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Abstract
SAT and SMT solvers have automated a spectrum of pro-
gramming tasks, including program synthesis, code checking,
bug localization, program repair, and programming with ora-
cles. In principle, we obtain all these benefits by translating
the program (once) to a constraint system understood by the
solver. In practice, however, compiling a language to logi-
cal formulas is a tricky process, complicated by having to
map the solution back to the program level and extend the
language with new solver-aided constructs, such as symbolic
holes used in synthesis.

This paper introduces ROSETTE, a framework for design-
ing solver-aided languages. ROSETTE is realized as a solver-
aided language embedded in Racket, from which it inherits
extensive support for meta-programming. Our framework
frees designers from having to compile their languages to
constraints: new languages, and their solver-aided constructs,
are defined by shallow (library-based) or deep (interpreter-
based) embedding in ROSETTE itself.

We describe three case studies, by ourselves and others, of
using ROSETTE to implement languages and synthesizers for
web scraping, spatial programming, and superoptimization
of bitvector programs.

Categories and Subject Descriptors D.2.2 [Software Engi-
neering]: Design Tools and Techniques; D.3.3 [Program-
ming Languages]: Language Constructs and Features

General Terms Design; Languages

Keywords Solver-Aided Languages

1. Introduction
A few times in the evolution of programming languages,
extra-linguistic advances enabled adoption of new program-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Onward! 2013, October 29–31, 2013, Indianapolis, Indiana, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2472-4/13/10/13/10. . . $15.00.
http://dx.doi.org/10.1145/2509578.2509586

ming constructs: efficient garbage collection led to automatic
memory management; transactional hardware gave rise to
atomics; and JIT compilation helped popularize dynamically
typed languages. SAT and SMT solvers may be on the cusp
of enabling another class of language constructs. Reduction
to constraint solving has already automated a spectrum of
programming tasks—including program checking, program
synthesis, and program grading—and more problems previ-
ously solved with tricky deterministic algorithms may follow
suit. This versatility of solvers encourages us to integrate
solver capabilities into programming languages.

We argue that most applications of solvers in programming
can be reduced to four elementary solver queries:

• (S) synthesizing a code fragment that implements a de-
sired behavior [23, 34];

• (V ) checking that an implementation satisfies a desired
property [8, 10, 12, 15, 21, 37, 40];

• (L) localizing code fragments that cause an undesired
behavior [22]; and

• (A) runtime nondeterminism, which asks an angelic or-
acle to divine values that make the execution satisfy a
specification [23, 26, 28, 32].

An advanced application may combine several of these
queries. For example, a solver-aided tool for program re-
pair [7, 41] might first localize repair candidates (L), then
replace a candidate code fragment with an angelically chosen
value that makes the program pass a failing test (A), and
finally, if the chosen value heuristically appears like a value
that a correct program would produce, the repair tool might
use it to synthesize a replacement for the candidate code
fragment (S).

In principle, these queries can be supported by translating
the program (once) to constraints and invoking the solver
on these constraints. Depending on the context, the solver
searches for a desired value or program, acting as a bidirec-
tional program interpreter (in S and A); falsifies a formula,
acting as a verifier (V ); or produces an unsatisfiable core,
acting as a fault localizer (L).

Existing systems have demonstrated the benefits of using
a solver to answer individual queries in the context of a
specific language. Extending these benefits to other languages



requires development of a symbolic compiler from the new
language to logic constraints. Compiling a language to logical
constraints is a tricky process, additionally complicated by
having to map the solution back to the program level and
having to extend the language with solver-aided constructs,
such as symbolic holes [34] that define the space of candidate
programs considered by a synthesizer.

This paper describes ROSETTE, a framework for con-
struction of solver-aided domain-specific languages (SDSLs).
ROSETTE is a small extension of Racket [39] equipped with
a symbolic compiler. Because ROSETTE is itself solver-aided,
languages embedded into ROSETTE inherit the four queries,
which frees language developers from having to write sym-
bolic compilers and formulate low-level queries to a solver.

ROSETTE supports both shallow (library-based) and deep
(interpreter-based) embedding of languages. One can even
stack languages and synthesize an interpreter for the lower
parts of the language stack. Along these lines, we show
in Section 2 how ROSETTE synthesizes rewrite rules for a
compiler of circuit programs. We believe that this is the first
synthesis of rewrites that does not require prior semantic
axioms such as proof rules [38].

The key design decision in ROSETTE is to compile only a
small a subset of the host language (Racket) to constraints,
and to grow this small symbolic core with a partial evaluator
that simplifies non-core constructs prior to symbolic compila-
tion. This architecture offers several new benefits:

• ROSETTE programs are free to use all Racket fea-
tures, including its advanced object system and meta-
programming constructs such as macros, as long as these
non-core constructs are partially-evaluated away prior
to symbolic compilation. In our experiments, non-core
constructs never leaked past the partial evaluator. Access
to advanced language constructs thus eased construction
of new languages without impacting the compilation to
logic constraints.

• By dividing work between the partial evaluator and the
symbolic compiler, we have enabled a simple imple-
mentation while offering a rich solver-aided language.
Prior systems either symbolically compiled the entire lan-
guage, leading to large implementations and/or limited
languages [8, 12, 34], or compiled only a tiny core without
any support for growing it [23].

While ROSETTE heavily relies on Racket’s metaprogram-
ming for both symbolic compilation and partial evaluation,
ROSETTE’s architecture can be easily realized in other lan-
guages too, as evidenced by recent work on embedding
solver-aided features into Ruby [27] and Scala [23]. After all,
ROSETTE only requires that the operations in the symbolic
core can be overridden or otherwise lifted to ROSETTE’s
custom versions. The operations outside the symbolic core
remain unchanged.

Our group has used ROSETTE to implement several new
solver-aided systems, including a programming model for
ultra-low-power spatial architectures with synthesis-based
program partitioning; a declarative SDSL for web scraping,
with synthesis support for programming by demonstration;
and a superoptimizer for bitvector programs. Two of these sys-
tems have been prototyped by senior undergraduate and first-
year graduate students—all first-time users of ROSETTE—in
just a few weeks. In contrast, the same students needed an
entire semester to build prototypes of analogous SDSLs from
scratch, without the help of ROSETTE. The key productivity
benefits came from not having to build a symbolic compiler.

We present main ideas behind ROSETTE in Section 2, by
showing how to grow a stack of tiny SDSLs with support
for synthesis, verification, fault localization and angelic
execution. We then present ROSETTE’s semantics (Section 3),
describe some of the systems designed with our framework
(Section 4), and discuss related work (Section 5). Section 6
concludes the paper.

2. ROSETTE by Example
In this section, we illustrate how to construct solver-aided
DSLs through embedding in a solver-aided host language.
We demonstrate both shallow and deep embedding. Our host
solver-aided language is ROSETTE, which is itself embedded
in a (classical) host language Racket [39].

Shallow embedding is demonstrated with a tiny DSL
for specifying boolean circuits (Section 2.1). Here, circuit
programs are ordinary Racket functions, and we show that a
Racket DSL can be equipped with solver-aided capabilities
by a straightforward port to ROSETTE (Section 2.2).

Next, we embed the circuit language deeply, which facili-
tates development of circuit transformers, i.e., programs that
rewrite circuit programs. We show that it is possible to syn-
thesize and debug circuit transformers by asking ROSETTE to
reason across three linguistic layers: circuit programs, their
transformers, and their interpreters.

We show two styles of deep embedding: a lightweight
version, which adopts ROSETTE’s symbolic representation of
circuits as its abstract syntax tree (Section 2.3); and a full deep
embedding, which constructs an explicit abstract syntax tree
and symbolically quantifies over a space of trees, giving the
transformation language the power to verify correctness of its
programs on all circuits up to a bounded size (Section 2.4).

2.1 Getting Started: A Circuit DSL in Racket
Consider the problem of building a tiny circuit language (TCL)
for specifying boolean circuits, testing them on input-output
pairs, and verifying that two circuits are equivalent on all
inputs. TCL may be used in teaching, where it can demon-
strate alternative circuits for a given boolean function, or in
developing a boolean constraint solver, where it can test that
circuit transformations change the structure (representation)
of a circuit but not its boolean function.



