
A Lightweight Symbolic Virtual Machine
for Solver-Aided Host Languages

Emina Torlak Rastislav Bodik
U.C. Berkeley

{emina, bodik}@eecs.berkeley.edu

Abstract
Solver-aided domain-specific languages (SDSLs) are an emerging
class of computer-aided programming systems. They ease the con-
struction of programs by using satisfiability solvers to automate tasks
such as verification, debugging, synthesis, and non-deterministic
execution. But reducing programming tasks to satisfiability prob-
lems involves translating programs to logical constraints, which is
an engineering challenge even for domain-specific languages.

We have previously shown that translation to constraints can
be avoided if SDSLs are implemented by (traditional) embedding
into a host language that is itself solver-aided. This paper describes
how to implement a symbolic virtual machine (SVM) for such
a host language. Our symbolic virtual machine is lightweight
because it compiles to constraints only a small subset of the
host’s constructs, while allowing SDSL designers to use the entire
language, including constructs for DSL embedding. This lightweight
compilation employs a novel symbolic execution technique with
two key properties: it produces compact encodings, and it enables
concrete evaluation to strip away host constructs that are outside
the subset compilable to constraints. Our symbolic virtual machine
architecture is at the heart of ROSETTE, a solver-aided language that
is host to several new SDSLs.

Categories and Subject Descriptors D.2.2 [Software Engineer-
ing]: Design Tools and Techniques; D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Design, Languages

Keywords Solver-Aided Languages, Symbolic Virtual Machine

1. Introduction
Satisfiability solvers are the workhorse of modern formal methods.
At least four classes of tools reduce programming problems to
satisfiability queries: verification [11], synthesis [37], angelic (non-
deterministic) execution [10], and fault localization [21]. The key
component of all such tools is a symbolic compiler that translates a
program to logical constraints.

Building a symbolic compiler is often the most difficult aspect of
creating solver-aided tools, especially for general-purpose languages.
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Only a few symbolic compilers exist for C [11, 41] and Java [15, 16],
for example, and all took years to develop. Moreover, programs
in these languages are typically large, and even highly optimized
symbolic compilers reduce them to large, hard-to-solve encodings.
As a result, the applicability of solver-aided tools to general-purpose
programming remains limited.

We believe that domain-specific languages (DSLs) are more
suitable for wider adoption of solver-aided tools, for two reasons.
First, DSLs are already part of everyday programming, in the
form of frameworks and libraries. Second, DSL programs are
smaller, resulting in smaller logical encodings, which can be further
optimized by exploiting domain invariants. But building a symbolic
compiler to generate these encodings remains a formidable task,
even for a DSL (see, e.g., [27]).

In prior work [39], we showed how to implement DSLs that are
equipped with solver-aided tools (i.e., verification, debugging, an-
gelic execution, and synthesis), without constructing new symbolic
compilers. The designer of such a solver-aided DSL (SDSL) simply
defines the semantics of his language by writing an interpreter or a
library in a solver-aided host language. The host language exposes
solver-aided tools as first-class constructs, which SDSLs designers
use to implement solver-aided facilities for their languages. The
host’s symbolic compiler then reduces the SDSL implementation
and a program in that SDSL to constraints.

In this paper, we focus on the challenge of implementing a solver-
aided host language, the crux of which is building its symbolic
compiler. Since host languages offer metaprogramming constructs
for DSL construction, such as syntactic macros, which have not
yet been successfully compiled to constraints, volunteering to
symbolically compile a host language may seem overly altruistic:
while creators of guest SDSLs are saved from writing symbolic
compilers, we are faced with compiling a complex general-purpose
language. Using ROSETTE [39], our solver-aided extension to
Racket [18], this paper shows that it is possible to host SDSLs
without building a complex symbolic compiler.

We avoid the difficulties of classic symbolic compilation through
a lightweight design that compiles to formulas only a small lifted
subset of ROSETTE, while allowing SDSL designers to use the
entire language. We call this compiler a symbolic virtual machine
(SVM), because it virtualizes access to the underlying satisfiability
solver. Its key contribution is a new way to combine symbolic
execution [24] and bounded model checking [11] to achieve two
competing goals: (1) efficient compilation of lifted constructs, and
(2) concrete evaluation of unlifed constructs.

