
Synthesis of First-Order Dynamic Programming Algorithms

Yewen Pu Rastislav Bodı́k Saurabh Srivastava
University of California, Berkeley

Abstract
To solve a problem with a dynamic programming algorithm,
one must reformulate the problem such that its solution can
be formed from solutions to overlapping subproblems. Be-
cause overlapping subproblems may not be apparent in the
specification, it is desirable to obtain the algorithm directly
from the specification. We describe a semi-automatic synthe-
sizer of linear-time dynamic programming algorithms. The
programmer supplies a declarative specification of the prob-
lem and the operators that might appear in the solution. The
synthesizer obtains the algorithm by searching a space of
candidate algorithms; internally, the search is implemented
with constraint solving. The space of candidate algorithms is
defined with a program template reusable across all linear-
time dynamic programming algorithms, which we charac-
terize as first-order recurrences. This paper focuses on how
to write the template so that the constraint solving process
scales to real-world linear-time dynamic programming algo-
rithms. We show how to reduce the space with (i) symmetry
reduction and (ii) domain knowledge of dynamic program-
ming algorithms. We have synthesized algorithms for vari-
ants of maximal substring matching, an assembly-line opti-
mization, and the extended Euclid algorithm. We have also
synthesized a problem outside the class of first-order recur-
rences, by composing three instances of the algorithm tem-
plate.

Categories and Subject Descriptors I.2.2 [Automatic Pro-
gramming]: Program synthesis; D.3.3 [Language Con-
structs and Features]: Constraints

General Terms Algorithms, Languages, Verification

Keywords Synthesis, Constraint Solving

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’11, October 22–27, 2011, Portland, Oregon, USA.
Copyright c© 2011 ACM 978-1-4503-0940-0/11/10. . . $10.00.

1. Introduction
Dynamic programming is an algorithmic technique that ex-
ploits the structure of an optimization problem [6, 13, 25].
While direct execution of a specification will typically enu-
merate all legal solutions, dynamic programming breaks
down the problem into overlapping subproblems and eval-
uates the resulting identical subproblems only once. The
challenge in obtaining a dynamic programming algorithm is
in reformulating the problem into a recurrence that exposes
identical subproblems. Even if the specification already is a
recurrence, it is rare that its subproblems are overlapping.
Human insight into the hidden structure of the shared sub-
problems is typically necessary.

We describe a synthesizer of dynamic programming al-
gorithms (DPAs) that reduces the need for human insight.
Our programmer (1) specifies the problem with a declara-
tive specification, which can be implemented as an exhaus-
tive, exponential-time search; and (2) provides the synthe-
sizer with (a superset of) operators to be used in the recur-
rence underlying the DPA. Given the specification and the
operators, the synthesizer automatically produces the DPA,
if one exists that uses only the operators supplied. The pro-
grammer is asked neither for suitable identical subproblems
nor for the problem is solved from the solutions to these sub-
problems.

We build on the idea of synthesis with partial programs,
where program templates are completed by the synthesizer
to yield a program functionally identical to the specifica-
tion [1, 12, 20, 23]. We express a generic skeleton of a DPA
as a template whose “holes” are parameterized with a suit-
able language of candidate expressions. The completion of
a template can be viewed as a search, in the space of candi-
date DPAs syntactically defined by the template, for a DPA
that implements the specification. The size of the space typ-
ically prohibits exhaustive search. Instead, efficient search
techniques have been developed using machine learning [1],
version space algebra [12], inductive synthesis via constraint
solving [20], or invariant inference [23]. In this paper, we use
solver of the Sketch synthesizer [20, 2], which reduces the
problem to a SAT problem, but encoding techniques should
carry over to other constraint solvers, such as SMT solvers.

Previously, a DPA has been successfully synthesized with
a partial-program synthesizer, using a template tailored to

the problem [23]. Our goal is to develop a reusable tem-
plate and thus develop a synthesizer for a broad class of
DPAs. Our approach is to translate the programmer-provided
hints into a template which serves are the partial program
for the DPA synthesis. Our template generator thus consti-
tutes a “domain theory” for dynamic programming, in that
it embeds knowledge needed to synthesize any DPA in our
class. While we study a class of dynamic programming, our
lessons will hopefully inform creation of templates for other
domains.

We focus on the domain of linear-time dynamic program-
ming algorithms, specifically those that grow the solution
by considering one input element at a time. We characterize
DPAs for this class as first-order recurrences, but our tem-
plate automatically expands to k-order recurrences. We can
synthesize solutions with an arbitrary (bounded) number of
subproblems.

We have synthesized algorithms for variants of maximal
substring matching, an assembly-line optimization, and the
extended Euclid algorithm. We have also demonstrated syn-
thesis of a problem outside the class of first-order recur-
rences using a template composed of three instances of our
single algorithm template.

We make the following contributions:

• We show that partial-program synthesis based on con-
straint solving is able to produce realistic linear-time dy-
namic programming algorithms. We synthesize these al-
gorithms from a reusable template, asking the user only
for operators that are to be used in the algorithm.
• We show how to produce templates that lead to efficient

synthesis by relying on (i) the properties of the domain
of dynamic programming and (ii) symmetry reduction.
• We show that several instances of our template can be

composed to solve problems that are outside the class of
first-order recurrences. Because we formulate the domain
theory as a partial program, the user can easily modify
and grow the template as she sees fit, without understand-
ing the internals of the synthesizer.

2. Overview
We first introduce two classes of problems solvable by dy-
namic programming (Sections 2.1–2.4). Next, we describe
the interactions of a programmer with our synthesizer (Sec-
tion 2.5). Finally, we give an overview of the synthesizer al-
gorithms and outline our encoding of the synthesis problem
(Sections 2.6–2.8).

2.1 Dynamic Programming for Optimization Problems
Dynamic programming is an algorithmic technique that ex-
ploits the structure of an optimization problem [6, 13, 3,
25]. A naive approach to solving an optimization problem
is to enumerate all legal solutions and selecting one with
the optimum value—e.g., enumerating nonconsecutive sub-
sequences of an array followed by selecting one with the

largest sum. Often, exponentially many candidate solutions
need to be explored.

Dynamic programming avoids enumeration by construct-
ing an optimal solution from the solutions to subproblems.
A problem can be solved with a dynamic programming al-
gorithm (DPA) if

1. the problem exhibits an optimal substructure, i.e., an
optimal solution can be composed from optimal solutions
to subproblems; and

2. the problem can be broken down into subproblems that
are overlapping, i.e., they share identical subproblems.

Because solutions to identical subproblems are reused, typ-
ically only a polynomial number of subproblems need to be
evaluated.

2.2 Dynamic Programming for Functional Problems
Dynamic programming is also applicable to problems that
compute the function of the input, instead of searching a
space of solutions. One example is computing the Fibonacci
sequence. We synthesize DPAs for two such problems, Oth-
erSum and Extended Euclid algorithm, in Sections 4.1.7
and 4.1.6, respectively.

To be amenable to dynamic programming, these “func-
tional” problems must also have a substructure property with
overlapping subproblems. We cannot talk about optimal sub-
structure, of course, as there is no notion of an optimal solu-
tion. We introduce functional problems separately from the
optimization problems of Section 2.1 because optimization
problems permit more efficient synthesis (cf. Section 3.3).

2.3 The Challenge of Designing a DPA
The design of a DPA amounts to defining a recurrence rela-
tion that gives rise to overlapping subproblems whose results
can be stored in a table and computed by traversing the table,
usually in an input-independent order.

Sometimes, the definition of the problem reveals the over-
lapping subproblems. For example, the n-th Fibonacci num-
ber, F (n) = F (n − 1) + F (n − 2), is computed from two
subproblems, F (n− 1) and F (n− 2), which share the sub-
problems F (n− 2) and F (n− 3). The DPA table stores the
solutions to F (n) and F (n − 1) and can be computed in
O(n) time.

Most problems must be reformulated to expose identical
subproblems, a process that requires human insight. In par-
ticular, a suitable recurrence may involve enriched or even
orthogonal subproblems that are not immediate from the
problem specification but are essential because identical sub-
problems occur only in the modified problem space.

As an example of a subproblem that needs to be invented,
consider the problem of finding a sub-string of an integer
array that maximizes the sum of its elements, which could
be negative. A naive algorithm searches over all O(n2) sub-
strings, performing either linear work or if accumulating the
sum then constant work for each substring, resulting in a

O(n3) or O(n2) algorithm. To obtain a linear-time DPA that
scans the array left-to-right, we need two subproblems:

1. the maximal-sum substring to the left of index i; and
2. the maximal-sum substring to the left of index i that ends

at index i.