1 #lang s-exp tcl

3 (define-circuit (xor x y)
4 (! (<=> x y)))

6 (define-circuit (RBC-parity a b c d)
7 (xor (<=> a b) (<=> c d)))

9 (define-circuit (AIG-parity a b c d)
10 (&&
11 (! (&& (! (&& (! (&& a b)) (&& (! a) (! b))))
12 (! (&& (&& (! c) (! d)) (! (&& c d))))))
13 (! (&& (&& (! (&& a b)) (! (&& (! a) (! b))))
14 (&& (! (&& (! c) (! d))) (! (&& c d)))))))

16 (verify-circuit AIG-parity RBC-parity)

Figure 1. A sample program in a tiny circuit language (TCL)

Figure 1 shows a TCL program that verifies equivalence
of two circuits, one presumably obtained by transforming
the other. TCL is shallowly embedded in Racket and so TCL
programs are valid Racket programs. TCL represents circuits
as named first-class procedures that operate on boolean values
and defines four built-in circuits (!, <=> , &&, and||), which
are themselves Racket procedures. The language provides
constructs for defining new circuits (define-circuit) and
for verifying that two circuits are equivalent on all inputs
(verify-circuit). Throughout this paper, we show DSL
keywords in blue, and use boldface for keywords in the host
language (be it ROSETTE or Racket).

The example program in Figure 1 verifies that a parity-
checking circuit, RBC-parity, is equivalent to its transformed
variant, AIG-parity. The original circuit takes the form of
a Reduced Boolean Circuit (RBC) [2], and the transformed
circuit is an And-Inverter Graph (AIG) [3]. RBCs represent
boolean functions using negations and bi-implications. AIGs
use only negations and conjunctions. Both representations
were designed for use in solver-based tools [1, 6, 20].1

Figure 2 shows an implementation of TCL in Racket. Lines
3–4 export (only) the TCL functionality to TCL programs
along with a few boilerplate Racket primitives that make TCL
a stand-alone language. The define-circuit construct is
simply rewritten into a procedure definition. This syntactic ab-
straction is implemented with a Racket macro: when the syn-
tactic pattern on line 6 is found in a TCL program, it is rewrit-
ten into the template on line 7, which happens to be a code
fragment in the Racket language. The pattern variables id,
in, and expr are substituted in the process. For example, the
circuit definition (define-circuit (xor x y) (! (<=> x y)) )
is rewritten into (define (xor x y) (! (<=> x y)) ). Ellipses
in the macro allow the pattern variable in to match a vari-
able number of arguments. The verify-circuit procedure
(lines 9–14) checks the equivalence of two n-ary circuits by
applying them to all possible combinations of n bits, and
failing if they produce different outputs. The remaining pro-
cedures (lines 16–19) define the built-in circuits.

1 They both also impose additional constraints on circuit structure, which we
omit for the purposes of this paper.

1 #lang racket

3 (provide ! && || <=> define-circuit verify-circuit
4 #%datum #%app #%module-begin #%top-interaction)

6 (define-syntax-rule (define-circuit (id in ...) expr)
7 (define (id in ...) expr))

9 (define (verify-circuit impl spec)
10 (define n (procedure-arity spec))
11 (for ([i (expt 2 n)])
12 (define bits (for/list ([j n]) (bitwise-bit-set? i j)))
13 (unless (eq? (apply impl bits) (apply spec bits))
14 (error "verification failed on" bits))))

16 (define (! a) (if a #f #t))
17 (define (&& a b) (if a b #f))
18 (define (|| a b) (if a #t b))
19 (define (<=> a b) (if a b (! b)))

Figure 2. A shallow embedding of TCL in Racket

Executing the TCL program in Figure 1 will attempt the
verification. Since our RBC-parity and AIG-parity circuits
are not equivalent, the verification fails on line 14 of Figure 2:

verification failed on (#f #f #f #f)

> (RBC-parity #f #f #f #f)
#f
> (AIG-parity #f #f #f #f)
#t

Because TCL is not solver aided, it misses several desirable
features. First, the implementation of verify-circuit is
inefficient. Based on exhaustive search, it will be slow on
circuits with more than a few inputs. Second, TCL provides
no automated support for localizing and fixing the bug in the
AIG-parity circuit that was detected during verification. We
add these features in the next subsection by developing TCL+,
a tiny circuit language that is solver-aided.

2.2 Getting Symbolic: A Circuit SDSL in ROSETTE

Our first step toward a solver-aided circuit language, TCL+,
is to embed TCL in the solver-aided ROSETTE language
rather than in Racket. Using ROSETTE’s symbolic values
and assertions about program properties, we can formulate
solver-aided queries. These queries will accelerate circuit
verification as well as automatically locate and fix bugs in
TCL+ programs.

Embedding a language in ROSETTE To embed TCL in
ROSETTE, we replace the first line in Figure 2, namely the
directive #lang racket that embeds TCL in Racket, with the
following language declaration:

#lang s-exp rosette

With this change, our newly created SDSL, TCL+, continues
to work exactly as its precursor (although we are not yet ex-
ploiting any solver-aided features of ROSETTE). The example
program in Figure 1 need not change at all, and its validity
check still fails with the same error. Additionally, we will
simplify Figure 2 by omitting lines 16–19 because they define
procedures already provided by ROSETTE.



Symbolic constants To take advantage of the solver-aided
queries that TCL+ inherits from its host, we will need to
introduce symbolic values into circuit programs:

> (define-symbolic b0 b1 b2 b3 boolean?)

This definition creates four symbolic constants of boolean
type, and binds them to four Racket variables.

Symbolic constants can be used wherever concrete values
of the same type can be used. For example, we can call
a circuit procedure on our symbolic constants to obtain
another symbolic value—a symbolic expression with those
four constants in the leaves:

> (RBC-parity b0 b1 b2 b3)
(! (<=> (<=> b1 b0) (<=> b2 b3)))

ROSETTE actually provides two kinds of constructs for
creating symbolic constants:

(define-symbolic id1 ... idk expr)
(define-symbolic* id1 ... idk expr)

The define-symbolic form creates k fresh symbolic con-
stant of type expr and binds the provided program variables
to their respective constants every time the form is evalu-
ated (e.g., in the body of a loop). But sometimes, it is de-
sirable to bind a variable to a fresh symbolic value. This is
accomplished by the define-symbolic* form, which creates
k streams of fresh constants, binding each variable to the next
constant from its stream whenever the form is evaluated. The
following example illustrates the semantic difference:

(define (static)
(define-symbolic b boolean?)
b)

> (define (dynamic)
(define-symbolic* n number?)
n)

> (eq? (static) (static))
#t
> (eq? (dynamic) (dynamic))
(= n$0 n$1)

Booleans and numbers (more specifically, finite precision
integers) are the only kinds of symbolic constants supported
by ROSETTE. But because they are embedded in a program-
ming language, they can be used to create symbolic instances
of other data types. We will see an example of this in Section
2.4, where we use primitive symbolic constants to create a
symbolic expression that represents all (abstract syntax) trees
of bounded depth. (The trick is to use symbolic constants to
control what tree is produced by a tree constructor.)

Verification With symbolic values as inputs, and assertions
that specify desired properties of circuits applied to those
inputs, we have all the necessary components to implement
the four basic solver-aided queries for TCL+. For example,
the following code accelerates verification of circuit programs
(V ) by querying the solver for an input on which a circuit
and its transformation fail to produce the same output:

> (define counterexample
(verify (assert (eq? (RBC-parity b0 b1 b2 b3)

(AIG-parity b0 b1 b2 b3)))))
> (evaluate (list b0 b1 b2 b3) counterexample)
’(#t #t #t #f)
> (RBC-parity #t #t #t #f)
#t
> (AIG-parity #t #t #t #f)
#f

The (verify expr) query exhibits the usual demonic se-
mantics. It attempts to find a binding from symbolic constants
to values that violates at least one of the assertions encoun-
tered during the evaluation of expr. Bindings are first-class
values that can be freely manipulated by ROSETTE programs.
We can also interpret any ROSETTE value with respect to
a binding using the built-in evaluate procedure. In our ex-
ample, the solver produces a binding that reveals an input
(different from the one in Section 2.1) on which the trans-
formed circuit, AIG-parity, fails to behave like the original
circuit, RBC-parity.

Debugging The solver can help localize the cause of this
faulty behavior (L) by identifying a maximal set of program
expressions that are irrelevant to the failure—even if we
replaced all such expressions with values provided by an
angelic oracle, the resulting program would still violate
the same assertion. ROSETTE finds irrelevant expressions
by computing the complement set, which we will call a
minimal unsatisfiable core of the failure. Core expressions are
collectively responsible for an assertion failure, in the sense
that the failed execution can be repaired by replacing just one
core expression (in addition to all irrelevant expressions) with
a call to an angelic oracle. In general, there may be many
cores for each failure. Still, every core contains at least one
buggy expression. In practice, examining one or two cores
often leads to the source of the error.

To activate solver-aided debugging (which is off by de-
fault due to overhead), we select a few functions as candi-
dates for core extraction by changing their definitions to use
the keyword define/debug instead of define. In our exam-
ple, we would change the definition of AIG-parity to use
define/debug instead of define-circuit, and invoke the
debugger as follows:

> (define core
(debug [boolean?]

