; though we do not present the re-
sults here, our experience with the Jint JavaScript interpreter, which
uses an ANTLR gramar that targets .NET, has been quite similar.
Though we do not investigate the details here, its high memory
usage is suggestive — while none of the other parsers ever even
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Input Name Size Description

hello Hello World 82 B Simple “Hello World” JavaScript program
dojomob Dojo Mobile[10] 1.6 35 kB Mobile JavaScript GUI toolkit
jquery jQuery[11] 1.6 89 kB Popular JavaScript library

prototype Prototype[12] 1.7 160 kB JavaScript web application framework
jqcal jQuery Week Calendar[13] Demo 1.2.3-pre 298 kB Calendar management web application demo, based on jQuery 1.3.2
box2d Box2D.js[14] 0.1.0 381 kB JavaScript physics engine
yui YUI[15] 3.3.0 736 kB Yahoo!’s JavaScript web application library

ejdesktop ExtJS Desktop[16] Demo 1.3 MB Demo simulating a desktop user interface, based on ExtJS 3.2.1
closure Closure[17] r903 4.0 MB Google’s JavaScript web application library

Table 1: Test inputs for evaluating parser performance, arranged in order of size.

Time (milliseconds)
Parser hello dojomob jquery prototype jqcal box2d yui ejdesktop closure

ANTLR 21.54 171.21 375.87 368.08 684.28 702.09 1848.73 1762.34 5498.5
Nitro 0.07 3.37 10.84 9.86 27.12 25.77 74.85 ms 75.34 330.51
SpiderMonkey 0.14ms 2.69 8.97 8.64 18.61 18.95 53.59 53.28 213.86
PDAC (1) 0.11 8.45 25.13 22.92 60.40 56.22 153.66 139.54 574.16
PDAC (2) 0.32 (0.34x) 9.61 (0.88x) 18.02 (1.39x) 16.24 (1.41x) 38.41 (1.57x) 39.64 (1.42x) 79.28 (1.94x) 82.10 (1.70x) 476.15 (1.21x)
PDAC (3) 0.41 (0.27x) 7.38 (1.14x) 12.95 (1.94x) 11.63 (1.97x) 27.22 (2.22x) 33.04 (1.70x) 61.34 (2.51x) 66.44 (2.10x) 440.14 (1.30x)
PDAC (4) 0.47 (0.23x) 6.25 (1.35x) 11.06 (2.27x) 9.75 (2.35x) 20.51 (2.94x) 32.26 (1.74x) 54.01 (2.85x) 62.44 (2.23x) 422.94 (1.36x)

Table 2: Summary of experimental results. For the parallel DAC parser, the number of threads used in each trial is indicated in parentheses.

reach 100 MB of peak memory usage, ANTLR crosses that thresh-
old even for jqcal, an input less than 300 K in size, and it exceeds
500 MB for closure. Making such large allocations for such small
problem sizes is bound to affect performance negatively.

Nitro and SpiderMonkey are both fast, with SpiderMonkey hav-
ing a 25 – 30% edge on larger inputs. SpiderMonkey has a cus-
tom, hand-tuned parser, which likely accounts for some of the dif-
ference. Nitro’s parser is data-driven, while in SpiderMonkey the
parser is implemented directly in code; this design choice alone can
make a significant difference in performance. Another contribut-
ing factor is the implementation of semicolon insertion, a feature
of JavaScript that allows programmers to omit semicolons that are
required by the language’s grammar. Nitro implements semicolon
insertion within the limitations of Bison partially by detecting parse
errors that could have been caused by a missing semicolon and
retrying recent parsing steps as if a phantom semicolon has been
inserted into the input. SpiderMonkey’s ad-hoc parser detects sit-
uations where a semicolon must be inserted before any problem
occurs, so it never has to retry. Since even JavaScript programmers
who use semicolons frequently leave them out for aesthetic pur-
poses in many places (for example, after a function body), less ef-
ficient handling of semicolon insertion can really add up over the
span of a large JavaScript file. Unfortunately, because the parallel
DAC parser uses essentially the same grammar as Nitro relies on a
similar parser design, it shares the same issues.