The latter subproblem may seem non-intuitive but we need
it to find an optimal substring that spans the index i.

The design of dynamic programming algorithms from
their declarative specification requires insight and is there-
fore taught as an art.

2.4 Running Example: Maximum Independent Sum
Given an array of positive integers A = [a1, . . . , an], The
Maximum Independent Sum (MIS) problem selects a sub-
set of non-consecutive array elements that maximizes the
sum of its elements [15]. Formally, MIS finds an assign-
ment of boolean values B = [b1, . . . , bn], where bi = 1
iff ai is selected. Array B is legal if it contains no sub-
string of contiguous 1s. If A = [2, 3, 4, 1] and the assign-
ment to B is [1, 0, 1, 0], the value of applying the assign-
ment is apply([2, 3, 4, 1], [1, 0, 1, 0]) = 6. The objective
is to maximize the value of the assignment. For instance,
MIS ([4, 1, 2, 3]) = 7 via the assignment [1, 0, 0, 1].

Note that this problem is not given as a recurrence; in-
stead, the definition gives the legality and optimality condi-
tions. Therefore, it does not suggest any obvious overlapping
subproblems.

2.5 Synthesizer Input and Output
The user provides a problem specification and operator hints,
and the synthesizer outputs a DPA. Next, we illustrate the
inputs and outputs of the synthesizer.

Specification The user can give the specification in one
of two ways. A functional specification computes the solu-
tion to a given problem instance; a declarative specification
checks whether a value is a correct output for a given in-
stance. The specification for the MIS problem is interesting
in that it is functional but is written in a declarative style of
universally quantifying over all solutions:

def spec(A = [a1, . . ., an])
best = 0
for all bitstrings {B = [b1, . . ., bn]}:

if B is not consecutive:
best = max(best, apply(A,B))

return best

Programmer hints The synthesizer asks the programmer
for hints on which operators will form the recurrence. In the
case of MIS, the programmer supplies two unary operators
(the identity and the zero functions); one binary operator
(addition); and the optimality function (maximum):

unary(x) = {x, 0}

binary(x,y) = {x+y}
opt(x,y) = max(x,y)

The good news is that a sufficient set of operators can often
be obtained from the specification. In MIS, the addition and
the maximum arise from maximizing the sum of selected ar-
ray elements; the identity and the zero function correspond
to the decision of selecting (identity) or not selecting (zero)
the current input element. We have not attempted to auto-
mate the extraction of the operator hints from the specifica-
tion. The programmer specifies the operators and then itera-
tively increases the number of subproblems the synthesizer
is to consider. For small values that do not contain any solu-
tion the synthesizer informs the user as such. The program-
mer iterates until a solution is obtained.

Synthesized Solution The synthesizer outputs a linear-
time DPA that implements the specification. The synthesized
algorithm follows the common table-filling pattern, shown
here for the MIS problem:

def mis (A = [a1,...,an])
p1 = array() // solutions to subproblem 1
p2 = array() // solutions to subproblem 2
p1[0] = 0 // base case for subproblem 1
p2[0] = 0 // base case for subproblem 2
for i from 1 to n:

p1[i] = p2[i−1] + A[i]
p2[i] = max(p1[i−1], p2[i−1])

return max(p1[n], p2[n])

The synthesizer created two subproblems, which we can
interpret as follows:

P1(i): solution to MIS(A[0:i]) provided ai was selected;
P2(i): solution to MIS(A[0:i]) provided ai was not selected.

Notice how the synthesizer invented subproblems whose
iterative computation implicitly encodes the condition that
no two consecutive elements are picked. The current element
is added only to P2 which holds solutions that exclude the
previous element.

The table of the DPA is formed by arrays p1 and p2,
which store the values of the solutions to the subproblems
P1(i) and P2(i), respectively. When A = [3, 1, 2, 4, 4, 6],
then p1[5]= 9, corresponding to the selection [1, 0, 1, 0, 1],
and p2[5]= 7, corresponding to the selection [1, 0, 0, 1, 0].

The synthesized DPA initializes the base cases of the two
subproblems to 0 and iterates through the arrays left to right,
filling the table. The synthesizer determines that the solution
to the overall problem is the larger of the solutions to the
subproblems from the last iteration.

If desired, we can manually translate the synthesized pro-
gram to a recurrence relation. We obtain a first-order recur-
rence, i.e., solutions to subproblems of size i depend solely
on the solutions of size i − 1. All DPAs that we synthesize
are of this form; we discuss the expressiveness of first-order

recurrences in Section 3. Notice that the recurrence is com-
posed from the hints provided by the programmer.

MIS(n) = max(P1(n), P2(n))

P1(n) =

{
P2(n− 1) + A(n) if n > 0
0 if n = 0

P2(n) =

{
max(P1(n− 1), P2(n− 1)) if n > 0
0 if n = 0

The synthesizer does not generate a proof that DPA cor-
rectly implements the specification. The synthesizer’s ver-
ifier checks the correctness of the synthesized DPA via
bounded model checking [20], which ensures that the spec-
ification and the DPA agree on all inputs of a small size.
In our experiments, we verified the solution on all arrays of
sizes 1 to 4. We have found this small-world-assumption test
sufficient.

2.6 Synthesis as Constraint Solving
We view synthesis as a search in the space of candidate
programs. We define a space of DPAs and the synthesizer
is asked to find a DPA that agrees with the specification
on a small number of representative inputs I . The space
of DPAs is defined with a template program, which in our
system is called a sketch [20]. The template is translated
into a constraints system whose solution serves as arguments
to the template. The instantiated template yields a DPA that
agrees with the specification on all inputs from I . If inputs
in I yield a DPA that fails the bounded model checking
test, the counterexample input from the test is added to I
and constraint solving is repeated. This is the core solving
technique underlying the Sketch synthesizer [20].

To make constraints-based synthesis suitable for synthe-
sis of DPAs, we need to address two interrelated problems:

• Completeness: How to define the space of DPAs so that
it includes all DPAs of interest?
• Efficiency: How to define the space of DPAs that induces

a constraint problem that is solvable in a few minutes.

The next two subsections overview our solution to these two
problems.

2.7 First-Order Dynamic Programming Algorithms
It may be tempting to define the space of DPAs with a rather
general recurrence template, such as this one that breaks the
problem P into two unspecified subproblems:

P (n) = f(P (g(n)), P (h(n)), n)

This template asks the synthesizer to find functions g, h
that suitably break the problem into subproblems, and a
function f that composes the solution to P (n) from the
solutions to the two subproblems P (g(n)) and P (h(n)). It is
straightforward to define a complete template in this general
manner, but only at the cost of two problems:

• Allowing the synthesizer to select functions g, h from a
large space of functions would likely produce a space of
DPAs that is too large for all state-of-the-art constraint-
based synthesizers [2, 24, 10].
• The recurrence template does not insist that the synthe-

sized subproblems are overlapping. As a result, not all re-
currences synthesized from this template could be trans-
lated to a DPA. Another challenge, specific to the Sketch
synthesizer, is that due to unrolling of calls to P , this tem-
plate would result in a constraint system whose size is
exponential in n, and thus likely too large even for the
small inputs on which Sketch performs the synthesis.

To overcome the first problem, we restrict the space of DPAs
to first-order recurrences (FORs), which have the form

P (n) = f(P (n− 1), n)

that is, we hardcode that a problem of size n is decomposed
into a subproblem of size n − 1. Our space of DPAs is
more general than this recurrence template may suggest:
our template allows (i) k-order recurrences and (ii) multiple
subproblems (cf. Section 3.2). We believe that this template
covers most linear-time DPAs.