Symbolic execution and bounded model checking are classic
techniques for compiling (loop-free) programs to constraints. Given
a program with symbolic inputs, they both produce a formula that
encodes the program’s semantics in terms of those inputs. But sym-
bolic execution maximizes opportunities for concrete evaluation at
the cost of exponential compilation, while bounded model checking



prioritizes efficient compilation at the cost of minimized oppor-
tunities for concrete evaluation. The difference between the two
approaches boils down to how they perform state merging.

Symbolic execution encodes each path through a program sepa-
rately, so program states (bindings of variables to values) that corre-
spond to different paths are never merged. This encoding process is
exponential, because the number of paths in a program is generally
exponential in its size. But path-based encoding also maximizes
opportunities for concrete evaluation. Because many values in the
program state remain concrete along a given path, all constructs that
consume these values can be evaluated concretely. We say that such
constructs are stripped away, since they do not need to be compiled
to constraints.

Bounded model checking merges program states obtained by
encoding the branches of each conditional, which results in polyno-
mial compilation. The price, however, is the loss of opportunities
for concrete evaluation. When two concrete values from different
branches are merged, the result is a symbolic value. After a few
merges, most values in the program state become symbolic, and
all constructs that consume them must be encoded into the final
formula.

Our SVM approach employs a new type-driven state merging
strategy. Like bounded model checking, the SVM merges states
at each control-flow join, enabling efficient compilation. But our
merging function is different. To expose (more) opportunities for
concrete evaluation, it produces a symbolic value only when merging
two values of a primitive type (integer or boolean). Merging values
of other types results in either a concrete value or a symbolic union of
(guarded) concrete values. For example, two lists of the same length
are merged element-wise to produce a concrete list, while lists of
different lengths are merged into a symbolic union. If such a union
flows into a lifted procedure that operates on lists, the SVM evaluates
the procedure concretely on the individual members of the union,
and then combines the results into a single (concrete or symbolic)
value. As a result, the SVM does not need to encode complex lifted
constructs, such as list operations, in the solver’s input language—
they are simply evaluated with the Racket interpreter, under the
SVM’s guidance.

The output of SVM evaluation is a formula comprised of all
symbolic boolean values that flow into an assertion. This formula
is passed to the underlying solver. Because the SVM maintains the
invariant that symbolic values of primitive types, such as boolean or
integer, are expressed exclusively in terms of other primitive values,
the solver receives encodings that are free of symbolic unions.

The SVM lifts only a subset of ROSETTE’s constructs to operate
on symbolic values. This subset is rich enough, and our merging
strategy produces enough concrete values, that symbolic values
rarely flow to unlifted constructs. If they do, however, the SVM
offers an easy mechanism, which we call symbolic reflection, to
extend symbolic evaluation to those unlifted constructs. With a few
lines of code, and without modifying the SVM, SDSL designers
can obtain symbolic encodings of complex operations (such as
regular expression matching) that are, in general, poorly supported
by symbolic compilers.

Contributions This paper makes the following contributions:

• We develop a lightweight symbolic virtual machine (SVM) that
compiles to constraints only a small lifted subset of a solver-
aided host language, while exposing rich metaprogramming
facilities to SDSL designers. This compilation approach is
enabled by a new state-merging technique that relies on symbolic
unions. It is both efficient (i.e., polynomial in the size of finitized
input programs) and conducive to concrete evaluation of unlifted
constructs.

1 (define m (automaton init
2 [init : (c → more)]
3 [more : (a → more)
4 (d → more)
5 (r → end)]
6 [end : ]))

Figure 1. An automaton for the language c(ad)∗r [28]

1 (define-syntax automaton
2 (syntax-rules (: →)
3 [(_ init-state [state : (label → target) ...] ...)
4 (letrec ([state
5 (lambda (stream)
6 (cond
7 [(empty? stream) true]
8 [else
9 (case (first stream)

10 [(label) (target (rest stream))] ...
11 [else false])]))] ...)
12 init-state)]))

Figure 2. A macro for executable automata [28]

• We introduce symbolic reflection, which enables SDSL design-
ers to extend symbolic evaluation to unlifted operations, without
modifying the SVM or re-implementing (modeling) those opera-
tions in terms of the lifted constructs.
• We evaluate the SVM on programs from three different SDSLs,

including new languages for OpenCL programming and specify-
ing executable semantics of secure stack machines. We believe
that these languages are more sophisticated, and more easily
developed, than existing SDSLs.