The parallel DAC parser has the weakest sequential performance
of any of the parsers examined other than ANTLR. However, this
limitation is only in small part due to the overhead of the divide-
and-conquer algorithm or support for parallelism. In the single-
threaded case, the main thread invokes a single lexer on the entire
input; the overhead over a normal lexer consists of the allocation
of unnecessary pointers and indices used to access the reference
buffers of other threads, at a cost of four words of memory, and the
management of the fragment stack, which involves incrementing
and decrement pointers, with dynamic allocation only occurring in
the quite rare case that the fragment stack needs to be expanded.
Though the lexer could surely benefit from further optimization, it
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Figure 7: Parallel DAC parser speedup over the single-threaded
case.

isn’t likely to be the primary source of the disparity between the
parallel DAC parser and the more mature parsers.

The parallel DAC parser uses a generic, data-driven LALR parser
design which was not created specifically for JavaScript. Beyond
the concerns mentioned for Nitro above, the details of its semi-
colon insertion implementation require that an entire fragment be
buffered before it can be parsed, which is even worse than Nitro.
Fortunately, nothing in the parallel DAC parser’s design requires
the use of a particular parsing algorithm, and though modifying the
SpiderMonkey parser so that it could be called cleanly by a DAC
lexer would be challenging, it is certainly possible technically.

The speedup the parallel DAC parser offers, then, is the most
important criteria on which it should be judged, since the parsing
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algorithm used internally can be replaced without affecting how
work is distributed between threads. As Figure 7 shows, the parallel
DAC parser is not capable of obtaining speedup on hello. That
input is very small and contains only one function; since we obtain
parallelism from finding and parsing functions in parallel in each
thread, hello offers no work for additional threads to do. However,
dojomob, despite being only 35 kB, is large enough to get speedup
from parallelism, and the trend continues with larger inputs.

0%
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50%

75%

100%

hello dojomob jquery prototype jqcal box2d yui ejdesktop closure

Thread 1 Thread 2 Thread 3 Thread 4

Figure 8: Load balancing behavior of the parallel DAC parser,
running with 4 threads, measured as the percentage of symbols each
thread lexed and parsed.

The speedup doesn’t scale ideally — that is, doubling the number
of threads doesn’t double the speedup. In fact, adding an additional
thread only improves performance on most inputs by 0.4 – 0.5x. To
investigate this behavior, we instrumented the parallel DAC parser
to report how many symbols each thread lexed and parsed. The
results, shown in Figure 8, show a clear correlation with speedup:
the more work the first thread performs relative to the others, the
less speedup we see. Recall that the first thread is responsible for
the root fragment, and must lex and parse any portion of the input
that is not wrapped in a function. This fact allows us to explain the
results in terms of the inputs: those inputs with the least speedup
are uniformly those with the most content in the root fragment.
The two inputs which stand out as anomalies with especially bad
performance, box2d and closure, both consist of a long list of
functions defined at the top level, with none of the hierarchical
structure typical of the other JavaScript libraries.

The speedup penalty that box2d experiences seems out of propor-
tion to its work imbalance, however. There’s a second effect that
contributes to the problem: lexing is much faster than parsing, and
since the current implementation of the parallel DAC lexer does
not perform parsing until a fragment is completely lexed, if the first
thread finishes with its block before the other threads are done, it
will only lex from that point until the end of the input. This gives
it a good chance of catching up to the other threads. This happens
with most of the small-to-mid-size inputs, as depicted in Figure
9, which shows the number of retries each thread required when
attempting to read the reference table entries of functions outside
its block. Such retries occur when the thread responsible for pars-
ing the function has not yet finished doing so; since they occur in
a busy-wait loop, a huge number of retries can be generated each
time this happens.box2d’s first thread required many more retries

than any other input experienced, indicating that it caught up to the
other threads very fast.
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Figure 9: Number of reference table read retries required by the
parallel DAC parser, running with 4 threads.