To overcome the second problem, rather than synthesiz-
ing a recurrence, we synthesize directly a table-filling form
of a DPA. By storing solutions to subproblems in a linear-
size table, a table-filling template insists that the synthesized
recurrence will exhibit overlapping subproblems. We encode
a table-filling FOR algorithms with the following template:

def attempt (a = [a1,...,an]):
// create arrays to hold the values of subproblems
p1 = array()
p2 = array()
// initialize
p1[0] = init() // some initial value
p2[0] = init() // some initial value
// update the subproblem values
for i from 1 to n:

p1[i] = update1(p1[i−1], p2[i−1], a[i])
p2[i] = update2(p1[i−1], p2[i−1], a[i])

// the terminate function composes the final solution
return terminate(p1[n], p2[n])

The template we illustrate here uses two subproblems;
the number of subproblems is adjusted accordingly by our
synthesizer that auto-generates the template from user-input.
The structure of this template is identical to that of the so-
lution for the MIS problem in Section 2.4; the differences
are in the underlined functions, which the synthesizer se-
lects from a space of functions by constraint solving. The
initialization function, int, returns an integer constant (in
our experiments, the constant was restricted to −∞, 0, and
∞). The propagation function, update, and the termination
function, terminate, are selected from a space of functions
that are compositions of the user-provided operators. For
MIS, the search spaces are defined by the sets below. The

{| e1 | e2 | . . . |} operator asks the synthesizer to select be-
tween expressions e1 and e2.

int() := {| −∞ | 0 | ∞ |}
update(x,y,aval) := {| x | aval | y+x | x+max(y,aval) | /∗. . .∗/ |}
terminate(x,y) := {| x | y+x | max(x,y) | /∗. . .∗/ |}

Our space of candidate DPAs is thus formed by this
FOR template with the underlined functions selected from
function spaces described in the next subsection.

2.8 Efficient Constraint Solving
Even after we restricted DPAs to first-order recurrences, the
search space remains excessively large. For instance, in MIS,
which is a relatively simple problem, the space contains
84,934,656 candidate DPAs. To further reduce the space, we
apply space and symmetry reductions on the space of update
and termination functions. In space reduction, we exploit
properties of the optimization problems. Specifically, we
restrict the syntactic forms of our functions, ruling out DPAs
we know to be incorrect. In symmetry reduction, we prune
away functions that are semantically equivalent (symmetric)
to other programs despite being syntactically distinct.

Space Reduction Space reduction is made possible by
two observations on the nature of the optimization problems
(Section 2.1). First, each step of the algorithm makes an
optimal choice from several legal alternative solutions, each
computed from optimal solutions of smaller size. The update
function thus needs to have the optimality function opt in
the root of the expression—selecting the optimal solution is
the last step of its computation. In other words, the syntactic
form of the update function thus must be

update(x,y,aval) := opt(f1(x,y,aval),...,fk(x,y,aval));

where functions fi compute the values of legal solutions. For
example, in MIS the goal is to return the largest sum, corre-
sponding to the best assignment of non-contiguous elements.
We can insist that update functions have the max operator at
the root of the expression.

Second, we observe that in FOR algorithms, each of the
legal solutions can depend on at most one subproblem. This
argument becomes clearer if we view an optimization prob-
lem as returning n optimal decision, one for each element
of the input. In the case of MIS, for the legal solution, if
the value for P1(i) was constructed from the values to both
P1(i − 1) and P2(i − 1), these two solutions would some-
how need to be combined and the overall problem would
return more than n decisions. For instance, in MIS the op-
timal solution corresponds to an array of 1 and 0. This ob-
servation allows us to syntactically restrict functions fi such
that each consumes only one optimal subproblem. Note that
each optimal subproblem can still be used to compute multi-
ple alternative solutions. These solutions however cannot be
combined other than in the opt function that selects one of

these alternatives. The form of the update function is now re-
stricted to this form, which reduces the size of the candidate
DPAs that we need to search:

update(x,y,aval) := max(choose subset(f1(x,aval),f2(y,aval)))
fi(x,aval) := {| x | aval | max(x,aval) | /∗. . .∗/|}

Symmetry Reduction We further reduce the number of
programs by noticing that the operators such as + and max
are commutative. For example, the expression x+max(y, z)
is identical to the expression max(z, y) +x. We prune away
this symmetry by defining canonical expression trees and
ensuring that only canonical trees are constructed. For MIS,
the symmetry reduction, along with space reduction, reduced
the number of update functions from 589,824 to 65,536.
Symmetry reduction becomes vital if the problem is not an
optimization problem, in which case we cannot apply space
reduction.

3. The DPA Synthesizer
This section describes the implementation of the DPA syn-
thesizer. The synthesizer consists of two parts, a front-
end template generator and a back-end synthesis constraint
solver. The front-end translates the user-provided problem
specification and hints into a template that efficiently en-
codes the space of DPAs. The backend resolves the template
to a desired algorithm. We use the Sketch [2] solver, which
was outlined in Section 2.6.

This section details template generation, which was
overviewed in Sections 2.7 and 2.8. Recall that the main
concern is balancing expressiveness and efficiency: the tem-
plate must define a space of programs that includes all DPAs
of interest yet must be small enough to give rise to easy-to-
solve constraint systems. We first present a space of DPAs
that is sufficiently expressive and then gradually prune it by
exploiting domain-specific space reduction and symmetry
reduction.

3.1 First-Order Recurrences
Here we define the space of general FORs, which contains
all DPAs of interest to us. Subsequent subsections will nar-
row down the definition of the recurrence, tailoring it to dy-
namic programming.

Assume that the specification is a predicate spec(a, o)
which holds when o is a solution to the problem instance
a. Assume that array a = [a1, ..., an], where each am is a
scalar or a tuple of values. We encode our algorithm as a
first-order recurrence.

FOR Algorithm:

FOR(a) = terminate(p1(n), ..., pk(n))
p1(0) = init1()

...
pk(0) = initk()
p1(m) = update1(p1(m− 1), ..., pk(m− 1), a(m))

...
pk(m) = updatek(p1(m− 1), ..., pk(m− 1), a(m))

The correctness condition asserts that the synthesized algo-
rithm is correct on all problem instances from a set I of
small-size instances:

∀a ∈ I. spec(a, FOR(a))

We define some terminology:

• A subproblem, denoted pi, is a series of subproblem
instances that are solved with the same update function.
• A sub-problem instance is a particular instance in a sub-

problem, denoted pi(m).
• An update is a function of the form:

updatei : (p1, . . . , pk, a)→ pi

There is one update function per subproblem. When we
need to compute the value of a subproblem instance
pi(m), we invoke the update function updatei(p1(m −
1), ..., pk(m − 1), am). This update follows a first-order
recurrence because subproblem instances at step m de-
pend only on subproblem instances at step m− 1.

~p(m) = update(~p(m− 1), a(m))

• A termination is a function of the form:

terminate : (p1, . . . , pk)→ output

The termination function computes the solution to the
original problem from the solutions to subproblems.
Since subproblems range over a synthesized domain, the
termination function maps subproblems back to the do-
main of the original problem.

The synthesizer determines the minimal number of sub-
problems by attempting to solve the problem with one sub-
problem, k = 1, and gradually increasing k as the solver
determines that a solution cannot be found for a given value
of k. The user can, of course, fix k should she have an intu-
ition as to how many subproblems are needed.

We want to remark that our FOR space includes kth-order
recurrences via the following reduction:

p(m) = update(p(m− 1), ..., p(m− k))

→

p(m) = p1(m)
p1(m) = update(p1(m− 1), . . . , pk(m− 1))
p2(m) = p1(m)

...
pk(m) = pk−1(m)

We now describe the function spaces of the functions init,
update, and terminate with context free grammars.

init

init(a) := −∞ | 0 | ∞

The init function establishes the initial conditions of the re-
currence. The user may suggest values other than those used
in our experiments, including other constants or a function
parameterized by the problem instance a, such as the first
element of the array, a[1].

update

updatei(p1, ..., pk, a) := p1 | . . . | pk | a
| unary?(updatei(p1, ..., pk, a))
| binary?(updatei(p1, ..., pk, a), updatei(p1, ..., pk, a))

where
unary?(x) := unary1(x) | . . . | unaryl(x)
binary?(x, y) := binary1(x, y) | . . . | binarym(x, y)

The update function computes the solution to a subprob-
lem at step m given am and the solutions at step m − 1.
The function space includes all expressions that can be con-
structed from the user-provided unary and binary operators.
The recursive formulation of update does not scale in gen-
eral. Since update sends k values to 1 output, if we let m
be the total number of user specified binary operators, the
total number of functions for each updatei is at least mk as
it takes k binary operators to reduce k+1 values to 1 output.
In section 3.3 and 3.4 we discuss how to search this space
efficiently.

terminate

terminate(p1, ..., pk) := update(p1, ..., pk)

The termination function is a one-step update function that
operates on the subproblems from the last, nth step. It is
drawn from the language of the update grammar.