(assert (eq? (AIG-parity #t #t #t #f)
(RBC-parity #t #t #t #f)))))

> (render core)
(define/debug (AIG-parity a b c d)
(&&
(! (&& (! (&& (! (&& a b)) (&& (! a) (! b))))

(! (&& (&& (! c) (! d)) (! (&& c d))))))
(! (&& (&& (! (&& a b)) (! (&& (! a) (! b))))

(&& (! (&& (! c) (! d))) (! (&& c d)))))))

The (debug [predicate ] expr) query takes as input an ex-
pression whose execution leads to an assertion failure, and a
predicate that specifies the dynamic type of the expressions



to be considered for inclusion in the core.2 Cores are first-
class values and can be used for further automation (such as
program repair), or visualized using the built-in render pro-
cedure. Given a core, render displays all procedures marked
with define/debug, showing the core expressions in red and
the irrelevant expressions in gray.

Angelic execution We are going to repair the circuit pro-
gram with program synthesis, but first, we want to identify
suitable repair candidates, i.e., subexpressions that we will
replace with a synthesized repair expression. To look for re-
pair candidates, we will heuristically restrict ourselves to the
identified minimal unsatisfiable core. (In general, successful
program repair may need to involve more than just the identi-
fied core, or even the union of all cores, because a program
may need to be completely rewritten to implement the desired
function in the given language.) The heuristic we will use is to
select as the repair candidate the largest subexpression from
the core that the synthesizer can handle. This will increase
the chance that the repair corrects the program on all inputs
(which is the correctness condition we will use in synthesis).

The core that we have obtained in our example suggests
several repair candidates for AIG-parity. For example, it
may be sufficient to fix just the subexpression (&& a b),
or we may have to replace the entire first child of the
circuit with a new expression. To test the former hypothesis,
we ask whether the failure can be removed by replacing
the subexpression with an angelically chosen value. If not,
repairing this subexpression alone will not be sufficient; we
will need to select a larger repair candidate.

To create an oracle, we replace (&& a b) with a call to the
dynamic-choose procedure, which generates fresh symbolic
values,3 and query the solver for a concrete interpretation of
those values that saves our buggy execution from failing (A):

> (define (dynamic-choose)
(define-symbolic* v boolean?)
v)

> (define-circuit (AIG-parity a b c d)
(&&
(! (&& (! (&& (! (dynamic-choose)) (&& (! a) (! b))))

(! (&& (&& (! c) (! d)) (! (&& c d))))))
(! (&& (&& (! (&& a b)) (! (&& (! a) (! b))))

(&& (! (&& (! c) (! d))) (! (&& c d)))))))
> (solve (assert (eq? (AIG-parity #t #t #t #f)

(RBC-parity #t #t #t #f)))))
solve error: no satisfying execution found

The (solve expr) query implements angelic semantics. It
returns a binding from symbolic constants to concrete values,
if any, that satisfies all assertions encountered during the
evaluation of expr. We are using the streaming construct
define-symbolic* to create symbolic constants so that the
oracle can produce distinct values if it is consulted multiple
times during the execution, as is the case in the next example,

2 If the predicate is too restrictive—for example, it rejects all values—or if
the procedures selected for debugging are not causing the failure, the query
will fail with the same assertion error as expr.
3 Recall that the define-symbolic* form creates a stream of fresh con-
stants for each declared variable.

where the circuit with the oracle is evaluated twice. In this
case, the solver is unable to find a satisfying binding, proving
that it is not sufficient to fix just the subexpression (&& a b).

To test our second repair hypothesis, we replace the entire
first child of AIG-parity with a call to dynamic-choose. The
solver is now able to prevent failures on both failing inputs
that we have identified. Therefore, we have found a promising
repair candidate:

> (define-circuit (AIG-parity a b c d)
(&&
(dynamic-choose)
(! (&& (&& (! (&& a b)) (! (&& (! a) (! b))))

(&& (! (&& (! c) (! d))) (! (&& c d)))))))
> (solve

(begin
(assert (eq? (AIG-parity #t #t #t #f)

(RBC-parity #t #t #t #f)))
(assert (eq? (AIG-parity #f #f #f #f)

(RBC-parity #f #f #f #f)))))
(model
[dynamic-choose:v$0 #t]
[dynamic-choose:v$1 #f])

The new solve query yields an angelic binding for the two
symbolic constants generated by evaluating AIG-parity—
and therefore, dynamic-choose—on our two counterexample
inputs. For AIG-parity to work correctly on the first input,
the first child expression should produce #t. For the second
input, it should produce #f.

Synthesis With the first child of AIG-parity as the repair
candidate, we can now synthesize (S) a correct replacement
for that child from a syntactic sketch [34] of the desired repair.
For example, the following sketch specifies that our repair
is to be drawn from a grammar of Circuit expressions of
depth k ≤ 3, containing only the AIG operators and inputs
to AIG-parity:

> (define-circuit (AIG-parity a b c d)
(&&
(Circuit [! &&] a b c d #:depth 3)
(! (&& (&& (! (&& a b)) (! (&& (! a) (! b))))

(&& (! (&& (! c) (! d))) (! (&& c d)))))))

Figure 3 (lines 39-46) shows the definition of the Circuit

grammar. We specify grammars with the help of two con-
structs: choose, which selects one of n expressions, and
define-synthax (i.e., “define synthesizable syntax”), which
combines expression choices into a (recursive) grammar. The
definition corresponds to the usual BNF specification:

Circuit := (unop (expr . . . | (binop Circuit Circuit)))
unop := op1 | identity
binop := op2 | . . . | opk

We instantiate this generic grammar by providing a set of
circuit operators, a set of terminals, and an upper bound on
the depth of circuit expressions drawn from the grammar.

Constructs for specifying grammars, such as choose and
define-synthax, are provided by a small utility library built
on top of ROSETTE, using macros and symbolic values. For
example, the define-synthax form is implemented as a
macro-generating macro. It creates a grammar (macro) from
a pattern that specifies the syntax of grammar instantiations,



a mandatory unrolling guard, and a template that specifies the
body of the grammar. The unrolling guard helps ROSETTE
determine when to stop expanding a given instantiation of
the grammar. Our Circuit grammar guards the unrolling by
decrementing an integer, but the guard can be any expression
that evaluates to #f after a bounded number of unrollings.
During the unrolling process, define-synthax introduces
symbolic (boolean) constants to ensure that the expanded
grammar captures all expressions of depth k or less, where k
is the maximum number of unrollings allowed by the guard.

Given the sample sketch for repairing AIG-parity, we ask
the solver to synthesize a repair as follows:

> (define model
(synthesize
#:forall (list b0 b1 b2 b3)
#:guarantee (assert (eq? (AIG-parity b0 b1 b2 b3)

(RBC-parity b0 b1 b2 b3)))))
> (generate-forms model)
(define-circuit (AIG-parity a b c d)
(&&
(! (&& (&& (! (&& d (! c))) (! (&& (! a) b)))

(&& (! (&& c (! d))) (! (&& (! b) a)))))
(! (&& (&& (! (&& a b)) (! (&& (! a) (! b))))

(&& (! (&& (! c) (! d))) (! (&& c d)))))))

The synthesis query takes the form (synthesize #:forall
input #:guarantee expr). Symbolic constants that do not ap-
pear in the input expression are called “holes” [34]. If success-
ful, the query returns a binding from holes to concrete values
that satisfies the assertions in expr for all possible bindings
of the input constants. This corresponds to the classic formu-
lation of synthesis [34] as a ∃~h∀~i. a1(~h,~i) ∧ . . . ∧ an(~h,~i)

problem, where ~h denotes the holes, ~i denotes the input
constants, and aj(~h,~i) is an assertion reached during the
evaluation of expr.

In our example, ~h consists of the symbolic constants in-
troduced by the instantiation of the Circuit grammar in the
AIG-parity sketch. Each unrolling of the grammar intro-
duces one fresh hole, and each (choose e1 . . . en ) expression
in the fully unrolled grammar introduces n− 1 fresh holes.
A binding for these holes encodes a completion of the sketch.
We produce a syntactic representation of the completed sketch
with the help of the utility function generate-forms.

TCL+ Figure 3 combines all of the facilities we have
developed so far into a complete implementation of TCL+.
The language provides a convenient domain-specific interface
for formulating solver-aided queries about circuit programs.
It is also compatible with our old TCL implementation—any
TCL program can be ported to TCL+ by simply changing its
#lang declaration to tcl+.