Though the structure of box2d triggers this issue particularly badly,
all of the smaller inputs are affected. Fortunately, it is likely that
switching to a parsing algorithm that can handle semicolon inser-
tion without requiring access to previous symbols would go a long
way to alleviate this problem; with this modification, the first thread
could parse the root fragment incrementally as it lexes it, slowing
it down significantly and reducing retries greatly. Right now pars-
ing the root fragment cannot be overlapped with any other work,
because every other fragment is directly or indirectly embedded
in the root fragment. Being able to parse fragments incrementally
would eliminate this issue as well.

6. Extensions

Divide-and-conquer parsing is useful for more than just the parallel
parsing algorithm discussed in section 4. In this section we discuss
some other techniques that become feasible once we eliminate the
restriction that parsing must happen in-order.

Section 6.1 describes lazy parsing, a parsing evaluation strategy
which improves performance by avoiding unnecessary work. Lazy
parsing is normally incompatible with parallel parsing; we discuss
one way of address this limitation in section 6.2.

6.1 Lazy Parsing

A divide-and-conquer lexer produces a set of fragments that can be
parsed independently, giving us a great deal of flexibility to choose
when each fragment should be parsed. We have so far implicitly
assumed that all of these fragments are immediately useful, and so
both the basic divide-and-conquer parser and the parallel version
have used an “eager” parsing strategy: though the exact timing may
vary, every fragment that is produced is parsed.

However, in the real world many fragments do not need to be parsed
immediately. Fragments are not useful until the main application
requires the data they contain to make computational progress,
which may not be for a long time in many cases. Indeed, many
fragments may never actually be referenced, and so parsing them
at all would be a waste of time.
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“Lazy” parsing, a straightforward extension to the basic divide-
and-conquer parser, provides a solution to this problem. The lexer
returns all the fragments it produces immediately, unparsed. The
larger application then accesses the parse tree as usual, but it must
now check if each pointer to a fragment’s subtree is null before
dereferencing it. If so, the application invokes the parser to parse
that fragment, which creates the missing subtree and updates the
subtree pointer for use in subsequent accesses. The application can
then access the subtree through the pointer and continue its work.
This process is illustrated in Figure 10.

For lazy parsing to work as intended, parsing the root fragment can-
not implicitly cause all other fragments to be parsed — otherwise,
as soon as the application attempted any access to the parse tree, the
entire tree would be created, and there would be little benefit to the
technique. More generally, a fragment’s semantic actions should
not access the parse trees of its child fragments unless it is certain
that those child fragments are about to be needed. To make this
concrete, let us return to the example of JavaScript, with fragments
corresponding to function definitions. It would be inappropriate,
in a lazy DAC parser, for semantic actions to trigger the parsing
of a function definition merely because it is encountered in source
code. Instead, functions should only be parsed when they are actu-
ally needed — for example, when an executing script calls them. A
JavaScript engine making use of a lazy DAC parser would thus be-
gin by parsing and executing the root fragment, parsing additional
fragments as required by dynamically-encountered function calls.

For some languages, it may be beneficial to make the lexing pro-
cess lazy as well. With this approach, only one fragment is actu-
ally lexed at a time; child fragments remain unlexed until they are
needed for computation to progress. Of course, lazy lexing cannot
really be totally lazy, as at a minimum it’s still necessary to scan
through a child fragment to locate its boundary. If most of the nor-
mal activity of the lexer is unnecessary for this simplified problem,
it’s possible that lazy lexing could provide a performance boost.
In the case of JavaScript function definitions, unfortunately, a lazy
lexer still retains a fair degree of complexity. For example, the prob-
lematic character ’/’ may indicate the beginning of a regular ex-
pression, inside which brace characters would not affect nesting
depth, or it may merely indicate division; to distinguish between the
two cases, it’s necessary to correctly recognize a number of other
symbols as well, because the correct interpretation depends on con-
text. The details of this problem are related to a particular quirk of
lexing JavaScript and a particular fragmentation approach, but we
suspect that similar problems will be encountered in many other
languages of real-world interest, rendering lazy lexing too close in
complexity to normal lexing to provide any substantial benefit. We
were not able to realize any speedup from lazy lexing in prelimi-
nary experiments.