3.2 The FOR Template
We now implement the FOR algorithm as a template pro-
gram that executes a bottom-up, table-filling dynamic pro-
gramming algorithm with explicit memoization of overlap-
ping sub-problems:

def algorithm (a = [a1,...,an]):
// create arrays to hold the values of sub−problems
p1 = array()
...
pk = array()
// initialize
p1[0] = init()
...
pk[0] = init()
// update the sub−problem values
for i from 1 to n:

p1[i] = update1(p1[i−1], pk[i−1], a[i])
...
pk[i] = updatek(p1[i−1], pk[i−1], a[i])

// terminate
return terminate(p1[n],...,pk[n])

The FOR template uses k arrays to hold solutions to k
subproblems. The underlined functions are defined in their
own templates. As an example, consider the templates for
the function init, which is a direct translation of the init
context-free grammar from the previous section:

def basecase ():
case = 0 | 1 | 2
case 0: return −∞
case 1: return 0
case 2: return∞

3.3 Update Functions for Optimization Problems
In the FOR template, the update function can be any expres-
sion constructed from the user-provided operators. We will
now restrict the syntactic form of the update function to re-
flect the structure of an optimization problem. Our encoding
is applicable to the problems defined in Section 2.1 but not to
the functional problems in Section 2.2. The functional prob-
lems can, however, take advantage of the more general (but
weaker) optimizations described in the following subsection.

Recall the two special structural properties of optimiza-
tions problems (cf. Section 2.8):

1. Assume that Si(m) is the set of solutions (not all optimal)
to the subproblem instance pi(m). The value of pi(m)
is the optimal solution from Si(m). The computation
of pi(m) thus has the form opt(Si(m)), i.e., the opt
function is at the root of the computation tree. During
synthesis, we can thus rule out update functions where
opt is syntactically in a non-root position.

2. Each solution si,j(m) ∈ Si(m) is computed from exactly
one subproblem p′i(m − 1). If si,j(m) were to combine

opt

ext

sel

sel

ext

ext

ext

update

p1[i-1]

p2[i-1]

p1[i]

p2[i]opt

Figure 1. The update function for optimization problems.

solutions to multiple subproblems, it would have to com-
bine the histories of optimal decisions from both of these
subproblems into a single history of m decisions, forcing
the examination of the two histories for the purpose of
deciding which decisions to preserve. In order to avoid
examining histories, an optimal solution in an FOR DPA
is constructed by extending the history of one optimal so-
lution with a single optimal decision, based on the current
input element.

To capitalize on these restrictions, we synthesize an up-
date function by asking the synthesizer to make the follow-
ing decisions:

• Synthesize functions that compute rk solutions, with r
solutions for each of the k optimal subproblems pi. These
functions extend solutions to subproblems of size m− 1
into solutions for a problem of size m. The solutions are
stored in variables extj,l, l ≤ k, j ≤ r. The solutions
extj,l are computed with a combiner function that con-
sumes a solution and the current input element. The tem-
plate of the combiner function is defined in the next sub-
section.

ext1,1 = combiner(p1, a)
...

extr,1 = combiner(p1, a)
...

ext1,k = combiner(pk, a)
...

extr,k = combiner(pk, a)

• Next we ask the synthesizer to decide, for each subprob-
lem pi, which of the solutions extj,l solve pi. This de-
cision populates the sets Si defined above with the solu-
tions extj,l. The template selects synthesizes into a func-
tion that selects up to s of its arguments.

pi(m) = opt(selects(ext1,1, . . . , extr,k))

Figure 1 shows the structure of the update function.
As an example of how the update function is constructed,

consider the MIS problem defined in Section 2.4. Let us
call its two subproblems pick and no pick. The synthesizer

first creates the solutions: We can extend the sub-problem
no pick into two solutions, by picking versus not picking
the current array element:

ext pick(no pick(m− 1)) = no pick(m− 1) + am

ext no pick(no pick(m− 1)) = no pick(m− 1) + 0

In contrast, we can extend the subproblem pick only into
one solution, by not picking the current element, becaus we
cannot pick contiguous array elements:

ext no pick(pick(m− 1)) = pick(m− 1) + 0

Next, to find an update function that solves the no pick
subproblem, the synthesizer needs to select from the three
solutions, by resolving the selects template:

no pick(m) = max(select2(ext pick(no pick(m− 1))
ext no pick(pick(m− 1)),
ext no pick(no pick(m− 1))))

The synthesized select function picks two solutions across
which the no pick problem optimizes. This gives us the final
update function for the no pick subproblem.

no pick(m) = max(ext no pick(pick(m− 1)),
ext no pick(no pick(m− 1)))

Discussion: In this section, we have restricted the update
function syntactically. By doing so, we sought to reduce
the function space to be explored during constraint solving.
Whenever possible, syntactic restrictions seem preferable
over symmetry-breaking predicates [17] used in Section 3.4.
This is because syntactic restrictions offer the advantage of
simultaneously reducing the size of the constraint system.
In contrast, symmetry-breaking predicates prune the space
by adding clauses to the constraint system; these clauses
prevent symmetric candidates from arising as solutions but
do so at the cost having the solver maintain conflict clauses
over variables in the predicate.

3.4 Encoding of the Combiner Function Template
In the previous subsection, we restricted the form of the up-
date function to reflect the properties of optimization prob-
lems. Here, we develop a template for the combiner function
that is invoked from the update function. The combiner is
used by both the optimization problems (Section 2.1) and
the functional problems (Section 2.2). The combiner func-
tion reduces k inputs, x1, . . . , xk, to an output value using
the unary and binary operators provided by the programmer.
Recall that in an optimization problem, we have k = 2, and
the combiner computes a solution from a solution to a single
subproblem and the current input element. In the functional
problems, k ≥ 2 because the combiner is allowed to com-
bine the current input element multiple subproblems. For
this reason, functional problems in particular benefit from
the optimizations of this subsection.

The goal of the two optimizations is to reduce the space
of combiner functions by eliminating those functions that
are syntactically distinct but semantically equivalent. First,
we normalize the combiners by distributing unary operators
to the leaves of the expression. Second, we eliminate com-
biners that are identical up to commutativity of binary oper-
ators.

We adopt the restriction that each input xi is used in
the combiner exactly once. This restriction will allow us to
work with trees, rather than dags. Should the DPA recurrence
require a duplicate use of xi, the synthesizer will implicitly
work around this restriction by introducing an additional
subproblem, whose value will be equal to xi.

For the sake of conciseness, we introduce an infix form
of the grammar binary as �, and abbreviate the grammar
unary as u.

Distribute Unary Operators to Leaves In the update
grammar of Section 3.1, unary operators can appear at any
position of the expression tree; they can also appear multiple
times. For instance, the grammar generates the expression
identity(zero(max(x, y) + z)) as well as the semantically
equivalent expression max(zero(x), zero(y)) + zero(z).
We consider the latter expression canonical and eliminate
the former. To distribute unary operators across binary op-
erators, we introduce a combiner grammar where the unary
operators appear only in the leafs of the expression tree:

combiner(x1, . . . , xk) := reduce(u(x1), . . . , u(xk))

Combiners thus first apply the unary operators on the inputs,
then reduce them exclusively with binary operators. The
reduce grammar is introduced in the following section.

We now give conditions under which this combiner
grammar defines the same space of (semantic) functions
as the update grammar. In situations when the combiner
grammar loses some functions from the update grammar,
we show how to recover the lost expressiveness by adding
binary operators. As a running example, we use the set of
unary operators that we used most frequently in our exper-
iments: negate, identity, zero; the set of binary operators
are +,−, ∗, /,max,min,%.

The reducer grammar is equivalent to the update gram-
mar if the following conditions hold:

1. The set of unary operators is closed under composition,
i.e., the grammar u ◦ . . . ◦ u and the grammar u generate
the same space of (semantic) functions.

2. Each unary operator distributes over each binary opera-
tor, i.e., the grammar u(x� y) generates the same space
of semantic functions as the grammar u(x)� u(y).

We currently check these properties manually. On our run-
ning example, the first property is easy to show. Any com-
position containing the unary operator zero yields the zero
operator; any composition without zero is either negate or

identity depending on the number of negate’s used. For
example, negate ◦ identity ◦ zero ◦ negate ≡ zero.

The second property, u(x � y) = u(x) � u(y), requires
some thought. We need to show that for all instances of
� and u on the left-hand side there exists an equivalent
instance of � and u on the right-hand side. We find that
the operator negate does not distribute over the operators
max,min,%, while all other unary operators distribute
over all binary operators. For instance, negate(x/y) ≡
negate(x)/identity(y).