2.3 Getting Reflective: A Tiny Transformation SDSL
TCL+ enables us to easily verify, debug and repair a circuit
function against a reference implementation—for example,
we repaired AIG-parity so that its behavior matches that
of RBC-parity. But this does not fully address our original
usage scenario, in which AIG-parity was the result of apply-
ing a circuit transformation procedure to RBC-parity. Ideally,

1 #lang s-exp rosette

3 (require rosette/lang/debug rosette/lib/tools/render
4 rosette/lib/meta/meta)

6 (provide (all-defined-out) ! && || <=> define/debug
7 #%datum #%app #%module-begin #%top-interaction
8 quote (for-syntax #%datum))

10 (define-syntax-rule (define-circuit (id in ...) expr)
11 (define (id in ...) expr))

13 (define (dynamic-choose)
14 (define-symbolic* v boolean?)
15 v)

17 (define (symbolic-input spec)
18 (for/list ([i (procedure-arity spec)]) (dynamic-choose)))

20 (define (correct impl spec input)
21 (assert (eq? (apply impl input) (apply spec input))))

23 (define (verify-circuit impl spec)
24 (define input (symbolic-input spec))
25 (evaluate input (verify (correct impl spec input))))

27 (define (debug-circuit impl spec input)
28 (render (debug [boolean?] (correct impl spec input))))

30 (define (solve-circuit impl spec . inputs)
31 (solve (for ([input inputs]) (correct impl spec input))))

33 (define (synthesize-circuit impl spec)
34 (define input (symbolic-input spec))
35 (generate-forms
36 (synthesize #:forall input
37 #:guarantee (correct impl spec input))))

39 (define-synthax (Circuit [op1 op2 ...] expr ... #:depth d)
40 #:assert (>= d 0)
41 ([choose op1 identity]
42 [choose
43 expr ...
44 ([choose op2 ...]
45 (Circuit [op1 op2 ...] expr ... #:depth (- d 1))
46 (Circuit [op1 op2 ...] expr ... #:depth (- d 1)))]))

Figure 3. TCL+ in ROSETTE

we would like to detect and fix faults in the transformation
procedure itself, not in a particular output of that procedure.

Designing TTL Figure 4 shows an example program, imple-
mented in a tiny transformation language (TTL), that demon-
strates our original usage scenario. TTL extends TCL+ with
constructs for defining and implementing circuit transforma-
tion procedures, and with functions for formulating solver-
aided queries about these procedures. A circuit transformer
takes as input an abstract syntax tree (AST) that represents the
body of a circuit procedure, and it produces another AST that
represents the body of a functionally equivalent circuit. The
match form matches an AST against a sequences of clauses.
Each clause consists of a pattern whose free variables are
bound in the body of the clause, if the match succeeds. The
result of the first successful match is returned, and none of
the remaining clauses are evaluated. The underscore pattern
matches any value.

In our example, the RAX procedure takes as input (an AST
representation of) an RBC, and transforms it into an AIG
by recursive application of three rewrite rules. The first two



rules rewrite the <=> and ! nodes. The last rule (line 16)
leaves all other nodes unchanged, ensuring that RAX acts as
the identity function on ASTs that are not in the RBC form.
The verify-transform function takes as input a transformer
and a circuit procedure, reifies the circuit into an AST, and
verifies that applying the transformer to the reified circuit
produces (an AST for) a functionally equivalent circuit.

Implementing TTL Figure 5 shows a sample implementa-
tion of TTL that extends the TCL+ prototype from Figure 3.
The implementation exploits the ability of ROSETTE pro-
grams to reflect on the structure of symbolic values at run-
time. In particular, applying a ROSETTE function to symbolic
inputs produces a symbolic encoding of its output—an AST—
that can be examined by ROSETTE code (such as a circuit
transformation procedure) with the help of pattern matching:

> (RBC-parity b0 b1 b2 b3)
(! (<=> (<=> b1 b0) (<=> b2 b3)))

> (match (RBC-parity b0 b1 b2 b3)
[(! (<=> (<=> _ _) (<=> _ _))) #t]
[_ #f])

#t

In the case of circuits, ROSETTE’s symbolic encoding conve-
niently reifies a circuit function into an AST that is built out
of TTL’s (and ROSETTE’s) primitive boolean operators: &&,
||, ! and <=> . All user-defined functions are evaluated away.

The sample TTL enables circuit transformers to examine
symbolic ASTs by exporting ROSETTE’s match construct,
which is syntactic sugar on top of Racket’s own match. The
implementation of solver-aided queries is also straightfor-
ward. Each query function takes as input a transformer and
a circuit procedure; it reifies the circuit by applying it to a
list of symbolic values; and it poses a query about the equiv-
alence of the reified circuit and its transformed AST. The
debug-transform query additionally asserts that the leaves
of the ASTs evaluate to their corresponding bits in the pro-
vided counterexample input.

Using TTL Executing the program in Figure 4 against our
TTL prototype reveals a bug—a concrete input, ’(#f #f #t #f),
on which the circuit produced by RAX differs from RBC-parity.
After marking RAX for debugging with define/debug, we
use this input to localize the fault in the transformer:

> (debug-transform RAX RBC-parity ’(#f #f #t #f))
(define/debug (RAX ast)
(match ast
[(<=> left right)
(let ([x (RAX left)]

[y (RAX right)])
(! (&& (! (&& x y)) (&& (! x) (! y)))))]

[(! left) (! (RAX left))]
[_ ast]))

Based on the resulting core, we hypothesize that the body
of the let expression is faulty, replace it with an instantiation
of the Circuit grammar, and synthesize a fix:

1 #lang s-exp ttl

3 (define-circuit (xor x y)
4 (! (<=> x y)))

6 (define-circuit (RBC-parity a b c d)
7 (xor (<=> a b) (<=> c d)))

9 (define-transform (RAX ast)
10 (match ast
11 [(<=> left right)
12 (let ([x (RAX left)]
13 [y (RAX right)])
14 (! (&& (! (&& x y)) (&& (! x) (! y)))))]
15 [(! left) (! (RAX left))]
16 [_ ast]))

18 (verify-transform RAX RBC-parity)

Figure 4. A sample program in a tiny transformation lan-
guage (TTL)

1 #lang s-exp rosette

3 (require tcl+ rosette/lang/debug rosette/lib/tools/render
4 rosette/lib/meta/meta rosette/lib/reflect/match)

6 (provide (all-defined-out) (all-from-out tcl+) let
7 match (rename-out [define define-transform]))

9 (define (verify-transform xform circ)
10 (define input (symbolic-input circ))
11 (define ast (apply circ input))
12 (evaluate input (verify (assert (eq? (xform ast) ast)))))

14 (define (debug-transform xform circ bits)
15 (define input (symbolic-input circ))
16 (define ast (apply circ input))
17 (render
18 (debug [boolean?]
19 (begin (assert (eq? (xform ast) ast))
20 (for ([in input] [bit bits])
21 (assert (eq? in bit)))))))

23 (define (synthesize-transform xform circ)
24 (define input (symbolic-input circ))
25 (define ast (apply circ input))
26 (generate-forms
27 (synthesize
28 #:forall input
29 #:guarantee (assert (eq? ast (xform ast))))))

Figure 5. TTL in ROSETTE

> (define-transform (RAX ast)
(match ast
[(<=> left right)
(let ([x (RAX left)]

[y (RAX right)])
(Circuit [! &&] x y #:depth 2))]

[(! left) (! (RAX left))]
[_ ast]))

> (synthesize-transform RAX RBC-parity)
(define-transform (RAX ast)
(match ast
[(<=> left right)
(let ([x (RAX left)]

[y (RAX right)])
(! (&& (! (&& y x)) (! (&& (! x) (! y))))))]

[(! left) (! (RAX left))]
[_ ast]))



2.4 Getting Deep: A Better Tiny Transformation SDSL
So far, we have only used TTL to formulate queries about
correctness of circuit transfomers on specific circuits. For
example, the repair we synthesized for RAX is guaranteed
to produce a correct transformation of RBC-parity, but not
necessarily of other circuits. What we want instead is a
more general guarantee of correctness, for both synthesis
and verification queries.

To illustrate, consider a general (bounded) correctness
property for TTL transformers: a transformer T is correct
if its output (Tf) is equivalent to f on all n-input circuits
of depth k or less. We can express this property easily in
TTL by using circuit grammars. For example, the following
code instantiates the property for our original RAX transformer
(Figure 4) and all 4-input RBCs of depth k ≤ 2:

> (define-circuit (RBC a b c d)
(Circuit [! <=>] a b c d #:depth 2))

> (verify-transform RAX RBC)
verify: no counterexample found

But something seems wrong: the solver is unable to find any
counterexamples to this more general claim, even though we
know that RAX is buggy on at least one circuit (RBC-parity).

