Synthesis
Of

First-Order

University of California, Berkeley

Dynamic
Programming
Algorithms

Yewen (Evan) Pu
Rastislav Bodik
Saurabh Srivastava

Do you feel lucky?

ay
- “ Domas

R.E. Harser W 6\73':?(‘;\(

\ Compile Giene rato Al@eb ra CompileC |

Lo L

A QOVSZT O\ueg Plan Ngoﬁ'\‘km

A new way to build an island?

Conventional Domain Specific Compiler:

* Require deep domain theories

* Takes along time to implement
e

Domain
Specific
COW\?‘\ leC

Constraint Based Synthesizer:

* Write a template for desired algorithm v
Algoﬁ'ﬁxw\

* Constraint solver fills in the template

Make Templates not Theories

Suppose we want to optimize X+X+X+X

With domain-specific rewrite rules:
X+X+X4¥X — b *YX — 12" X —> X<<‘l

With a template in SKETCH [Solar-Lezama]:

spec(x): return X+Xx+X+X

sketch(x): return x << X 2

program equivalence found
using bounded model checking

A Search for a Correct Program

Synthesizer finds in a space of candidate programs a
correct one (it matches the specification)

Spoce of Condidates

Research Question in This Talk

0

/T Use®
/
AN
Spec Spe cfemp\a‘fe
[
(Sv\v\ﬂeSiZeV ‘é*f‘em\)la’te
I\) 1\ |
!) Com\)\(er
A\ﬁori thyy D

desijner

Can we write a synthesizer
for an entire problem
domain using a single
template (sketch)?

The Challenge

How do we write a template that covers
all of our domain, yet the constraints it
induces can be efficiently solved?

Our Approach

Define a general template that contains the entire domain
Optimize the search by reducing the search space

Entire Search Space

Dynamic Programming Algorithms

A well-defined domain
We have no “DSL compiler” for it (taught as an art)

Difficulties:
* inventing sub-problems
* inventing recurrences

We focus on a first-order sub-class, FORDP, which
captures many O(n) DP algorithms

An Easy Problem

Fibonacci Sequence:
fib(n) = fib(n-1) + fib(n-2)

AN
HS @

A Harder Problem

Maximal Independent Sum (MIS)
Input: Array of positive integers

Output: Maximum sum of a non-consecutive
selections of its elements.

MES (E@,z,%,@,u@,ﬂ) =%

What does the user do?

% - +lints MTS
A in {or :
o> .\A_\-S /7
1 ¥ OPe catoCs:
‘W‘é—ﬁm\)lﬁe ZTQO\:“{:] @ |
l o COW\P lec +
Algorithm \\"l esygnec MO/X
mis(A): Does nof redson abowl Sub-problam
best = @ 4

forall selections:
if non_consec(selection):
best = max(best, value(A[selection]))
return best

What does the template do?

O

//F\"se“ * Define a general template that contains
N the entire domain
Spec “ S
S\/\Aﬂes 12eC |4—@ Entire Search S‘)ﬂ&

O COYV\ lec
A\éor\ thm PO‘ es\jner

A General Template

for_dpa(a):
pl = array()
p2 = array()
pl[0] = initl() De]Cir\es the recurrence

p2[0] = init2()
for i from 2////
pl[i] = vupdatel(pl[i-1],p2[i-1],a[i])
p2[i] = update2(pl[i-1],p2[i-1],a[i])
term

return nl,p2[n])

Covers every FORDP algorithm

General Template for update

All possible compositions of user provided operators

ACi)
> _.
s N _ R
- oMpOSiTio
PzLFi'] P "

—sHK)

Space Reduction: Optimality

All FORDP recurrences have this syntactic form

oli)l 772
—sC E"]ﬂ

t
ol of

PLi-1] "’@ﬁc'l\'ﬂ - \/O:; =)
alil] opt
pLi- (1 & —Ca L) B
\?\—’ﬂl

Space Reduction: Optimality

Recurrence for MIS:

po i)

/ > PD]

)
e
Y
@RD— 5 1]

6 Li-1")
\ OOD_X //

rPEi-G

Space Reduction: Symmetry

Many operators are commutative

Z Z X
7 SRRV

Ix\,f £ \ \/ ﬂ\s
@\x/] @\“/ gz é>
o TX O TX vy

Pick a canonical representative syntactically

NE

Space Reduction: Recap

All possible compositions
ACi)
> _
Rii-0— Al G . _»R&i]
_ omposiTio .
Bhi-1 P —p i)

Syntactically Reduced

DEMO

Benchmarks

Here are some synthesized recurrences

ATES
P(iN= OCi-DN+al(i)

O (N = mox (Pi-1), o6i-1Y)

BES -
L (D= min (Lien-+ Sty L 00 i)+ Suith ()
L ()= 0 (Lot Sy, (@), {0+ Switehi ()

extended euclid:
(Pl(i\ = ‘)7.((-‘\ q/‘(“)
PLCiY = P+ PG-0) *)

Experiments

Synthesizer solving time, in seconds

1000 - out of memory
100
® comp
10 B symm
W opti
1

& & & R & rb(,,@ N Q/o(’

Conclusion

It is possible to build a domain-specific synthesizer for FORDPA
Synthesizer developer only find a syntactic domain structure
The lessons learned in building the synthesizer may be general

If so, we can build more islands with constraint-based synthesis