In cases when a unary operator u′ does not distribute
across a binary operator �′, such as negate(max(x, y)),
we extend the grammar of � with a new binary operator
u′(x�′y), which restores the expressiveness by hard-coding
the combination of the two operators. In practice, we found
that it was not necessary to keep the combiner grammar
equivalent to the update grammar by adding these new
operators.

To see that the combiner grammar is equivalent to the
update grammar if the two conditions hold, observe that
any expression from the latter grammar can be rewritten into
an expression of the former grammar with these transforma-
tions:

u(xi)→ u(xi) // base case
u ◦ . . . ◦ u(exp)→ u(exp) // by property 1
u(exp1 ◦ exp2)→ u(exp1) ◦ u(exp2) // by property 2

While we are currently performing the legality check
manually, in the future, this step can be automated using
the synthesizer, which can automatically find the equivalent
instance on the right-hand side, if one exists.

Symmetry reduction for commutative binary operators
We now write the template for the function reduce, which
encodes all possible ways of reducing k inputs x1, . . . , xk,
into one output with exclusively binary operators. If any
operators in reduce are commutative, then the space of re-
ducers includes “symmetric” expressions that are identical
up to commutativity. In this section, we explain the sym-
metry reduction for commutative binary operators, which
prunes the search space without losing any expressiveness.
For the sake of presentation, we assume all binary operators
are commutative; we explain below how to handle reduce
that may include non-commutative operators. Note that the
binary operators may or may not be associative. We do not
address symmetry reduction based on associativity because
we found symmetries due to associativity less harmful in our
experiments.

The space of functions defined by reduce is defined with
this grammar:

reduce(A) := reduce(A1)� reduce(A2)
reduce(x) := x

Here, A denotes the set of inputs, A = x1, . . . , xn, and A1,
A2 an arbitrary partition of the set A. The reduce function

takes in a set of inputs, arbitrarily splits the set into two
partitions, recursively reduces each partition, combining the
results with an arbitrary binary operator.

Because all operators in � are commutative, two expres-
sion trees using the operators � are symmetric if one tree
can be transformed into another tree by swapping children
at the � nodes. The symmetry is an equivalence relation.
For example, these two trees belongs to the same equivalent
class: x � (y � z) and (y � z) � x. To reduce the sym-
metry, we define a canonical tree for each equivalence class
and admit only the canonical expression tree while rejecting
non-canonical trees.

We now define a predicate that identifies canonical trees.
Consider the power set 2A, where A is the set of inputs.
Each element B of 2A has a natural correspondence to a
bit mask b, where the bit at b[i] marks whether B contains
element xi. The lexicographic order on bit-masks defines a
total order over 2A, where B1 < B2 if b1 < b2. We extend
the total order on 2A to a partial order on T , the set of all
expression trees with inputs B ∈ 2A. Let t1 be an expression
tree with inputs B1, and t2 with inputs B2, we say t1 < t2
iff B1 < B2. Notice that this is a partial order because given
a subset of inputs B, there are many expression trees over B,
which are un-ordered. The canonical predicate c states that
an expression tree t is canonical if its children are canonical
and that its left child is less than its right child:

c(leaf) = true
c(tree(l, r)) = c(l) ∧ c(r) ∧ l < r

We now give an outline of a proof that each equivalence
class has a unique canonical element:

1. Existence of a canonical element. Any tree can be
canonicalized by identifying all nodes whose left child
is greater than its right child, and swapping the children.
Note that swapping the children at a particular node does
not affect the lexicographic orders of children at any
other sub-trees. Thus, the canonical tree of an equiva-
lence class can be obtained by selecting any tree from the
class and canonicalizing it. Since the canonicalization is
performed by swapping, the canonicalized tree will be in
the same class, proving every class has a canonical ele-
ment. Figure 2 illustrates the canonicalization process.

2. Uniqueness of the canonical element. Suppose an equiv-
alence class contains two distinct canonical expression
trees t1 and t2. Then there exists a sequence of swaps
that transform t1 into t2. Consider a particular sub-tree
which has its children swapped. Since neither subsequent
not previous swaps can change the order of the children
of this particular sub-tree, either t1 or t2 must have its
children ordered in descending order at this sub-tree, and
is thus not canonical.

Up to this point we have assumed that all binary op-
erators are commutative. To canonicalize trees with non-
commutative operators, we define for every non-commutative

0001 0010

0100

1000

0011

0111

1111

1000

0100

00010010

0011

0111

1111

Figure 2. Canonicalization of the left tree into the right
tree. The process swaps the mis-ordered children at two
nodes. Each node is labeled with the subset of inputs to the
subtree rooted at that node. The labels 0001, 0010, 0100,
1000 denote x1, x2, x3, x4, respectively.

binary operator 	 a companion operator, 	′, defined with
	′(x, y) = 	(y, x). With the companion operator, we can
swap children of a non-commutative nodes by substituted
the operator with its companion.

Having defined the canonical predicate c, we can explain
how it is used during synthesis. The synthesizer consults
the predicate to rule out trees that are not canonical. The
predicate is evaluated as the tree is generated, to allow for
early pruning of the search compared to the alternative of
evaluating the predicate on a complete tree. We show here
the template the defines the expression tree and evaluates the
predicate:

def reduce(A):
if (|A| == 1):

return the only element in A
else:

A1, A2 = split A to two arbitrary subsets
assert A1, A2 are nonempty, disjoint unions of A
assert weight(A1) < weight(A2)
return reduce(A1) � reduce(A2)

The synthesizer always selects a canonical tree. After we
have added the companion operators to the grammar �,
the may use either the original operator or its companion,
depending on how inputs are used in the expression tree.

In our experiments, we have found that this template did
not lead to sufficient scalability. This was in part because at
the time of our experiments, the Sketch synthesizer trans-
lated recursive templates like reduce eagerly into an expo-
nentially large formula.

Therefore, we precomputed the reduce template stati-
cally, effectively evaluating the canonical predicate c on all
subtrees, and inlined the resulting grammar into the com-
biner template. For illustration, here is the resulting encod-
ing for a combiner of three elements:

combiner(x, y, z) := reduce(u(x), u(y), u(z))
reduce(x, y, z) := (x� y)� z | (x� z)� y | (y � z)� x

3.5 Constraint Solving
In addition to suitably encoding a template for the DPA, we
need to assert a correctness condition that guides the synthe-
sizer towards a correct program. The specification is given as
a predicate spec(input, output) that the output of the DPA
must satisfy. This predicate is usually implemented with a
naive, exponential-time algorithm. We assert the correctness
condition over a bounded domain I of inputs. We define I
with arrays of length N , where each array element contains
integer or tuple of integers ranging between [0,M].

We have found that a naive algorithm is too expensive
to encode in Sketch because it is translated to exponentially
large formulas. Therefore, we precompute the specification
as a table, by evaluating the naive algorithm offline, with a
script. The specification is then supplied to Sketch in a table-
lookup form:

naive(A):
if (A = [0, 0, ..., 0, 0]) return out1
...
if (A = [M,M, ...,M,M]) return outm

We have several options in how we define the correctness
condition. First, one can assert that the template is equivalent
to the naive algorithm, by asserting, at once, that the program
must be correct on all inputs from I . This is inefficient
because it create a large constraint system.

Instead, we take advantage of the counterexample-guided
inductive synthesis (CEGIS) loop in the Sketch synthesizer.
This refinement procedure reduces the function space itera-
tively, by gradually asserting that the synthesized program
must be correct on one more input. This input is obtained by
checking the correctness of the synthesized candidate algo-
rithm. When we get a correct algorithm, we stop. If the al-
gorithm is incorrect, we have an input-output pair on which
the candidate algorithm and the naive algorithm diverge. We
assert this particular input-output pair as an additional con-
straint to the template. This reduces the load in the synthe-
sizer significantly by having it consider only the inputs that
the previous algorithm failed on.

Our final option is to assert correctness on all arrays of a
small size, then gradually consider bigger input arrays.

Finally, we want to note that whenever a naive algorithm
is difficult to write, the input-output pairs needed for syn-
thesis can be generated manually from a declarative specifi-
cation. Usually, only a small number of examples is needed
to synthesize a correct algorithm, and these can be obtained
manually.

4. Experiments
In this section we evaluate our approach by synthesizing var-
ious algorithms. We wish to evaluate whether the symmetry
and space reduction techniques we developed in Sections 3.4
and 3.3, along with the assertion techniques in Section 3.5
make the synthesizer efficient while retaining completeness

of the template. The synthesizer is evaluated on the follow-
ing benchmark problems.