To see why our verification query failed, recall that
verify-circuit reifies RBC by applying it to a list of sym-
bolic inputs (Figure 5). The result of this application is a
symbolic AST that encodes all possible RBCs but is not itself
an RBC. In particular, the resulting AST contains disjunctions
(||), which arise from choose expressions in the Circuit

grammar that makes up the body of RBC. For example, eval-
uating (choose b0 b1) produces the symbolic value (|| (&&
ci b0) (&& (! ci ) b1)), where ci is a fresh symbolic boolean
introduced by choose. Because of these disjunctions, the RAX

transformer simply returns RBC’s AST unchanged (Figure 4,
line 16), and verification fails:

> (match (RBC b0 b1 b2 b3)
[(|| _ ...) #t]
[_ #f])

#t
> (eq? (RBC b0 b1 b2 b3) (RAX (RBC b0 b1 b2 b3)))
#t

TTL+ Deep SDSL embedding is the simplest way to im-
plement TTL so that it supports verification and synthesis
queries with strong correctness guarantees. Instead of relying
on ROSETTE’s symbolic values to represent circuit ASTs, we
will define our own circuit data type, and write an interpreter
for it. Figure 6 shows the new implementation, called TTL+.

The circuit data type is defined using Racket structures,
which are record types with support for subtyping. The TTL+

interpreter recursively traverses a circuit tree and assigns
meaning to each node. If a node is not an instance of the
circuit type, the interpreter simply returns it. For example,
the leaves of a circuit are boolean values, and they are
interpreted as themselves.

Note that TTL+, like its predecessor, supports the use of
the Circuit grammar construct. But in TTL+, the identifiers

1 #lang s-exp rosette

3 (require rosette/lib/meta/meta rosette/lib/reflect/match
4 (only-in ttl define-circuit define-transform
5 Circuit symbolic-input))

7 (provide (rename-out [And &&] [Or ||] [Not !] [Iff <=>])
8 interpret verify-transform synthesize-transform
9 Circuit define-circuit define-transform match let

10 #%datum #%app #%module-begin #%top-interaction
11 (for-syntax #%datum))

13 (struct circuit () #:transparent)
14 (struct And circuit (left right))
15 (struct Or circuit (left right))
16 (struct Iff circuit (left right))
17 (struct Not circuit (left))

19 (define (interpret ast)
20 (match ast
21 [(And l r) (&& (interpret l) (interpret r))]
22 [(Or l r) (|| (interpret l) (interpret r))]
23 [(Iff l r) (<=> (interpret l) (interpret r))]
24 [(Not l) (! (interpret l))]
25 [_ ast]))

27 (define (correct xform ast)
28 (assert (eq? (interpret ast) (interpret (xform ast)))))

30 (define (verify-transform xform circ)
31 (define input (symbolic-input circ))
32 (define ast (apply circ input))
33 (define cex (verify (correct xform ast)))
34 (values (evaluate input cex) (generate-forms cex)))

36 (define (synthesize-transform xform circ)
37 (define ast (apply circ (symbolic-input circ)))
38 (generate-forms
39 (synthesize #:forall (symbolics ast)
40 #:guarantee (correct xform ast))))

Figure 6. TTL+ in ROSETTE

for the primitive boolean operators (!, &&, || and <=>) are
bound to their corresponding circuit constructors (Not, And,
Or, and Iff). As a result, a TTL+ application of RBC to a
symbolic input yields a circuit structure that represents
all RBCs of depth 2 or less. In other words, we obtain
a symbolic representation of a rich value using just the
symbolic primitives available in ROSETTE (in this case,
symbolic booleans introduced by the Circuit grammar).

The TTL+ verify-transform query, if successful, returns
two values: the booleans on which the input circuit differs
from the transformed circuit, and a syntactic representation
of the input circuit, if any part of its body is drawn from a
grammar. For example, the following code applies the new
verification query to RAX and our sample input circuits:

> (verify-transform RAX RBC-parity)
’(#f #t #f #f)
()
> (interpret (RBC-parity #f #t #f #f))
#t
> (interpret (RAX (RBC-parity #f #t #f #f)))
#f



> (verify-transform RAX RBC)
’(#f #f #f #f)
(define-circuit (RBC a b c d)
(<=> (! a) (<=> (! a) c)))

> (define-circuit (RBC a b c d)
(<=> (! a) (<=> (! a) c)))

> (interpret (RBC #f #f #f #f))
#f
> (interpret (RAX (RBC #f #f #f #f)))
#t

The synthesize-transform query uses the built-in proce-
dure symbolics to collect all symbolic constants that appear
in the reified representation of its input circuit. Universally
quantifying over these constants ensures that the query works
correctly on circuit structures that represent all RBCs of
given size. For example, using the RAX sketch from the previ-
ous section, together with the RBC circuit, we can synthesize a
completion of this sketch that is correct for all 4-input RBCs
of depth 2 or less:

> (synthesize-transform RAX RBC)
(define-transform (RAX ast)
(match ast
[(<=> left right)
(let ([x (RAX left)]

[y (RAX right)])
(! (&& (! (&& (! y) (! x))) (! (&& x y)))))]

[(! left) (! (RAX left))]
[_ ast]))

3. Core Solver-Aided Language
In this section, we present the core of the ROSETTE language—
R0—together with rules for its evaluation in the presence
of symbolic values. The full language supports additional
queries, expressions and data types, including vectors and
user-defined algebraic data types. But the semantics of evalu-
ation in the presence of symbolic values can be understood
on just R0. In particular, we provide the R0 semantics in order
to (i) give a model of what a solver-aided host may look like;
(ii) explain the benefits of ensuring that such a language is
capable of concrete (as well as symbolic) execution; and (iii)
explain an alternative approach to finitization, in which the
host language does not impose any built-in artifical limits on
the length of executions.

3.1 Definitions and Expressions
An abstract grammar for the core language is given in
Figure 7. It extends a tiny subset of Racket (core Scheme
with mutation [30]) with four forms:

define-symbolic defines a variable and binds it to a fresh
symbolic constant that must satisfy the predicate boolean?
or number?;

assert specifies that a given expression does not evaluate to
the constant #f;

(solve e) computes a binding from symbolic constants in e
to concrete values such that all assertions encountered
during the evaluation of e are satisfied; and,

Figure 7. Abstract grammar for R0

(verify e) computes a binding from symbolic constants in
e to concrete values such at least one of the assertions
encountered during the evaluation of e is violated.

The core language supports all standard list, boolean, arith-
metic and bitwise operators, as well as standard predicates
for testing equality, falseness, etc.—we show only a subset
of these for clarity. Note that, as in Racket and Scheme, oper-
ators are functions, which are first class values. User-defined
functions are supported via λ expressions.

The remaining constructs and expressions in the language
are standard Scheme: set! changes the value of a defined
variable; define introduces a new variable and binds it to the
value of the given expression; begin groups a sequence of
expressions (or, at the top level, forms), taking on the value
of the last one; and (e e . . .) stands for procedure application,
where the first expression must evaluate to a procedure that
is applied to the values of the remaining expressions.

3.2 Values
R0 programs operate on two kinds of values: concrete and
symbolic. Figure 8 extends the grammar of Figure 7, which
describes concrete values, with new terms that represent
symbolic booleans, symbolic integers, φ values and models.

Symbolic booleans and integers are modeled as terms
(T e . . .), with T specifying the type of the term. Terms of
the form (T x), where x is an identifier, represent symbolic
constants introduced by define-symbolic; (t op v v . . .) en-
codes the result of applying an operator op to the specified
values; and (Int (Bool e . . .) i i) evaluates to one of its integer
subterms, depending on the value of its boolean subterm. We
introduce the (redundant) productions α, γ and ψ as nota-
tional shorthands to refer to only symbolic, only concrete,
and all boolean and integer values, respectively.

In addition to primitive symbolic values, evaluation of
R0 programs can also give rise to φ values and models.
A model µ is a map from symbolic constants to concrete
values; models are produced by evaluating solve and verify
expressions. A φ value is a set of guard and value pairs; φ
values can only result from evaluation of if expressions. The
guards are boolean values, and the semantics of evaluation
guarantees that at most one of them is true in any model µ
produced by solving or verification.



Figure 8. A grammar of R0 values (including the literal
values v from Figure 7)

Figure 9. R0 evaluation contexts (including the definitions
form Figure 8)

3.3 Semantics
We define the operational semantics of R0 by extending the
reduction semantics of Scheme [30]. We have implemented
and tested this semantics in PLT Redex [14]. Figure 10 shows
key reduction rules for R0, generated from our Redex model,4

and Figure 9 shows the grammar of evaluation contexts
in which these rules are applied. Recall that, in reduction
semantics [13], an evaluation context is a term with a “hole,”
denoted by [], which designates the subterm to be evaluated.
We write E[e] −→ E[e′] to indicate that the subterm e is
replaced by e′ in the evaluation context E.

Reduction rules in Figure 10 operate on program states.
The error state is represented by the tuple (error) and cannot
be reduced any further. A valid state is represented by a tuple
(σ π κ F ), where F is the form (with a hole) to be evaluated;
σ is the program store, which maps variables to values; π is
the current path condition; and κ is the constraint store. The
path condition is a boolean value encoding branch decisions
taken to reach the current point in the evaluation, and the
constraint store contains the boolean values that have been
asserted so far.