Semantic actions may have to be written quite differently, depend-
ing on their requirements, for a lazy DAC parser than for an eager
DAC parser or the parallel DAC parser presented in this report.
In the latter cases, a semantic action may assume that all child
fragments of the current fragment have already been parsed, and
can access their parse trees freely; however, parent fragments have
certainly not been parsed. In the lazy case, exactly the opposite is
true: parent fragments will always be parsed before their children,
while the parse trees of child fragments won’t be available unless
semantic actions force parsing to occur. Thus, lazy DAC parsers ex-
ecute their semantic actions top-down, while the other DAC parsers
we’ve discussed execute their semantic actions bottom-up; this may
be a benefit or a drawback, depending on how data needs to flow
within a particular application, and so it may be a factor when
choosing between the parallel and lazy approaches.

Given that we intend the methods of this report to ultimately im-
prove the performance of real-world web applications, it’s worth
asking how much benefit we can obtain from using a lazy DAC
parser instead of a standard JavaScript parser in a browser. A study
of popular web applications concluded that only 50 – 65% of func-
tions they defined were actually called[29]; the rest were either
dead code or were not invoked except under particular circum-
stances. Assuming that the average size of dead and live functions is
about the same, this suggests that we can expect a lazy DAC parser
to perform as little as half the work of a standard parser, yielding
a 2x speedup, although some of that benefit will be lost due to the
slightly increased complexity of a DAC lexer.

However, perhaps more important for user perception of browser
performance than overall speedup are startup costs. Since the ini-
tial rendering of a web page blocks when JavaScript code is en-
countered and cannot continue until the code finishes executing,
minimizing the amount of time that process takes is very impor-
tant to improving page load time. Here laziness can be even more
beneficial, since in many cases only a minority of functions are
executed during initialization. Many libraries, in particular, do lit-
tle work at initialization time other than storing functions into a
JavaScript hash table. In such a case, very little code needs to be
parsed at initialization time, and we expect to eliminate nearly all
parsing work. In experiments we conducted on lazily parsing major
JavaScript frameworks like JQuery and Prototype, we saw initial
parsing time improvements of 95 – 98%. The functions that are ac-
tually called will eventually need to be parsed, but to the extent that
that work is delayed until the page is fully loaded and responsive to
input events, the user experience will be improved.

Lazy divide-and-conquer parsing is a promising technique for re-
ducing page load time in browsers and eliminating unnecessary
work that reduces performance and increases energy usage. Our
preliminary results suggest that the technique is practical and ef-
fective.

6.2 Speculative Parsing

Lazy divide-and-conquer parsing generally only parses one frag-
ment at a time, because a fragment isn’t parsed until it’s needed in
the context of a larger computation that’s usually sequential. The
result is that lazy parsing normally does not offer any opportuni-
ties for parallelism. To improve performance beyond what laziness
can offer, it would be useful to combine laziness and parallelism in
the same parser. We propose speculative parsing as a method for
achieving this goal.

While a fragment is being parsed, a speculative parser performs
additional analysis to try to infer other fragments that are likely to
be needed in the near future. Any fragments that it identifies are
parsed in one or more threads separate from the main computation.
Speculatively parsed fragments which are actually needed later will
be available to the application as part of the parse tree, just as if they
had been parsed in the normal fashion.

There are many heuristics a speculative parser could use to identify
fragments worth parsing. The simplest approach would be to spec-
ulatively parse every fragment the parser encounters, so that free
processor time is used to gradually parse the whole input, while the
lazy parser ensures that whatever fragment is most urgently needed
is parsed immediately if it’s not already available. More sophisti-
cated heuristics may be used to maintain as much as possible of the
reduction in work that lazy parsing enables, or to increase the odds
that fragments that are actually needed are parsed first. In general,
a speculative parser can give a score to fragments based on various
features it observes and parse higher-scoring fragments first, with
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Figure 10: The lazy parsing process.

fragments scoring under a certain threshold not parsed at all unless
the main application requests it.