The first four benchmark problems are from a class of
“multi-marking” problems. In these problems, given an ar-
ray of integers, the objective is to find another array of in-
tegers, an assignment, such that the dot product of the two
arrays is maximized. The problems differ in their require-
ments for the assignment arrays. The Maximal Independent
Sum (MIS) problem takes an array of positive integers and
finds a selection array consisting of 0 and 1 with no adjacent
1s. The Maximal Segment Sum (MSS) problem takes an ar-
ray of positive or negative integers and finds a selection of
0 and 1 such that all the 1s are consecutive. The Maximal
Alternating Sum (MAS) problem takes an array of positive
or negative integers and finds a selection of 0, 1, and -1 such
that all the 1s and -1s are consecutive, and that the 1s and -1s
must interleave. The Maximal Multi-Marking (MMM) prob-
lem takes an array of positive or negative integers and finds
a selection of 0, 1, and -1 such that no two 0, 1, or -1 are
consecutive.

Our next benchmark is the Assembly Line (ASSM) prob-
lem. Given two assembly lines A and B, and the costs for
staying on a line (stayi) or switching to a different line
(switchi), the problem is to find the minimal cost of travers-
ing the assembly.

Our last two benchmarks are the OtherSum (OSUM) and
the Extended Euclid (EUC) problems, which will be de-
scribed below.

We will first show the synthesized solutions, followed by
empirical evaluation on the effects of our encodings.

4.1 Solutions to Synthesis Problems
4.1.1 MIS
User Hints:

unary(x) = x | 0
binary(x, y) = x+ y | max(x, y)
opt = max

Synthesized Recurrence Relation:

mis(n) = max(pick(n),no pick(n))
pick(n) = max(no pick(n−1) + array(n))
no pick(n) = max(pick(n−1),no pick(n−1))
pick(0) = 0
no pick(0) = 0

Here pick(n) is the sub-problem of the best legal assignment
up to the nth array element where we are forced to pick the
nth element. no pick(n) denotes the best legal assignment
up to the nth element and that we are forced to avoid the nth

element.

4.1.2 MSS
User Hints:

unary(x) = x | 0
binary(x, y) = x+ y | max(x, y)
opt = max

Synthesized Recurrence Relation:

mss(n) = max(suffix(n),best(n))
suffix(n) = max(max(0,suffix(n−1))+array(n))
best(n) = max(suffix(n−1),best(n−1))
suffix(0) = 0
best(0) = 0

Here suffix(n) denotes the best suffix assignment ending at
the nth array element, and best(n) denotes the best legal
assignment up to the nth element.

4.1.3 MAS
User Hints:

unary(x) = x | 0 | −x
binary(x, y) = x+ y | max(x, y)
opt = max

Synthesized Recurrence Relation:

mas(n) = max(suffix pos(n),suffix neg(n),best(n))
suffix pos(n) = max(0,suffix2(n−1)) + array(n)
suffix neg(n) = max(0,suffix1(n−1)) − array(n)
best(n) = max(suffix pos(n−1),suffix neg(n−1),best(n−1))
suffix pos(0) = 0
suffix neg(0) = 0
best(0) = 0

Here suffix1(n) denotes the best legal suffix up to the nth

element that ends in 1 while suffix2(n) ends in −1. best(n)
denotes the best legal assignment up to the nth element.

4.1.4 MMM
User Hints:

unary(x) = x | 0 | −x
binary(x, y) = x+ y | max(x, y)
opt = max

Synthesized Recurrence Relation:

mmm(n) = max(mark 0(n),mark 1(n),mark −1(n))
mark ig(n) = max(mark −1(n−1),mark 1(n−1))
mark pi(n) = max(mark 0(n−1)+array(n),

mark −1(n)+array(n−1))
mark ne(n) = max(mark 0(n−1)−array(n),

mark 1(n)−array(n−1))
mark ig(0) = 0
mark pi(0) = 0
mark ne(0) = 0

Here mark ig(n),mark pi(n),mark ne(n) are the sub-problems
of the best legal assignment up to the nth array element
where we are forced to ignore,pick,and negate the nth ele-
ment, respectively.

4.1.5 ASSEM
User Hints:

unary(x) = x | 0
binary(x, y) = x+ y | min(x, y)
opt = min

Synthesized Recurrence Relation:

assem(n) = min(line1(n),line2(n))
line1(n) = min(line1(n−1)+stay1(n),line2(n−1)+switch1(n))
line2(n) = min(line2(n−1)+stay2(n),line1(n−1)+switch2(n))
line1(n) = 0
line2(n) = 0

Here line1(n),line2(n) denote the optimal cost of n assem-
blies that end in line1 and line2, respectively.

4.1.6 Extended Euclid Algorithm
Here we attempt to synthesize the extended Euclid Algo-
rithm (EUC): Given two integers x and y with greatest com-
mon divisor (gcd) of 1, find coefficients a and b such that
a ∗ x + b ∗ y = 1. The greatest common devisors of 2 num-
bers can be found by the Euclid algorithm as follows:

euclid(x,y):
p1 = array()
p2 = array()
p1[0] = x
p2[0] = y
i = 0
while(p2[i] != 0):

i += 1
p1[i] = p2[i−1]
p2[i] = p1[i−1] % p2[i−1]

return p1[i]

Suppose the user vaguely remembers that EUC is performed
by traversing the computing histories of Euclid’s Algorithm,
p1 and p2, backwards. The user first reverse the histories:
q1 = reverse(p1), q2 = reverse(p2), and asks the synthe-
sizer to formulate a DPA that computes the coefficients a and
b by expressing the following constraints:

on input (x,y):
(a,b) = DPA(q1,q2)
assert(a∗x+b∗y == 1 OR a∗y+b∗y == −1)

Note that the user was not completely sure if the coeffi-
cient’s parities, hence she expresses a relaxed constraint, and
is happy if the coefficients can compute either positive or
negative 1.

User Hints:

unary(x) = x | 0
binary(x, y) = x+ y | x ∗ y | x%y | x− y | x/y

Synthesized Recurrence Relation:

e euc(n) = (p1(n),p2(n))
p1(n) = p2(n−1)
p2(n) = p1(n−1)+p2(n−1)∗(q1(n)/q2(n))
p1(n) = 1
p2(n) = 1

Here there is no obvious concise interpretation for the mean-
ings of the sub-problems. In short, solution takes advantage
of the fact that top(n-1) = bot(n) and bot(n-1) = top(n) mod
bot(n).

4.1.7 Other Sum
In this section we study the composability of the FOR tem-
plates, and argue that extending the template for a specific
problem can be done without expertise in program synthe-
sis.

OtherSum problem: given an array of integers a =
[a1, ..., an], compute the array b = [s − a1, . . . , s − an]
where s = Σn

i=1ai. That is, b[i] equals the sum of every
element in a other than the ith one. The catch is that we can-
not use subtraction and the algorithm must be O(n) time.
We use the easier-to-express subtraction algorithm can as
specification:

def spec (A = [a1,...,an])
total = 0
for i from 1 to n: total += A[i]
ret = array()
for i from 1 to n: ret[i] = total − A[i]
return ret

Next, we asked the synthesizer to produce a DPA restricted
to use only addition. The synthesizer answers that no such
algorithm exists, in less than a second.

Since the domain theory does not include the desired
algorithm, we make some conjectures on the properties of
the desired algorithm:

1. In the specification, the answer is computed with multiple
loops. Perhaps multiple passes over the array are needed
also in the desired algorithm.

2. Since the synthesizer failed to identify a recurrence that
works around the lacks of subtraction, the key to an
efficient algorithm seems to be a different traversal order.

We then wrote a more general template that encoded these
conjectures. The first conjecture is encoded by composing
multiple DPA templates:

def sketch(A):
temp1 = DPA1(A)
temp2 = DPA2(A,temp1)
result = DPA3(temp1,temp2)
return result

Both DPA1 and DPA2 are modified to return the entire
sub-problem arrays (as in Extended Euclid algorithm, we
extract the entire sub-problem p1 and p2) so that it can
be consumed by the next DPA as inputs, whereas DPA3 is
acting in place of the function terminate except it now
attempts to summarize entire arrays rather than just values
of the last iteration.