Outline The rest of the paper is organized as follows. We first
present the ROSETTE language (Section 2), and then review the
background on symbolic execution and bounded model checking
(Section 3). The SVM is presented next (Section 4), followed by
a description of our case studies (Section 5). We conclude with a
discussion of related work (Section 6).

2. A Solver-Aided Host Language
This section illustrates key features of a sample solver-aided host
language, ROSETTE. The ROSETTE language extends Racket [18],
a modern descendent of Scheme that includes Scheme’s powerful
metaprogramming facilities [25]. We start with a brief review of
these facilities, borrowing the example of a simple declarative
language [28] for specifying executable finite state automata. We
then show how to make our sample language solver-aided by
embedding it in ROSETTE. The resulting SDSL will allow us to
invert, debug, verify and synthesize automata programs.

2.1 Metaprogramming with Macros
Suppose that we want to build a declarative language for implement-
ing finite state automata. A program in this language specifies an
automaton at a high level, listing only its states and labeled transi-
tions. Figure 1 shows an example of such a high-level description for
an automaton m that recognizes the language c(ad)∗r of Lisp-style
identifiers (car , cdr , caar , and so on). From this description, we
would like to obtain an executable implementation—a function that
takes as input a word (a list of symbols) and outputs true or false,
depending on whether the automaton accepts the word or not.

There are many ways to implement such a language in Racket.
As a starting point, we will reuse the basic implementation from
Krishnamurthi’s educational pearl [28], which is reproduced in
Figure 2. The implementation consists of a macro that pattern-
matches an automaton specification, such as the one form (Figure 1),
and expands it into a set of mutually recursive functions. We use



blue to distinguish DSL keywords (e.g., automaton) from Racket and
ROSETTE keywords, which are shown in boldface (e.g., lambda) and
gray boldface (e.g., solve), respectively.

Racket macros use ellipses to indicate pattern repetition: the
syntactic pattern before an ellipsis is repeated zero or more times.
Pattern variables matched in the head of a rule (line 3) are available
for use in its body. Our macro uses pattern variables and ellipses
to create one function for each state of the automaton (lines 4-11).
A state function takes as input a list of symbols and transitions
to the next state based on the value of the first symbol—or it
returns false if the first symbol is not a valid input in that state. The
output of the generated recursive let-expression is the function that
implements the initial state of the automaton (line 12). For example,
the definition in Figure 1 binds the identifier m to a function that
implements the initial state of the c(ad)∗r automaton.

Since ROSETTE is embedded in Racket, Figures 1 and 2 form
a valid ROSETTE program. ROSETTE programs can be executed,
just like Racket programs. We can test our implementation of the
automaton macro by applying m to a few concrete inputs:

> (m ’(c a d a d d r))
true
> (m ’(c a d a d d r r))
false

2.2 Symbolic Values, Assertions, and Solver-Aided Queries
ROSETTE adds to Racket a collection of solver-aided facilities,
which enable programmers to conveniently access a powerful con-
straint solver that can answer interesting questions about program
behavior. These facilities are based on three simple concepts: as-
sertions, symbolic values and queries. We use assertions to express
desired program behaviors and symbolic values to formulate queries
about these behaviors.

Symbolic Values ROSETTE provides two constructs for creating
symbolic constants and binding them to Racket variables:
(define-symbolic id expr)
(define-symbolic* id expr)

The define-symbolic form creates a single fresh symbolic con-
stant of type expr, and binds the identifier id to that constant every
time the form is evaluated. The define-symbolic* form, in contrast,
creates a stream of fresh constants, binding id to the next constant
from its stream whenever the form is evaluated. The following ex-
ample illustrates the difference, and it also shows that symbolic
values can be used just like concrete values of the same type. We
can store them in data structures and pass them to functions to obtain
an output value—either concrete or symbolic:
> (define (static)

(define-symbolic x boolean?)
x)

> (eq? (static) (static))
true

> (define (dynamic)
(define-symbolic* y number?)
y)

> (eq? (dynamic) (dynamic))
(= y$0 y$1)

The define-symbolic[*] form can only create symbolic constants
of type boolean? and number?. We build all other (finite) symbolic
values from these primitives. For example, the following functions
create symbolic words that can be used as inputs to our automaton

programs:
(define (word k alphabet) ; Draws a word of length k
(for/list ([i k]) ; from the given alphabet.
(define-symbolic* idx number?)
(list-ref alphabet idx)))

(define (word* k alphabet) ; Draws a word of length
(define-symbolic* n number?) ; 0 <= n <= k from the
(take (word k alphabet) n)) ; given alphabet.

