
_Synthesis__________________
__Of_______________________
___First-Order_____Dynamic___
_____________Programming___
_______________Algorithms___

Yewen (Evan) Pu
Rastislav Bodik
Saurabh Srivastava University of California, Berkeley

Do you feel lucky?

A new way to build an island?

Conventional Domain Specific Compiler:

• Require deep domain theories

• Takes a long time to implement

Constraint Based Synthesizer:

• Write a template for desired algorithm

• Constraint solver fills in the template

Make Templates not Theories

Suppose we want to optimize x+x+x+x

With domain-specific rewrite rules:

 With a template in SKETCH [Solar-Lezama]:

 spec(x): return x+x+x+x

 sketch(x): return x << ??

program equivalence found
using bounded model checking

A Search for a Correct Program

Synthesizer finds in a space of candidate programs a
correct one (it matches the specification)

Research Question in This Talk

Can we write a synthesizer
for an entire problem
domain using a single
template (sketch)?

The Challenge

How do we write a template that covers
all of our domain, yet the constraints it
induces can be efficiently solved?

Our Approach

Define a general template that contains the entire domain

Optimize the search by reducing the search space

Dynamic Programming Algorithms

A well-defined domain

We have no “DSL compiler” for it (taught as an art)

Difficulties:
• inventing sub-problems
• inventing recurrences

We focus on a first-order sub-class, FORDP, which
captures many O(n) DP algorithms

An Easy Problem

Fibonacci Sequence:
 fib(n) = fib(n-1) + fib(n-2)

A Harder Problem

Maximal Independent Sum (MIS)

Input: Array of positive integers

Output: Maximum sum of a non-consecutive
 selections of its elements.

What does the user do?

mis(A):
 best = 0
 forall selections:
 if non_consec(selection):
 best = max(best, value(A[selection]))
 return best

What does the template do?

• Define a general template that contains
the entire domain

A General Template

Covers every FORDP algorithm

General Template for update

All possible compositions of user provided operators

Space Reduction: Optimality

All FORDP recurrences have this syntactic form

Space Reduction: Optimality

Recurrence for MIS:

Space Reduction: Symmetry

Many operators are commutative

Pick a canonical representative syntactically

Space Reduction: Recap

All possible compositions

Syntactically Reduced

DEMO

Benchmarks

Here are some synthesized recurrences

Experiments

1

10

100

1000

comp

symm

opti

Synthesizer solving time, in seconds

out of memory

Conclusion

It is possible to build a domain-specific synthesizer for FORDPA

Synthesizer developer only find a syntactic domain structure

The lessons learned in building the synthesizer may be general

If so, we can build more islands with constraint-based synthesis