In the JavaScript case, a parser can observe which functions may
be called in the current fragment and speculatively parse fragments
which may contain those functions. To reduce false positives, the
parser may take into account features such as the presence and
nesting level of conditional expressions, or whether the function in
question is passed to another function as an argument (to be used
as a callback, for example). There may be many functions with the
same name, and the parser frequently will not be able to determine
which one would be invoked at runtime; thus, the number of func-
tions with the same name may serve as a useful feature to decide
whether parsing all of the corresponding fragments is worthwhile.
We observed in our tests that the vast majority of function names
are unique to one function or a very small number of functions, but
there are a small number of function names that are reused hun-
dreds of times due to object oriented programming patterns used
in some frameworks; this programming style can make speculative
parsing less precise.

We performed a preliminary experiment to evaluate the feasibility
of speculative parsing. We ran the JavaScript demo web applica-
tions jqcal and ejdesktop introduced in section 5 and collected
execution traces showing which functions were actually called dur-
ing a realistic user session. We then simulated the behavior of a
speculative parser many times with different sets of features in an
attempt to determine how effectively such a parser could predict
which functions would be called without any runtime information.
The best performance we observed was with the JQuery Calendar
demo, where we were able to correctly speculatively parse 63% of
268 called functions at a cost of incorrectly parsing 11% of the 880
functions that weren’t called in our trace.

More research is needed to identify good feature sets to guide
speculative parsing, and to evaluate its performance as part of a
running browser with JavaScript execution informing its behavior.
Nevertheless, we believe that these initial results hold promise,
and that the combination of laziness and parallelism would provide
compelling benefits if realized.

7. Related Work

Parsing is a subfield of computer science which has been actively
researched for decades, and many approaches to parallel parsing

have been proposed over the years. A full review of the parallel
parsing literature is beyond the scope of this report; interested read-
ers will find useful surveys of the field in [23] and [25]. We will fo-
cus instead on clarifying our contribution to the field by contrasting
parallel divide-and-conquer parsing with competing solutions —
that is, solutions that operate on the same type of computer archi-
tecture and are applicable to the problem of parsing in the browser.

7.1 File-based Parallelism

If multiple files need to be parsed — for example, multiple
JavaScript files embedded into a single web page — then file-
based parallelism may be a competitive solution. Separate files can
be parsed completely in parallel, using traditional sequential tech-
niques, with no interference. A limitation of this approach, though,
is that in practice each file often needs to be delivered in sequence
over a network that may be so slow that parallel parsing each file
individually is still faster; an application can take measurements of
network speed into account to decide which granularity of paral-
lelism would be better.

7.2 General Parallel Parsing Techniques

There are several existing general purpose parallel parsing tech-
niques that are substantially different from the techniques presented
in this report. Many of them are designed for natural language pro-
cessing, and rely on the ambiguity rampant in natural languages.
They find parallelism by parsing the same input using many differ-
ent interpretations at once. Computer languages such as JavaScript
are generally designed to contain no ambiguity, so we will not con-
sider this class of algorithms further.

Fisher presents a parallel extension of LR parsers called “syn-
chronous parsing machines” (SPMs) which operate by running
many LR parsers in parallel on the same input[19]. Because each
parser cannot know its initial state, it starts with a set of states guar-
anteed to contain the correct one, and updates them all; this is a
speculative algorithm. Invalid states will generally lead to an error
sooner or later and be unable to continue; thus, each parser will
be responsible for fewer and fewer states over time, until only the
correct one is left. This algorithm is similar to parallel divide-and-
conquer parsing in that it makes use of LR parsers which are almost
unmodified. However, the amount of speculation it performs leads
to a great deal of overhead, and perhaps as a consequence Fisher
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reports far sublinear speedups; he does not achieve better than 25%
efficiency, while our best results are 74% efficient.