Angelic Execution Given a way to create symbolic words, we can
now run the automaton program m “in reverse,” searching for a word
of length up to 4 that is accepted by m:
> (define w (word* 4 ’(c a d r)))
> (define model (solve (assert (m w))))
> (evaluate w model)
’()
> (m ’())
true

The (solve expr) query implements angelic semantics. It asks
the solver for a concrete interpretation of symbolic constants that
will cause the evaluation of expr to terminate without assertion
failures. The resulting interpretation, if any, is a first-class value that
can be freely manipulated by ROSETTE programs. Our example uses
the built-in evaluate procedure to obtain the solver’s interpretation
of the symbolic word w, revealing a bug: the automaton m accepts
the word ’(), which is not in the language c(ad)∗r.

Debugging To help debug m, we can ask the solver for a minimal
set of expressions in m’s implementation that are collectively
responsible for its failure to reject the empty word:
> (define core (debug [boolean?] (assert (not (m ’())))))
> (render core)
(define-syntax automaton
(syntax-rules (: →)
[(_ init-state [state : (label → target) ...] ...)
(letrec ([state

(lambda (stream)
(cond
[(empty? stream) true]
[else
(case (first stream)
[(label) (target (rest stream))] ...
[else false])]))] ...)

init-state)]))

The (debug [predicate] expr) query takes as input an expression
whose execution leads to an assertion failure, and a dynamic type
predicate specifying which executed expressions should be treated
as potentially faulty by the solver. That is, the predicate expresses
the hypothesis that the failure is caused by an expression of the
given type. Expressions that produce values violating the predicate
are assumed to be correct.

The output of a debug query is a minimal set of program expres-
sions, called a minimal unsatisfiable core, that form an irreducible
cause of the failure. Expressions outside of the core are irrelevant
to the failure—even if we replace all of them with values chosen by
an angelic oracle, the resulting program will still violate the same
assertion. But if we also replace at least one core expression with
an angelically chosen value, the resulting program will terminate
successfully. In general, a failing expression may have many such
cores, but since every core contains a buggy expression, examining
one or two cores often leads to the source of the error.

Like interpretations, cores are first-class values. In our example,
we simply visualize the core using the utility procedure render. The
visualization reveals that the sample core consists of the cond and
true expressions in the implementation of the automaton macro. We
could change the value produced by either of these expressions in
order to satisfy the assertion (assert (not (m ’()))). In this case,
an easy fix is to replace true with an expression that distinguishes
accepting states from non-accepting ones. For example, if we define
all (and only) states with no outgoing transitions as accepting, we
can repair the automaton macro by replacing true in Figure 2 with
the expression (empty? ’(label ...)).

Verification Having fixed the automaton macro, we may want to
verify that m correctly implements the language c(ad)∗r for all
words of bounded length. The following code snippet shows how to
do so by checking m against a golden implementation—Racket’s
own regular expression matcher:



1 (define M (automaton init
2 [init : (c → (? s1 s2))]
3 [s1 : (a → (? s1 s2 end reject))
4 (d → (? s1 s2 end reject))
5 (r → (? s1 s2 end reject))]
6 [s2 : (a → (? s1 s2 end reject))
7 (d → (? s1 s2 end reject))
8 (r → (? s1 s2 end reject))]
9 [end : ]))

Figure 3. An automaton sketch for c(ad)+r

1 (require (rename-in rosette/lib/meta/meta [choose ?]))
2 (define reject (lambda (stream) false))

Figure 4. Sketching constructs for executable automata

; Returns a string encoding of the given list of symbols.
; For example, (word->string ’(c a r)) returns "car".
(define (word->string w)
(apply string-append (map symbol->string w)))