To encode the second conjecture, we relaxed the loop
iteration order from the default left-to-right to any arbi-
trary array traversal order, to be selected by the synthesizer.
We do this by asking the synthesizer to produce an arbi-
trary reordering reorder that translates the iteration space
[1, . . . , n − 1] to the space [r(1), . . . , r(n − 1)]. The map
reorder is implemented in DPA1 and DPA2 using the array
reorder that is initialized by the synthesizer. The synthesizer
finds an initialization of reorder that leads to a correct algo-
rithm.

def DPA1(A):
// initialize the array with n synthesized constants
int[n] reorder = [1, ..., 1] | ... | [n− 1, ..., n− 1] // all reorders
ret = array()
ret[reorder[0]] = 0
for i from 1 to n−1:

ret[reorder[i]] =
combiner2(ret[reorder[i−1]], A[reorder[i−1]])

return ret

def DPA2(A,B):
int[n] reorder = [1, ..., 1] | ... | [n− 1, ..., n− 1] // all reorders
ret = array()
ret[reorder[0]] = 0
for i from 1 to n−1:

ret[reorder[i]] = combiner3(ret[reorder[i−1]],
A[reorder[i−1]],B[reorder[i−1]])

return ret

def DPA3(A,B,C):
ret = array()
for i from 0 to n−1:

ret[i] = combiner3(ret[i−1],A[i−1],B[i−1])
return ret

The observant reader will notice that we have asked the
synthesizer to produce a map reorder that is fixed to a
particular value of n, and will (only) work for a fixed value
n.

We have a reason to ask the synthesizer for reorder
bound to a fixed n. The synthesized reorder serves as a
demonstration of a particular traversal order that allows us to
solve OtherSum in O(n)-time. As such, it reveals the algo-
rithm on a given n, in the spirit of angelic programming [5].
The demonstration provides hints for the user on how the
problem might be solved in the general case for all n.

There exist many maps reorder that lead to a correct
algorithm, and the synthesizer is capable of returning any
of such maps. One possible value of reorder is [3, 4, 0, 1, 2].

This may seem like a random traversal. However, a closer
inspection yields a remarkable observation: The iteration
reordering on DPA1 and DPA2 are always the reverse of one
another! For example, if the reorder is [3, 4, 0, 1, 2] in DPA1,
then the reorder is [2, 1, 0, 4, 3] for DPA2. This suggested
to us that the traversal in DPA1 could be left-to-right and
the traversal in FOR2 could be right-to-left. To synthesize a
suitable map reorder in DPA2, we replaced reorder[i] with
n−i+??, which then synthesized the following final program:

otherSum(A):
temp1 = array()
temp1[0] = 0
for i from 1 to n−1:

temp1[i] = temp1[i−1]+A[i−1]
temp2 = array()
temp2[0] = 0
for i from 1 to n−1:

temp2[n−i−1] = temp[n−i]+A[n−i]
ret = array()
for i from 0 to n−1:

ret[i] = temp1[i] + temp2[i]
return ret

4.2 Empirical Studies
In this section we show the effects of different encodings
of the recurrence and different assertion schemes on the
scalabilities of the solver.

We ran all our experiments on a four CPU, 2GHz ma-
chine, with 4GB of memory, since we iterate through the
numbers of sub-problems, here we shown only the data of
the last iteration.

Figure 3 compares the representation size and the func-
tion space size of our encodings. The representation size is
measured in nodes, where each node is an operator in the
formula constructed from the template by the Sketch syn-
thesizer. The function space size is measured in bits, where
each combination of bits correspond to a distinct completion
of the partial program, i.e., a candidate program. We remark
that the naive grammar encoding described in Section 3.2
creates a constraint system so large that the synthesizer runs
out of memory while trying to construct it. In contrast, the
combiner (Section 3.4) and extender (Section 3.3) encod-
ing significantly reduce the formula size and the space of
functions explored. For the harder problems, the extender
encodings reduce the representation and function space size
dramatically. For instance, MAS has a function space of 172
bits with the combiner encoding, but a mere 40 bits for the
extender encoding, which is a 1040-fold improvement.

Figure 4 shows that reducing the problem’s representa-
tion size and function space reduce the synthesis time for
a particular algorithm. However, it is not true across algo-
rithms. For instance, MMM has fewer nodes and function
space size than MAS, yet it took significantly longer to syn-
thesize. This maybe caused by an easier constraint of the

Benchmk GR COMB EXT
rep space rep space rep space

MIS mem N.A. 871 25 453 9
MSS mem N.A. 876 25 458 9
MAS mem N.A. 4785 172 1101 40
MMM mem N.A. 4251 71 634 19
ASM mem N.A. mem N.A. 1905 33
OSM mem N.A. 1023 23 N.A. N.A.
EUC mem N.A. 38837 766 N.A. N.A.

Figure 3. Constraint Size and Function Space. GR denotes
the naive grammar encoding of the update functions, while
COMB and EXT employ combiners and extenders, respec-
tively. Note that the extender encoding is only available for
optimization problems.

Prob. COMB EXT
time space time space

MIS 16 355 9 95
MSS 35 784 10 41
MAS N.A. mem 467 193

MMM N.A. mem 5909 790
ASM N.A. mem 101 90
OSM 2 54 N.A. N.A.
EUC N.A. mem N.A. N.A.

Figure 4. Synthesis Time (s) and Memory Usage (MB).

Benchmk ALL CEG INC
time space time space time space

MIS 9 355 9 95 10 31
MSS 10 784 10 41 14 48
MAS 689 mem 467 193 58 160
MMM N.A. mem 5909 790 626 316
ASM N.A. mem 101 90 30 60
OSM 15 377 2 54 N.A. N.A.
EUC N.A. mem N.A. mem 316 1410

Figure 5. Solving Time (s) and Memory Usage (MB). ALL
denotes we assert all the correctness conditions at once, CEG
uses the default CEGIS loop, while INC asserts correctness
conditions from small to large.

MAS problem, perhapse multiple candidate algorithms are
correct. Also notice that the EUC algorithm failed to synthe-
size with the default CEGIS assertions since the constraint
system is too difficult.

Next, we experiment with the different encodings of cor-
rectness. Figure 5 shows the effect of different encodings of
the correctness assertions, as discussed in Section 3.5 on the
runtime and memory usage of the solver. Notice the dramatic
improvement when the incremental assertion is employed,
turning the EUC from unsynthesizable to synthesizable.

5. Related Work
We relate our work to alternative approaches addressing
the two novel ideas we present here, namely that of semi-
automatic synthesis of DPA, and that of using partial pro-
grams as domain theories.

5.1 Derivation/synthesis of DPA
Most prior work concerned with the derivation of efficient
dynamic programming algorithms exploits an optimization
theorem, while some prior work has attempted to formu-
late the synthesis of DPA as a constraint-solving synthesis
problem. We will first discuss the refinement transformation-
based approaches below, followed by program synthesis-
based DPA generation.

With optimization theorem-based approaches, it is un-
clear how a user may take her algorithmic insight and find a
suitable transformations that exploits the insight. She would
have to link her program insight to the meta-reasoning at
the level of transformations. In our approach, the program-
mer does not need to reason about transformations. She thus
reasons directly about programs (if at all the domain tem-
plate needs tweaking), and not about transformations that
produce programs. With prior synthesis-based approaches,
a constraint-system has to be setup for each DPA instance.

Refinement theorem-based Yao shows that if a problem,
formulated as a recurrence relation, satisfies the quadrangle
inequality [26], then the problem can be solved in quadratic
time, which improves on the asymptotic complexity of a
naive cubic-time algorithm that implements the specification
directly. The quadrangle inequality allows us to safely re-
strict the range of subproblems that need to be considered to
produce an optimal solution. Phrased in terms of the “mem-
oization table” computed by a dynamic programming algo-
rithm, the inequality prunes the number of cells that the algo-
rithm needs to visit. The inequality does not seems to appli-
cable to linear-time problems that we consider in this paper.
Additionally, the problem must be formulated in a form that
satisfies the preconditions of the theorem.

Derivation of linear-time dynamic programming algo-
rithms has been considered by Bird and de Moor [4]. The op-
timization theorem, called the thinning theorem, transforms
problems into an efficient solution if two suitable preorders
are found. To reduce the burden of the work needed before
the theorem can be applied, Sasano et al restrict their do-
main to maximum-weightsum problems, which can be au-
tomatically translated to efficient algorithms as long as the
problem can be expressed as a mutumorphism [16]. As far
as we can tell, this process requires the programmer to iden-
tify the suitable sub-problems, which we seek to avoid with
our synthesis methodology.

Existing approaches for derivation of dynamic program-
ming algorithms rely on instantiating the program from an
algorithmic theory [14]. The approach relies on the user to

invent or symbolically calculate dominance relations for the
algorithmic theory.