Evaluating solver-aided forms. Rules Define-1 and Define-
2 use define to bind a variable with the given identifier to a
fresh symbolic constant with the same identifier. Rules Assert-
0 and Assert-1 enforce the usual meaning of assertions for
concrete values. Assert-2 is more interesting. It updates the
constraint store with a formula stating that the current path
condition implies the asserted value—that is, the assertion
must hold if the execution reaches the given point. We use

4 Omitted rules are similar to those in core Scheme and in Figure 10.

([[op]] v . . .) to denote construction of symbolic terms; for
example, ([[!]]π) constructs the value (Bool ! π).

The rule for Solve-0 uses the meta-function R, which
denotes the transitive closure of the reduction relation, to fully
evaluate the expression e in the current state, yielding a new
state that is processed by Solve-1. The latter simply passes
the formulas in κ1, which include the original assertions
from κ, to a SAT function. This function calls an underlying
solver and returns a model that satisfies all the assertions in
κ1 (or raises an error if no such model exists). The Verify
rules are identical, except that κ1 assertions are treated as
post-conditions to be falsified, while the original κ assertions
are treated as pre-conditions.

Evaluating base forms. Given an if expression with a
symbolic condition, rule If-3 fully evaluates both branches
under suitably amended path conditions. If both branches
produce valid states, rule If-4 uses the merge meta-function
⊕α to merge the resulting program stores and values. The
merge function generates φ values to merge terms of different
types—for example, if v0 is a boolean and v1 is an integer, the
result of their merge is the term (Φ (α v0) ((Bool ! α) v1)).
If either of the branches results in an error, that branch
is abandoned by asserting the negation of its guard, and
evaluation proceeds with a merge of the pre-state and the
remaining branch.

Application rules App-γ and App-ψ handle the application
of operators to non-φ values. If the operator op is applied to
purely concrete values, we produce the standard meaning of
this application. If it is applied to at least one abstract value,
we call the term constructor on the arguments (which may
yield an error). The last rule, App-φ, handles φ values. In the
case shown in the figure, the range of φ includes exactly one
value in the domain of the given operator. Evaluation proceeds
by asserting the guard of that value to be true, and supplying
the value to the operator. Essentially, we use assertions to
implement dynamic type checks in the symbolic domain.
Other cases are handled similarly.

3.4 Discussion
The R0 evaluation rules maintain two important properties—
fully concrete programs behave exactly as they would in
Racket (Scheme), and our symbolic execution is both sound
and complete [9]. In particular, at each step of the evaluation,
the symbolic state, as given by σ, π and κ, encodes only and
all concrete states (if any) that could be reached via some
fully concrete execution. When no symbolic values are used
in the program, this is precisely the single state reachable via
a particular concrete execution.

R0 ensures that fully concrete programs behave like
Racket code in order to enable incremental development
of SDSLs. In our experience, a natural way to develop an
SDSL is to start with a Racket prototype of the language, test
it on concrete programs and values, and then gradually add



Figure 10. R0 reduction rules as an extension of Figure 9

the desired solver-aided functionality. This is how two of the
case studies presented in Section 4 were developed.

The R0 semantics also captures an important design de-
cision behind ROSETTE: it admits only encodings of finite
executions to formulas. This can be seen from rules for Solve
and Verify. But unlike other symbolic execution systems that
are based on bounded reasoning (e.g., [8, 11, 12, 16, 34, 36]),
we do not artificially finitize executions by, e.g., unrolling
recursions a finite number of times for two reasons.

First, many uses of loops and recursion just iterate over
either a concrete instance or a symbolic encoding of a data
structure, such as a list, a vector, or a struct. For example,
our TTL+ interpreter (Figure 6) uses recursion to traverse
an instance (or a symbolic encoding) of a circuit struct.
ROSETTE executes all such loops and recursion precisely—
that is, they are executed exactly as many times as needed
to fully traverse the given structure. As a result, most loops
and recursion in ROSETTE programs are self-finitizing with
respect to program state, enabling, for example, synthesis of
programs that traverse large heap structures, such as a struct
representation of a 2000-node HTML tree (Section 4.1).

Second, in cases where explicit finitization is required, it
is easy to implement in ROSETTE with the help of macros.
We therefore leave the control over how this is performed to
users, allowing them to define finitization behaviors that are
best suited to their problem. For example, Figure 11 shows
a macro that implements a finitized while loop construct,
which we used in a toy SDSL version of the Brainfudge
language [43]. The loop can execute at most three times:

> (define (upto10 start)
(define x start)
(while (< x 10)

(set! x (+ x 1))))
> (define-symbolic i number?)
> (evaluate i (solve (upto10 i)))
8
> (solve (begin (assert (< i 7))

(upto10 i)))
solve error: no satisfying execution found

1 (define-syntax-rule (while test body ...)
2 (local [(define (loop bound)
3 (if (<= bound 0)
4 (assert (not test))
5 (when test
6 body ...
7 (loop (- bound 1)))))]
8 (loop 3)))

Figure 11. A macro for a finitized while loop

1 ; A DOM node consists of a tag name, a list of attributes,
2 ; and a list of content nodes or strings.
3 (struct DOM (tagname attributes content) #:transparent)

5 ; Returns true if the provided list of strings represents
6 ; a ZPath that connects the given source and sink
7 ; elements in an HTML tree (e.g., the root of the tree
8 ; and an example input).
9 (define (zpath? zpath source sink)

10 (or (and (equal? source sink)
11 (andmap (curry equal? "") zpath))
12 (and (DOM? source)
13 (not (null? zpath))
14 (equal? (car zpath) (DOM-tagname source))
15 (ormap (lambda (child)
16 (zpath? (cdr zpath) child sink))
17 (DOM-content source)))))

Figure 12. The WebSynth ZPath interpreter and DOM

4. Case Studies
In this section, we present three solver-aided systems that
have been developed with ROSETTE, including a declarative
DSL for web scraping; a spatial programming model for ultra
low-power architectures; and a superoptimizer for bitvector
programs. Two of these systems have been developed by
undergraduates and first-year graduate students with no prior
experience with using ROSETTE. We observe that ROSETTE’s
embedding in a fully-featured programming language, as well
as its lightweight approach to symbolic reasoning, make it
possible to quickly prototype solver-aided systems that are
both immediately usable and sufficiently scalable.



1 #lang s-exp websynth

3 (define dom
4 (DOM "[document]" ’()
5 ‘(,(DOM "html" ’()
6 ‘(,(DOM "body" ’()
7 ‘(,(DOM "ul" ’()
8 ‘(,(DOM "li[0]" ’()
9 ‘("Hello"))

10 ,(DOM "li[1]" ’()
11 ‘("World")))))))))))

13 (define-symbolic z0 z1 z2 z3 z4 string?)
14 (define zp (list z0 z1 z2 z3 z4))
15 (evaluate zp (solve (assert (zpath? zp dom "World"))))

(a) Synthesizing a ZPath to scrape the string
“World” from the HTML page shown in (b)

<html>
<body>

<ul>
<li>Hello</li>
<li>World</li>

</ul>
</body>
</html>

’("[document]"
"html"
"body"
"ul"
"li[1]")

(b) A tiny HTML page (c) The output of the program in (a)

Figure 13. A sample WebSynth program

4.1 WebSynth
WebSynth is a solver-aided system for example-based web
scraping. The problem of retrieving data from HTML files
is surprisingly difficult in practice—it is usually solved by
writing custom scripts or regular expressions, which must
be manually revised whenever the target page changes. The
problem is compounded when many slightly different scripts
have to be maintained in order to scrape data from related,
but separately coded and maintained web sites (e.g., to collate
meeting schedules for organizations with many independent
chapters, such as Alcoholics Anonymous).

WebSynth takes a more robust, solver-aided approach to
the scraping problem. Given an HTML file and one or more
representative examples of data that should be retrieved, the
system synthesizes a single ZPath expression that can be used
to retrieve all of the example data. ZPaths are expressions
in the ZPath language, which is a declarative DSL based
on XPath [42]. Expressions in the language specify how to
traverse the HTML tree to retrieve the desired data, and the
retrieval is performed by the ZPath interpreter. For example,
the ZPath "/html/body/div/" selects all top-level DIV elements
in an HTML tree. ZPath nodes can also include indices that
enable selection of a particular child of a node in the path.

Because ZPaths are generated automatically by the solver,
it is easy to maintain them—if the tree structure of the target
page changes, the synthesizer is re-executed to produce a new
script. In fact, during the development of WebSynth, one of
its benchmark pages [19] was restructured, and the system
was able to generate another scraper for it in seconds.