; Returns true iff the regular expression regex matches
; the string encoding of the word w.
(define (spec regex w)
(regexp-match? regex (word->string w)))

> (define w (word* 4 ’(c a d r)))
> (verify (assert (eq? (spec #px"^c[ad]*r$" w) (m w))))
verify: no counterexample found

The (verify expr) query is the demonic complement of (solve
expr); it queries the solver for an interpretation of symbolic values
that will cause the evaluation of expr to fail. If the query succeeds,
the resulting interpretation is called a counterexample. In our case,
the oracle fails to find a counterexample, and we can be sure that m
is correct for all words of length 4 or less. To gain more confidence
in m’s correctness, we can repeat this query with larger bounds on
the length of words, until the solver no longer produces answers in
a reasonable amount of time.

Synthesis The automaton macro provides a high level interface for
specifying automata programs, but it still requires the details of the
specification to be filled in manually. To mechanize the construction
of automata, we will extend our SDSL with two new keywords, ?
and reject, allowing programmers to sketch [37] an outline of the
desired automaton, which will then be completed by the solver.

Figure 3 shows a sample automaton sketch for the language
c(ad)+r. The sketch specifies the states of the automaton and
outlines the possible transitions between the states. For example, the
state s1 may accept the label a by transitioning to itself, s2, or end.
Alternatively, it may reject the label by transitioning to the special
reject state, which rejects all words.

Figure 4 shows an implementation of our new sketching con-
structs. The keyword reject is bound to a procedure that always
returns false, thus implementing a state that rejects all words. The
keyword ? is bound to a sketching construct, choose, imported from
a ROSETTE library.1

The (choose expr ..+) form is a convenience macro for specify-
ing the space of expressions that may be used to complete a sketch.
Given n expressions, the macro uses define-symbolic to create n−1
symbolic boolean values, which are then used to select one of the
supplied expressions. For example, (choose expr1 expr2) expands
into the following code:

(local [(define-symbolic tmp boolean?)]
(cond [tmp expr1]

[else expr2]))

1 Sketching constructs such as choose are implemented in ROSETTE itself
using macros, and include advanced constructs for specifying recursive
grammars found in other synthesis-enabled languages (e.g., Sketch [37]).

The use of define-symbolic ensures that an instance of choose picks
the same expression every time it is evaluated.

Given the sketch M and a regular expression for c(ad)+r, we
can now use the solver to complete the sketch so that the resulting
automaton is correct for all words of bounded length:

> (define w (word* 4 ’(c a d r)))
> (define model

(synthesize [w]
(assert (eq? (spec #px"^c[ad]+r$" w) (M w)))))

> (generate-forms model)
(define M
(automaton init
[init : (c → s1)]
[s1 : (a → s2) (d → s2) (r → reject)]
[s2 : (a → s2) (d → s2) (r → end)]
[end : ]))

The (synthesize [input] expr) query uses the input form to
specify a set of distinguished symbolic values, which are treated as
inputs to the expression expr. The result, if any, is an interpretation
for the remaining symbolic values that guarantees successful evalua-
tion of expr for all interpretations of the input. The generate-forms

utility procedure takes this interpretation and produces a syntactic
representation of the completed sketch.

2.3 Symbolic Reflection
SDSL designers can usually treat symbolic values in the same way
they treat concrete values of the same type. As demonstrated in our
word implementation, for example, the list-ref procedure works
as expected when called with a symbolic index. We say that such
procedures are lifted.

Because Racket is a rich, evolving language with many libraries,
ROSETTE cannot practically lift all of its features. Instead, ROSETTE
lifts a small set of core features, while also providing a mechanism
for lifting additional Racket constructs from within ROSETTE
programs. We call this mechanism symbolic reflection.

The key idea behind symbolic reflection is simple. ROSETTE
represents a symbolic value of an unlifted data-type as a union of
concrete components of that type (see Section 4). Symbolic reflec-
tion enables a ROSETTE program to disassemble a symbolic union
into its concrete components, apply an unlifted Racket construct to
each component, and then reassemble the results into a single sym-
bolic or concrete value. This allows SDSL designers to write a few
lines of code and obtain symbolic evaluation of unlifted constructs.