Chart parsers have spawned a whole family of parallel parsing
techniques. While LR and similar parsers manipulate a stack to
parse input, chart parsers fill out a table. For example, for the well-
known Cocke-Younger-Kasami chart parsing algorithm CYK[21],
the table is conceptually three dimensional, with entry [i, j, R]
containing the value true if the region of the input starting at i and
ending at j can be generated by rule R in the grammar. Assume
that one way this can happen is if rule S generates the input from i
to k and rule T generates the input from k to j. This means that if
entries [i, k, S] and [k, j, T ] are set to true in the table, CYK knows
that it can set [i, j, R] to true. In this way, data flows through the
table from cells for rules that match individual symbols all the way
up to cells that match the whole input. (i.e., those corresponding
to the start symbol) Parallelizing chart parsers, then, is a matter of
using multiple hardware threads to fill in many cells in the table
simultaneously, choosing the order in which the cells are filled
to minimize dependencies and hence communication. This can be
done effectively in practice, and parallel chart parsers often yield
significant speedup[30]. The main tradeoffs are that chart parsers
start out significantly slower than the LR family of parsers, so their
speedup is less meaningful, and that chart parsers can require a lot
of memory, which led some of them to be considered impractical
when they were first introduced[20]. We now have sufficient main
memory to make chart parsers a viable alternative, but CPU caches
are still small, and so the less memory-intensive LR family of
parsers is still the better choice in performance-critical applications.

7.3 Parallel XML Parsing

The existing proposals most similar to divide-and-conquer parallel
parsing are found in a recent body of research addressing the prob-
lem of speeding up XML parsing using laziness and parallelism.

Noga et al. present a lazy XML parser with several initial prepro-
cessing stages that together perform a similar task to our divide-
and-conquer lexer.[26] The input is scanned once to convert it to
Unicode and a second time to lex it, producing a sequence of sym-
bols that are scanned a third time to construct a tree representing
the structure of the document. Each node in the tree stores an index
into the symbols produced by the lexer which indicates its con-
tents. The nodes can then be parsed lazily as the larger application
requests them.

Lu et al. describe a parallel XML parser with an initial “preparsing”
stage that constructs a skeleton of the final XML DOM[24], much
like that described in Noga et al. The authors divide the skeleton
into subtrees that are parsed in parallel. They use two schemes for
doing so: a static scheme that uses a separate pass over the skeleton
to partition it into equally sized subtrees, and a dynamic scheme
that uses a thread pool with work stealing.

A followup paper by Pan et al. extends the parallel XML parser
described above by parallelizing the preparsing stage as well[27].
They replace the DFA used for preparsing with a meta-DFA that
has an initial state for every state of the original DFA. They divide
the input evenly into blocks and start a meta-DFA at the beginning
of each block; the meta-DFA effectively starts in all states of the
original DFA at the same time, and eliminates impossible states as
it progresses through the input. Each block, after being processed
by a meta-DFA, yields a set of trees representing every possible
structure of that block. Once all blocks have been processed, the
correct tree for each block can be selected and spliced into a final
tree representing the structure for the entire input; the tree can then
be partitioned between processes, and parallel parsing can begin.

Our approach resembles all three of these schemes, but differs from
them in several ways. One fundamental difference is that the natural
definition of a fragment in XML is always contiguous, which is
not true for many other languages, including JavaScript. Given the
XML document:

<parent>
child1
<child2>

(more elements...)
</child2>
child3

</parent>

We can treat child1 and child3 as two different fragments which
can be parsed separately. If XML had the same kind of grammatical
structure as the more complex languages our work is intended to
parse, child1 and child3 would have to be parsed together —
that is, they would constitute a single fragment. For this reason, we
could not represent a fragment using a simple index into an array of
symbols, as these XML parsers do. We contribute a solution to this
problem by using fragment stack buffers, as discussed in section
3.2.