The WebSynth system was developed by two undergradu-
ate students in just a few weeks. They first implemented their
ZPath interpreter and a DOM data structure for representing

HTML trees in Racket. Figure 12 shows an excerpt from this
implementation. ZPaths are modeled as lists of string tokens
(such as “html” or “div[0]”), and a DOM node is a struct

with fields for storing the node’s HTML tag and children. The
interpreter simply checks that a given list of strings forms
a ZPath between two elements in the HTML tree—for ex-
ample, the root of the tree and a string to be scraped. This
initial prototype enabled the students to test the system by
providing concrete ZPaths to the interpreter and checking that
they retrieved the desired data, e.g., the top 100 song names
from Apple’s iTunes Charts [19].

The next step was to turn the ZPath interpreter into a
synthesizer using ROSETTE. This involved changing the
implementation language from Racket to ROSETTE; making
ZPaths symbolic by letting each element of a ZPath list be a
fresh symbolic value;5 and asserting that the example data is
retrieved by running the interpreter on the symbolic ZPath.
Figure 13 shows a sample HTML page; the ZPath program
generated for this page and the example input “World”; and
the result of executing the program in ROSETTE.

The system handles multiple input examples by extending
the one-input case as follows. For each input example i, we
create a symbolic ZPath zpi that scrapes just i (see lines 13-14
in Figure 13a). Then, we create a symbolic mask—expressed
as a nested list of symbolic booleans—that can be applied
to the individual zpi’s to compute a generalized ZPath that
scrapes all the given data. For example, to scrape both “Hello”
and “World” from the page in Figure 13, the system replaces
the last three lines of our ZPath program with the following
code (as well as the code that creates the zpi’s and the mask ):

(define model
(solve (begin (assert (zpath? zp0 dom "World"))

(assert (zpath? zp1 dom "Hello"))
(assert (generalizes? mask zp0 zp1)))))

(generalize (evaluate mask model)
(evaluate zp0 model) (evaluate zp1 model))

WebSynth can synthesize ZPaths for real websites, with
DOMs that consist of thousands of nodes, in a few seconds.
Table 1 shows the performance data we obtained by applying
WebSynth to three example web pages: iTunes Top 100
Songs [19]; IMDb Top 250 Movies [18]; and AlAnon AR
Meetings [4]. The second and third column display the size of
each page, given as the number of DOM nodes and the depth
of the DOM tree. We scraped each page four times, varying
the number of input examples. The corresponding rows in
the table show the total running time and just the solving
time for each set of examples. The solving time includes
symbolic execution, compilation to formulas, and the solver’s
running time. All example sets for a given page correspond
to the same generalized ZPath. The IMDb ZPath extracts the
titles of the 250 movies listed on the page; the iTunes ZPath
extracts the title and the artist for each song; and the AlAnon
ZPath extracts the group name, address and city for each

5 ROSETTE allows use of symbolic strings that are treated as atomic values—
i.e., they can be compared for equality but are otherwise uninterpreted.



Page Nodes Depth Examples Total (sec) Solve (sec)

iTunes 1104 10

2 14.0 0.4
4 14.5 0.7
8 15.5 1.3

16 17.5 2.3

IMDb 2152 20

2 15.1 0.5
4 15.6 0.7
8 16.7 1.0

16 18.7 1.6

AlAnon 2002 22

2 15.6 .9
4 17.0 1.6
8 20.0 3.1

16 26.2 5.0

Table 1. Performance of WebSynth on 3 sample web pages

listed meeting. We performed all experiments on an Intel
Core 2 Duo 2.13 GHz processor with 4 GB of memory.

This case study shows the advantage of ROSETTE’s ap-
proach to symbolic evaluation of loops and recursion, which
is enabled by aggressive partial evaluation. Rather than im-
posing artificial bounds on the length of executions, we allow
the structure of the data to guide the execution. In the case of
WebSynth, the concrete structure of the DOM tree precisely
determines how many times the body of the interpreter in
Figure 12 is executed. As a result, the students were able
to turn their concrete interpreter of ZPaths into a scalable
synthesizer simply by making the ZPaths symbolic, while
keeping the DOM concrete. No special handling of the re-
cursion in the interpreter was required, nor did the students
have to resort to developing a tricky deterministic algorithm
for synthesizing generalized ZPaths that work for multiple,
potentially ambiguous input examples.6

4.2 A Partitioner for a Spatial Programming Model
A project in our group focuses on developing a synthesis-
aided programming model for GA144, a many-core archi-
tecture composed of 144 tiny ultra-low-power processors.
Because each core has only 300 words of memory and each
word is only 18-bits wide, a program must be partitioned
in an unusually fine-grained fashion, including bit-slicing
of arithmetic operations—i.e., splitting 32-bit integer opera-
tions into two 18-bit operations placed on neighboring cores.
Additionally, the cores use a stack-based architecture with a
small subset of Forth as its machine language. There are no
compilers for either code partitioning or for the generation
of optimal stack-based code. To illustrate the magnitude of
the programming challenge, we note that an MD5 hash com-
putation is partitioned across 10 cores and the machine code
sometimes exploits tricks such as intentionally overflowing
an 8-word stack.

We are developing a programming model that (i) parti-
tions a single-core program; (ii) routes the communication

6 An example string is ambiguous when it appears in several different DOM
nodes, and can therefore be scraped by several different ZPaths.

across the fabric of cores; and (iii) uses superoptimization to
generate optimal single-core code. The machine-code super-
optimizer is similar to that of Section 4.3. Here, we describe
our experience with using ROSETTE to develop the top part
of the compilation pipeline.

To support partitioning, the programming model maps
each logical program location (a variable or an array element)
onto one of the cores. Integers larger than a machine word are
represented as tuples of logical locations, each of which may
be mapped onto a different core. Additionally, each operation
(such as ‘+’) is mapped onto the core that will execute it.

The sample code below shows the surface syntax of a
program in our imperative spatial programming language.
An integer is first defined as a pair of machine integers. A
64-element array of these pairs is then defined and distributed
across cores 106 and 6 in such a way that the more significant
words of these 64 integers are on core 106, while the lower
words are all on core 6. Next, the function sumrotate is
distributed across cores 105 and 5, which means that its return
value will be computed at these two cores. The keyword
@here at the first addition indicates that the addition will
execute on the same cores as its containing function—cores
105 and 5. Note that this addition decomposes into two
additions of machine words. The second addition is not
assigned to specific cores, which means that the synthesizer is
free to assign the two component additions onto suitable cores
of its choice. In the extreme, the programmer can choose to
assign cores to no operations or data, and the synthesizer will
map all of them to cores that minimize communication cost
of passing data to operations, while ensuring that the data fit
into the memory capacity of each core.

1 typedef pair<int,int> myInt;

3 vector<myInt>@{[0:64]=(106,6)} k[64];

5 myInt@(105,5) sumrotate(myInt@(104,4) buffer, ...) {
6 myInt@here sum = buffer +@here k[i] + message[g];
7 ...
8 }

The core assigned to a program location or an operation
can be thought of as their type. The corresponding non-
traditional type system computes an abstract communica-
tion cost for each inter-core communication that must be
performed to evaluate the program. A program type checks
if its communication cost is below a certain threshold and
when the total amount of locations assigned to a core does
not exceed the memory capacity of the core.

The problem of partitioning a program can be thought of
as optimal type inference, i.e., assigning cores to program
locations and operations such that the total abstract cost is
minimized, subject to the capacity constraints of the cores.

To implement a synthesizer for this problem, a student
first implemented a classic type checker for the partitioning
type system. The type checker, designed as an abstract
interpreter, traverses the program AST and computes the
abstract communication cost given a provided assignment of



Program Unknowns Asserts LOC Time (sec)
array 3 77 6 1
for/array 12 607 9 7
for/array/tuple 12 607 9 17
function 12 435 17 2
matrix multiply 8 1079 18 17
md5 14 10940 116 1197
md5 8 6440 116 335

Table 2. Performance of the code partitioning synthesizer
for the GA144 imperative spatial programming language

cores to locations and operations. It also computes the number
of logical locations assigned to each core. A communication
cost is charged whenever an argument of an operation lives
on a different core than the operation. In the end, the type
checker verifies that the total cost is below the threshold and
the data fit into each core. This type checker was written in
pure Racket and debugged on programs where all data and
operations were assigned to cores by the programmer, i.e.,
there was no core assignment left to synthesize.

Next, to turn this type checker into a type inferencer (and
thus into a partitioning synthesizer), the student did nothing
more than to replace the cores previously assigned by the
programmer with ROSETTE symbolics, which made these
core assignments unknown. Given the same type checker,
the query (solve (type-check program)) was then used to
compute an assignment of cores that meets the capacity con-
straints, while keeping the abstract cost below a given thresh-
old. To obtain optimal partitioning, it sufficed to iteratively
tighten the bound, performing binary search until a better
assignment of cores could not be found.