For example, we have used symbolic reflection in the previous
section to lift Racket’s regular expression matcher to work on
symbolic strings:

(define (regexp-match? regex str)
(for/all ([v str])
(racket/regexp-match? regex v)))

The lifted regexp-match? function uses the identifier racket/regexp-
match? to refer to Racket’s own regular expression matcher that only
works on concrete values. The for/all reflection macro applies
racket/regexp-match? to each concrete string component of str,
assembling the results of these individual matches into a single
concrete or symbolic boolean value.

In contrast to the symbolic reflection approach, using regular
expressions (or other advanced language features) in a standard
solver-aided tool (e.g., [11]) requires one of two heavyweight
implementation strategies. First, the SDSL designer could modify
the tool’s translator to constraints to include support for regular
expressions, which is complicated by the need for a specialized
solver that can reason about strings (e.g., [35]). Second, he could re-
implement (or “model”) regular expression facilities in terms of the
simpler constructs supported by the tool. Both of these approaches
involve writing hundreds of lines of tricky code.



3. Design Space of Precise Symbolic Encodings
There are many ways to compile solver-aided queries to logical
constraints (e.g., [3, 8–11, 15, 16, 23, 32, 37, 41]). Most existing
approaches employ an encoding strategy that is based either on
symbolic execution [24] or on bounded model checking [11]. In this
section, we review these two standard approaches and illustrate why
a new approach is needed for encoding solver-aided host languages.

3.1 Basic Design Decisions
The design of a symbolic encoding technique involves several
basic design decisions [29], including whether the technique is
static or dynamic; whether and how it merges symbolic states from
different paths; and how it handles loops and recursion. Symbolic
execution engines (such as [8–10, 23]) are at the dynamic end
of the spectrum: they execute the target program path-by-path,
performing no state merging and using heuristics to determine how
many times to execute individual loops. Bounded model checkers
(such as [11, 15, 16, 19, 32, 37, 40]) and extended static checkers
(such as [3, 41]) form the static end of the spectrum: they finitize
the representation of the target program by statically unrolling loops
up to a given bound, and then encode it by merging states from
different paths at each control-flow join.

We illustrate both approaches on the sample program in Fig-
ure 5a. The program is implemented in a Python-like language with
symbolic constants (line 9), assertions (line 11) and solver-aided
queries (line 8). The procedure revPos takes as input an immutable
list of integers and reverses it, keeping only the positive elements.
The solve query searches for a two-element list xs on which revPos

produces a list of the same length.

3.2 Symbolic Execution
Symbolic execution answers queries by exploring paths in the
program’s execution tree [24]. In the case of a solve query, the tree
is searched for a path that terminates without any assertion failures.
Figure 5b shows the execution tree for our example query. The
nodes represent program states, and the edges represent transitions
between states. Each transition is labeled with a branch condition,
expressed in terms of symbolic inputs, that must be true for the
transition to take place. The conjunction of edge labels along a
given path is called a path condition, and a path is feasible only if its
path condition and any reachable assertions (also expressed in terms
of symbolic inputs) are satisfiable. If a path becomes infeasible, the
execution backtracks and tries a new path.

Feasibility of paths is tested by compiling the path condition
and assertions to a constraint system, whose satisfiability is checked
with an off-the-shelf solver. Because program state remains largely
concrete along a given execution path, many tricky-to-encode
operations, such as the list manipulations in our example, are
evaluated concretely, which eliminates the need to compile them to
constraints. This simplifies implementation of symbolic execution
engines and lessens the burden on the underlying solver.

But path-based encodings have a well-known disadvantage:
since the number of paths in a (loop-free) program is generally
exponential in its size, a symbolic execution engine may need to
make exponentially many calls to the underlying solver. In our
example, an engine may have to explore O(2n) failing paths for
an input of size n before it finds the single path that leads to a
successful evaluation of the target assertion. Many heuristics have
been developed to manage this problem (see [7] for an overview),
but they are only applicable to solver-aided queries that can be
answered by finding a single (failing or successful) path through the
program—namely, verification and angelic execution. Synthesis and
debugging queries require reasoning about all paths simultaneously,
which, in the case of symbolic execution, would be encoded as
an exponentially-sized disjunction of path constraints. As a result,

symbolic execution is limited in the kind of solver-aided queries
that it can efficiently answer.