Our approach, being integrated into the lexer, requires no additional
preprocessing for lazy or parallel parsing. Indeed, in the parallel
divide-and-conquer parser even lexing is parallelized. This contri-
bution is an improvement over the first two XML parsing schemes.
The third scheme also parallelizes lexing, but does so in a much
more speculative way; our method only attempts to lex and parse
starting from what appears to be the beginning of a fragment, giv-
ing us a high confidence that our work will be useful, while their
approach will start at the beginning of a block regardless of what
is found there. The advantage of their method is that they poten-
tially achieve better load balancing, since the amount of work a
thread has to do is more directly related to the size of the block
it is assigned; our approach, on the other hand, greatly simplifies
the construction of the final parse tree by ensuring that the work of
each thread has a simple structure, so that we do not need a separate
sequential pass to merge the results of each block together.

By not having a separate planning phase before parsing begins,
we improve on the approaches above because we can parse each
fragment as soon as it is lexed, while the cache is still warm;
this is particularly important for mobile devices which may have
processors with very small caches. We do not pay the cost of
partitioning a skeleton between processors statically, nor do we use
work stealing to balance the load between processors, avoiding its
overhead.

8. Conclusion

As computer users spend more and more of their time in a web
browser, and become increasingly accustomed to web applications
that are maintenance free, effortlessly in sync, and work on every
platform, commercial pressure will increase to move even tradi-
tional native applications onto the web. To deliver the performance
and feature set users have come to expect from these applications,
though, every component of the web application stack will have to
be improved.

We tackle one such component in this report: by building a faster
parser, we hope to reduce the delays in web application startup
caused by the need to lex, parse, analyze, and compile JavaScript
at page load time. The foundation of our approach is divide-and-
conquer parsing, which frees us from the need to parse input from
left to right. We use this technique to build a parallel divide-and-
conquer parser which takes advantage of the multicore processors
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becoming increasingly prevalent in both traditional PCs and mobile
devices.

Parallel divide-and-conquer parsing provides speedup of as much
as 2.94x with four threads, and it gracefully degrades to a single-
threaded parser with acceptable performance, without any mod-
ifications to the algorithm. Even on inputs which are not suit-
ably structured for divide-and-conquer parsing, we still observe
speedup, and inputs as small as 35 kB can benefit from parallelism.
Though the implementation evaluated in this report suffers from
limitations as a result of the underlying parsing algorithm, we be-
lieve that these results show that parallel divide-and-conquer pars-
ing has promise.

Divide-and-conquer parsing can also be used to implement lazy
parsing, which can improve parsing performance by not parsing
content that is not actually used. We project a lazy parser to yield a
speedup of about 2x on real-world JavaScript content, and improve
page load time even further because much parsing can be deferred
until after the page is loaded. Combined with speculation, which
allows lazy parsing and parallel parsing to be combined, we believe
that this is a promising direction for future research.

To reach their potential as a universal computing platform, browsers
will need to provide native application performance even as they
transcend native application limitations. Divide-and-conquer pars-
ing, by making it possible to reduce web application startup time,
is a small step toward this distant but important goal.
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cessing. In Proceedings of the 2002 ACM symposium on Document

engineering, DocEng ’02, pages 88–94, New York, NY, USA, 2002.
ACM.

[27] Yinfei Pan, Ying Zhang, Kenneth Chiu, and Wei Lu. Parallel XML
parsing using meta-DFAs. In Proceedings of the Third IEEE Interna-

tional Conference on e-Science and Grid Computing, pages 237–244,
Washington, DC, USA, 2007. IEEE Computer Society.

[28] T. J. Parr and R. W. Quong. ANTLR: A predicated-LL(k) parser
generator. Software: Practice and Experience, 25(7):789–810, 1995.

[29] Paruj Ratanaworabhan, Benjamin Livshits, David Simmons, and
Benjamin Zorn. JSMeter: Characterizing real-world behavior of
JavaScript programs. Technical Report MSR-TR-2010-8, Microsoft
Research, January 2010.

[30] Greg Sandstrom. A parallel extension of Earley‘s parsing algorithm,
2004.

15