Program synthesis-based In most partial-program synthe-
sizers [20, 23], each partial program/template is specific to
the synthesis problem at hand. In other words, only one
functionally-unique program can be synthesized from a par-
tial program. (One exception may be synthesis, i.e., infer-
ence, of program invariants in the context of program anal-
ysis, where a single template can synthesize into many pos-
sible invariants [7, 8, 22, 21].) Srivastava et al synthesized
the first dynamic programming algorithm from a partial pro-
gram. For each problem they have a separate template that
may capture multiple orthogonal solutions which verifiably
meet the specification, but which is restricted to that prob-
lem. Here, we generalize templates enough to be reusable
across problems.

5.2 Partial programs as domain theories
Our work is motivated by the desire to equip programmers
with practical program synthesis tools. We believe that it is
difficult to achieve this goal if we ask programmers to de-
velop optimizing program transformations and/or instanti-
ate algorithmic theories. Everyday programmers may miss
the necessary formal background; another open question is
teachability of program derivation tools. For that reason, our
“domain theory” for dynamic programming is purely syn-
tactic, expressed as a program template called a partial pro-
gram. With partial programs, programmers can write skele-
tons of desired code rather than a transformation that pro-
duces that code.

We develop our partial program-based domain theory in
the SKETCH language, which has been used to synthe-
size cryptographic algorithms, stencil kernels and concurrent
data structures [20, 18, 19]. While previous uses of SKETCH
have developed one partial program per desired synthesized
program, we have developed a partial program that serves as
a domain theory from which an entire class of dynamic pro-
gramming problems can be synthesized. This is the first use
of programmer-editable partial programs as a domain theory.

Informally, we say that a partial program forms a domain
theory if the partial program can synthesize programs for
a range of specifications. The first synthesizer with such a
partial-program domain theory was SmartEdit, which learnt
editor macros from programmer demonstrations [12]. The
synthesis algorithm was the version space algebra; the partial
program encoded a language of learnable macros. While a
single partial program could learn a large range of macros,
the domain theory was produced by the tool creator and was
not modifiable by the user, while we attempt to make the
domain theory user-modifiable.

Itzhaky et al [11] developed partial-program-based do-
main theories that were programmable by the synthesizer
expert. Their partial programs, called target languages, could
produce linear-time graph classifiers and perform finite dif-

ferencing on set operations. It will be interesting to explore
whether dynamic programming can be expressed in their
language. Their partial programs were expressed in a re-
stricted language dictated by their synthesis algorithm and
are likely accessible only to the synthesis expert.

6. Conclusion
We have shown that linear-time dynamic programming algo-
rithms can be synthesized with rather small guidance from
the programmer. Our synthesizer is based on constraints
solving, where a program template defines the space of pro-
grams explored by the synthesizer. This paper focuses on
how to encode the dynamic programming template so that it
includes all algorithsm of interest without making constraint
solving prohibitively expensive.

Acknowledgments
This material is based on work supported by U.S. Depart-
ment of Energy grant under Grant Number DE–SC0005136,
by NSF under Grant Number CCF–0916351, by a grant from
University of California Discovery program, as well as by
contracts with Intel and Microsoft.

References
[1] D. Andre and S. J. Russell. State abstraction for pro-

grammable reinforcement learning agents. In AAAI/IAAI,
pages 119–125, 2002.

[2] e. a. Armando Solar-Lezama. The Sketch synthesizer.
http://sketch1.csail.mit.edu/demo/.

[3] R. Bellman. The theory of dynamic programming. Bull.
Amer. Math. Soc., 60:503–515, 1954.

[4] R. Bird and O. de Moor. The Algebra of Programming.
Prentice-Hall, 1996.

[5] R. Bodı́k, S. Chandra, J. Galenson, D. Kimelman, N. Tung,
S. Barman, and C. Rodarmor. Programming with angelic
nondeterminism. In Hermenegildo and Palsberg [9], pages
339–352.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. The MIT Press, New York, 2001.

[7] S. Gulwani, S. Srivastava, and R. Venkatesan. Program
analysis as constraint solving. In PLDI, 2008.

[8] S. Gulwani, S. Srivastava, and R. Venkatesan. Constraint-
based invariant inference over predicate abstraction. In
VMCAI ’09: Proceedings of the 2009 Conference on
Verification Model Checking and Abstract Interpretation,
2009.

[9] M. V. Hermenegildo and J. Palsberg, editors. Proceedings of
the 37th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2010, Madrid, Spain,
January 17-23, 2010. ACM, 2010.

[10] S. Itzhaky, S. Gulwani, N. Immerman, and M. Sagiv. A
simple inductive synthesis methodology and its applications.
In OOPSLA, pages 36–46, 2010.

[11] S. Itzhaky, S. Gulwani, N. Immerman, and M. Sagiv. A simple
inductive synthesis methodology and its applications. In

W. R. Cook, S. Clarke, and M. C. Rinard, editors, OOPSLA,
pages 36–46. ACM, 2010.

[12] T. A. Lau, S. A. Wolfman, P. Domingos, and D. S. Weld.
Programming by demonstration using version space algebra.
Machine Learning, 53(1-2):111–156, 2003.

[13] U. Manber. Introduction to Algorithms: A Creative Approach.
Addison-Wesley Longman Publishing Co., Inc. Boston, MA,
USA, 1989.

[14] S. Nedunuri and W. R. Cook. Synthesis of fast programs for
maximum segment sum problems. In J. G. Siek and B. F.
0002, editors, GPCE, pages 117–126. ACM, 2009.

[15] S. Nedunuri, D. R. Smith, and W. R. Cook. A class of greedy
algorithms and its relation to greedoids. In A. Cavalcanti,
D. Déharbe, M.-C. Gaudel, and J. Woodcock, editors, ICTAC,
volume 6255 of Lecture Notes in Computer Science, pages
352–366. Springer, 2010.

[16] I. Sasano, Z. Hu, M. Takeichi, and M. Ogawa. Make
it practical: A generic linear-time algorithm for solving
maximum-weightsum problems. In In Proceedings of the
5th ACM SIGPLAN International Conference on Functional
Programming (ICFP’00, pages 137–149. ACM Press, 2000.

[17] I. Shlyakhter. Generating effective symmetry-breaking pred-
icates for search problems. Discrete Applied Mathematics,
155(12):1539–1548, 2007.

[18] A. Solar-Lezama, G. Arnold, L. Tancau, R. Bodik,
V. Saraswat, and S. Seshia. Sketching stencils. In PLDI,
pages 167–178, 2007.

[19] A. Solar-Lezama, C. G. Jones, and R. Bodik. Sketching
concurrent data structures. In PLDI, 2008.

[20] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and
V. Saraswat. Combinatorial sketching for finite programs.
In ASPLOS-XII: Proceedings of the 12th international
conference on Architectural support for programming
languages and operating systems, pages 404–415. ACM,
2006.

[21] S. Srivastava and S. Gulwani. Program verification using
templates over predicate abstraction. In PLDI, 2009.

[22] S. Srivastava, S. Gulwani, and J. S. Foster. VS3: SMT solvers
for program verification. In CAV, 2009.

[23] S. Srivastava, S. Gulwani, and J. S. Foster. From program
verification to program synthesis. In POPL, 2010.

[24] S. Srivastava, S. Gulwani, and J. S. Foster. From program
verification to program synthesis. In Hermenegildo and
Palsberg [9], pages 313–326.

[25] Wikipedia. Dynamic programming, Aug. 2011.
[26] F. F. Yao. Efficient dynamic programming using quadrangle

inequalities. In Proceedings of the twelfth annual ACM
symposium on Theory of computing, STOC ’80, pages 429–
435, New York, NY, USA, 1980. ACM.

	Introduction
	Overview
	Dynamic Programming for Optimization Problems
	Dynamic Programming for Functional Problems
	The Challenge of Designing a DPA
	Running Example: Maximum Independent Sum
	Synthesizer Input and Output
	Synthesis as Constraint Solving
	First-Order Dynamic Programming Algorithms
	Efficient Constraint Solving

	The DPA Synthesizer
	First-Order Recurrences
	The FOR Template
	Update Functions for Optimization Problems
	Encoding of the Combiner Function Template
	Constraint Solving

	Experiments
	Solutions to Synthesis Problems
	MIS
	MSS
	MAS
	MMM
	ASSEM
	Extended Euclid Algorithm
	Other Sum

	Empirical Studies

	Related Work
	Derivation/synthesis of DPA
	Partial programs as domain theories

	Conclusion