3.3 Bounded Model Checking
Techniques based on bounded model checking, in contrast, do
not suffer from path explosion, enabling both synthesis [37] and
debugging [21] queries. Given a target program, a bounded model
checker first transforms it by inlining all function calls, unrolling all
loops by a fixed amount, renaming program variables so that each
one is assigned exactly once, and representing control flow merges
explicitly with (guarded) φ expressions (see, e.g., [11, 16, 41] for
details). The result is an acyclic program in Static Single Assignment
form. Figure 5c shows the transformed code for our example.

To compile a finitized program to constraints, a bounded model
checker encodes the value of each defined variable in a suitable
theory and then uses these values in the translation of the target
assertions. This process is complicated by the presence of the state-
merging φ expressions. Once two concrete values from different
branches are logically merged with a φ expression, as in the defini-
tion of ps1, their representation becomes an opaque symbolic value
and all operations that consume that value must also be translated
to symbolic values and constraints. Unlike symbolic execution en-
gines, bounded model checkers tend to evaluate very few operations
concretely and must therefore be able to symbolically compile all
constructs in their target programming language. This also has the
effect of offloading all reasoning about program semantics to the
solver. As a result, encodings produced by bounded model checkers,
while compact in size, are harder to solve than path constaints.

In our example, a bounded model checker will need to know how
to encode list values and operations on the list data type (in order to
represent the value of, e.g., ps2). Producing such an encoding is not
straightforward even when the underlying solver supports the theory
of lists as Z3 [13] does, for example. Since the list length operation
is not included in the theory, it must be either axiomatized (using
expensive universal quantification) or finitized and encoded by the
bounded model checker like any other procedure.

3.4 Encoding Solver-Aided Host Languages
As illustrated in Section 2, hosting SDSLs requires advanced
language features (such as macros and first-class procedures); a
rich set of libraries and datatypes; and support for a variety of
solver-aided queries and programming styles. Neither symbolic
execution nor bounded model checking are well suited for compiling
such a host language to constraints. Building a bounded model
checker for a host language would involve a heroic engineering
effort, resulting in a heavyweight symbolic compiler that performs
program finitization, advanced static analyses (see, e.g., [16, 40]),
and logical encoding of complex language features. Our first attempt
at compiling the ROSETTE language was based on bounded model
checking, and we abandonded it after three months of laborious
implementation work, when the system became too complicated.
Symbolic execution offers an attractive alternative to heavyweight
compilation by increasing opportunities for concrete evaluation
of hard-to-encode constructs. But the price of this simplicity is a
loss of versatility, since path-based encoding is only practical for
answering verification and angelic execution queries. A lightweight
compiler for a host language therefore needs a way to combine
symbolic execution with a state merging strategy that enables
concrete evaluation.

4. A Lightweight Symbolic Virtual Machine
In this section, we present a new technique for precise symbolic
encoding of solver-aided host languages. Our solution is to combine
key elements of symbolic execution and bounded model checking in
a symbolic virtual machine with type-driven state merging (SVM).



1 def revPos(xs):
2 ps = ()
3 for x in xs:
4 if x > 0:
5 ps = cons(x, ps)
6 return ps

8 solve:
9 xs = (x0, x1)

10 ps = revPos(xs)
11 assert len(ps) == len(xs)

ps = () ps = (x1) ps = (x0) ps = (x1, x0)

ps = () ps = (x0)

ps = ()
x0 ≤ 0 x0 > 0

x1 ≤ 0 x1 > 0 x1 ≤ 0 x1 > 0

x0 ≤ 0∧
x1 ≤ 0∧
false

x0 ≤ 0∧
x1 > 0∧
false

x0 > 0∧
x1 ≤ 0∧
false

x0 > 0∧
x1 > 0∧
true

1 solve:
2 xs = (x0, x1)
3 ps0 = ()
4 for0 = xs != ()
5 x0 = φ(for0, car(xs), 0)
6 ps1 = φ(for0 and x0 > 0, cons(x0, ps0), ps0)
7 for1 = for0 and cdr(xs) != ()
8 x1 = φ(for1, car(cdr(xs)), 0)
9 ps2 = φ(for1 and x1 > 0, cons(x1, ps1), ps1)

10 for2 = for1 and cdr(cdr(xs)) != ()
11 assert ! for2
12 assert len(ps2) == len(xs)

(a) Sample program (b) Symbolic execution tree for (a) (c) Acyclic finitized representation of (a)

Figure 5. Logical encoding of a sample solver-aided query (a), using symbolic execution (b) and bounded model checking (c).