We have successfully used this synthesizer to partition the
MD5 checksum computation across 10 cores, obtaining op-
timal partitionings that differed as we modified the memory
capacity of cores. Table 2 displays the synthesizer’s running
time on the MD5 function and five other benchmarks. We
show, for each benchmark, the number of unknown place-
ments of variables and operations; the number of assertions
emitted by the type checker; the lines of code in the high-
level SDSL program; and the total time taken to synthesize
the optimal solution. The most challenging program, requir-
ing placement of 14 program elements, was partitioned in
about 20 minutes. We consider this an acceptable compilation
time considering that a human is likely to take much longer
to perform the task.

This case study pointed out the advantage of ROSETTE’s
introduction of partial evaluation into symbolic compilation.
The access to non-symbolic parts of Racket greatly simplified
the development of the synthesizer. Specifically, the AST
of the spatial programming model was developed with the
Racket object system and the type checker used a Visitor
pattern that relied on inheritance. Compiling objects and class
hierarchies to constraints is a nontrivial effort and, in fact,
neither our symbolic core nor the Sketch synthesizer [34]

1 (configure [bitwidth 32])

3 (define-fragment (fast-max x y)
4 #:ensures (lambda (x y result) (= result (max x y)))
5 #:library (bvlib [{bvneg bvge bvand} 1] [{bvxor} 2]))

Figure 14. Defining a bit vector program that computes the
maximum of two integers

support objects and classes. Unable to compile classes to
constraints, the student would have to rewrite the type checker
to operate on a simpler data structure, e.g., a list-based
AST. Additionally, the object-based AST would have to
be converted to the list-based tree. Luckily, with ROSETTE,
neither the AST nor the type checker had to be modified.
The checker’s traversal of the object-based AST was partially
evaluated away (because the partial evaluation was performed
on a given program that was a runtime constant to the partial
evaluator), leaving to the symbolic compiler only a residual
program that calculated and checked the memory capacities
and communication costs as a function of the symbolic cores.
Thanks to the partial evaluator, the type checker code did
not need to be modified at all and it was converted to an
inferences automatically.

4.3 A Superoptimizer for Bitvector Programs
We expect that most tools developed with ROSETTE will
be able to use its solver-aided facilities—such as solve and
synthesize—as a black box. But occasionally, specialized
solving facilities may be needed for performance reasons.

We have used ROSETTE to implement such a facility,
in the form of a specialized synthesis algorithm [17] for
superoptimization of bitvector programs. The synthesizer
takes as input a reference program and a bag (multi set)
of low-level bitwise instructions, each of which can occur
(at most) once in the synthesized program. Given these
inputs, it finds a permutation of the instructions—and a
way to wire the output of one to the input of another—
so that the final program is functionally equivalent to the
reference implementation. The search for the program is
cleverly reduced to a constraint solving problem, so that the
resulting encoding is quadratic in the size of the input multi
set. A compact encoding of this kind cannot be produced by
general-purpose synthesis tools, such as Sketch [34], without
modifying their hardwired synthesis algorithms.

We were able to prototype a synthesizer that generates this
encoding with fewer than 600 hundred lines of ROSETTE
code. The synthesizer is implemented entirely as a user-
level library. Its functionality is exposed to clients via a
simple macro, which enables succinct specification of the
bag of instructions and the reference function. The bit vector
implementation is synthesized at macro-expansion time, and
becomes available to client code at runtime. It can be used
immediately, as well as printed and saved for future use.

Figure 14 shows an example use of the bit vector synthe-
sizer. The define-fragment macro invokes the synthesizer



(at expansion time) with the specified correctness checker and
library of instructions. In our example, define-fragment is
used to create a branch-free bit vector program for finding
the maximum of two 32-bit integers. The synthesizer pro-
duces an implementation in 6 seconds. The implementation
is bound to the variable fast-max, and it can be used like
any other Racket function. The define-fragment macro also
introduces the identifier fast-max-stx, which is bound to a
syntactic representation of the synthesized code:

> (fast-max 49392 848291)
848291

> fast-max-stx
(lambda (x y)
(let* ([t11 (bvge y x)]

[t12 (bvneg t11)]
[t13 (bvxor y x)]
[t14 (bvand t13 t12)]
[t15 (bvxor x t14)])

t15))

Our synthesizer achieves comparable performance to that
reported for the Brahma tool on a set of 25 benchmarks [17].
Table 3 shows the size of each benchmark, given as the
number of lines of code, and the time taken to synthesize
it. Unlike Brahma, our implementation times out after an
hour on four benchmarks, which we believe is due to the
use of a different solver. Nonetheless, this is considerably
better than the results reported for other general-purpose
synthesizers [17]. We are currently working on connecting
ROSETTE to different backends—a project made relatively
easy by the fact that ROSETTE compiles programs to simple
formulas over bitvectors and booleans.

5. Related Work
ROSETTE builds on a rich body of prior work on solver-aided
languages [5, 23–25, 27, 31, 34, 35] and symbolic evalua-
tion [8, 10, 12, 15, 21, 37, 40]. Its language is most closely
related to Sketch [34], Kaplan [23], and Rubicon [27]. All
three are domain-specific languages: Sketch is a small, hand-
crafted C-like language; Kaplan is a high level functional
language embedded in Scala; and Rubicon is an SDSL em-
bedded in Ruby. ROSETTE shares some features of these
languages, but it differs from each in two key aspects that
enable its use as a host solver-aided language. In particu-
lar, ROSETTE supports metaprogramming (inherited from
Racket), which enables easy language embedding; and it
also supports all basic solver-aided queries, which enables
automation of a variety of constructs in a guest SDSL.

Like Kaplan, ROSETTE is an embedded language that ex-
poses symbolic values as first-class constructs. A distinguish-
ing feature of Kaplan is its native support for many different
types of symbolic values, including sets and maps, which
are not supported natively in ROSETTE. Instead, ROSETTE
programs build richer symbolic values using a small core lan-
guage and a few primitive data types. But because ROSETTE
tracks only a few values symbolically, it can afford to provide
full symbolic support for its core language, which, like Sketch

Benchmark LOC Time (sec)
P1 2 2.7
P2 2 2.3
P3 2 1.9
P4 2 2.0
P5 2 2.0
P6 2 1.9
P7 3 2.3
P8 3 3.2
P9 3 3.5
P10 3 2.5
P11 3 2.3
P12 3 2.4
P13 4 3.6
P14 4 2.5
P15 4 2.6
P16 4 3.8
P17 4 3.6
P18 6 5.1
P19 6 11.3
P20 7 684.2
P21 10 483.0
P22 8 timeout
P23 10 timeout
P24 12 timeout
P25 16 timeout

Table 3. Performance of ROSETTE’s superoptimizer on 25
bitvector benchmarks from [17]

and Rubicon, includes state mutation and reasoning about
both branches of a conditional that depends on a symbolic
value. Neither of these are supported in Kaplan.

Unlike Sketch, ROSETTE provides a rich set of meta-
programming facilities, inherited from Racket. The access to
these facilities, as well as the access to first-class symbolic
values, is particularly important for development of new lan-
guage constructs and facilities. This is difficult to do in a
stand-alone language like Sketch without modifying its com-
piler. In contrast, we have been able to enrich ROSETTE with
user-level libraries that implement new kinds of synthesis
algorithms [17] and constructs for specifying rich holes.

Rubicon’s approach to symbolic evaluation implements a
solver-aided semantics that is similar to the semantics of R0

(Section 3). In particular, both R0 and Rubicon behave like
their host languages (Racket and Ruby, respectively) on fully
concrete programs. But Rubicon’s symbolic extension to its
host language is specialized for verification queries, while
ROSETTE handles other queries as well.

ROSETTE’s symbolic evaluation is related to that per-
formed in other bounded verification tools such as [8, 10,
12, 15, 21, 37, 40], and its angelic execution facilities are re-
lated to prior work on angelic program repair [28, 29, 32, 33]
and declarative execution [26]. Unlike these tools, however,
ROSETTE does not reason symbolically about complex fea-
tures of a large language, relying instead on aggressive partial
evaluation. This enhances both its flexibility and scalability,



and we have found it to be a powerful way to obtain many of
the benefits of solver-aided programming without as much
engineering effort.

6. Conclusion
Solver-aided languages help write programs that invoke run-
time oracles, contain holes to be completed by a synthesizer,
and include checks of correctness. They also help localize and
repair bugs. We describe ROSETTE, an extension to Racket
that includes a symbolic compiler for translating solver-aided
programs into logical constraints. ROSETTE also maps the
result of constraint solving back to the program, which the
program can use to update program state, produce an expres-
sion, or generate other constraints. The novel advantage of
ROSETTE is that it provides a relatively small symbolic core
but extends the power of its language by preceding symbolic
compilation with partial evaluation, which allows ROSETTE
program to use any Racket constructs not compilable to con-
straints as long as these constructs are partially evaluated
away. This architecture allowed us to construct synthesizers
without changing existing interpreters and type checkers, by
just making their inputs symbolic.
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