Like a symbolic execution engine, an SVM executes the target
program. But the SVM execution graph is not a tree—it is a DAG,
in which states from different paths are merged at every control join
point. Values of the same primitive type (e.g., boolean or integer)
are merged logically, as in bounded model checking, resulting in
an opaque symbolic value. All other values are merged structurally,
based on their type, resulting in concrete values or in transparent
symbolic unions that can be unpacked for concrete evaluation.

We first illustrate our approach on the example program from
the previous section, showing how careful construction of symbolic
unions increases opportunities for concrete evaluation (compared to
bounded model checking), while ensuring efficient evaluation (com-
pared symbolic execution). We then present SVM evaluation and
merging rules on a small but expressive solver-aided language. The
section concludes with brief correctness and efficiency arguments,
as well as a discussion of practical consequences of our design.

4.1 Example
Figure 6 shows the SVM execution DAG for the sample program in
Figure 5a. The labels of the form bk and ik to refer to the opaque
symbolic booleans and integers created during symbolic evaluation.
The definitions of these values are shown next to the graph. We use
φ to denote the logical merge (i.e., if-then-else) operator and ⊕ to
denote bitwise disjunction of two integer values.2

The execution starts by initializing the variable ps to the empty
list. It proceeds by evaluating both branches of the condition on
line 4 independently: the true-branch updates the variable ps to the
list (x0), and the empty false-branch leaves its value unchanged.
The resulting states are then merged, binding the variable ps to the
symbolic union {[b0, (x0)] [¬b0, ()]}. As its textual representation
suggests, a symbolic union is a set of guarded values, in which the
guards are, by construction, disjoint (i.e., at most one of them is true
in every concrete interpretation).

In the second iteration of the loop, the true-branch (guarded
by b1) updates the value of ps by unpacking the symbolic union
{[b0, (x0)] [¬b0, ()]} and concretely executing the cons operation
on each of the union’s components. The states from both branches
are once again merged, ensuring that all list values of the same
length are collapsed into a single list by performing (type-driven)
merging of their elements. Because list elements are primitive values
(integers), they are merged logically (see, e.g., i0).

After the loop exits, the assertion on line 11 is evaluated bottom-
up, by computing and comparing the lengths of the lists ps and xs.
The length of ps is obtained by applying the len operation to the
individual components of ps, and combining the resulting guarded
concrete values into a single symbolic value, i1. The symbolic
boolean value b7 encodes the result of comparing i1 and 2 (the

2 We assume that all integers and integer operations are modeled using finite-
precision bitvectors. Theory of integers can also be used if the underlying
solver supports it, with a suitable adjustment to the SVM evaluation rules.

ps = ()

ps = (x0)

ps =

{
[b0, (x0)]

[¬b0, ()]

}

ps =

{
[b0, (x1, x0)]

[¬b0, (x1)]

}

ps =


[b2, (x1, x0)]

[b5, (i0)]

[b6, ()]


assert b7

b0 = x0 > 0

b1 = x1 > 0

b2 = b0 ∧ b1
b3 = ¬b0 ∧ b1
b4 = b0 ∧ ¬b1
b5 = b3 ∨ b4
b6 = ¬b0 ∧ ¬b1
i0 = φ(b1, x1, x0)

i1 = φ(b2, 2, 0)⊕

φ(b5, 1, 0)⊕

φ(b6, 0, 0)

b7 = (i1 = 2)

¬b0

b0

¬b1

b1

Figure 6. SVM encoding for the program in Figure 5a

length of xs) for equality. This value, together with the primitive
values on the right of Figure 6, comprise the final encoding of the
program, which is free of lists and unions.

The final encoding is a polynomially-sized formula in the theory
of bit vectors. Our merging strategy enables all list operations to
be evaluated concretely, and it also ensures that there is no state
explosion during evaluation. The cardinality of the symbolic union
representing the state of the variable ps grows polynomially rather
than exponentially with the size of the execution DAG, which is, in
this case, determined by the length of the input list xs. If we were
to execute our sample program on a list of n symbolic values, the
symbolic union representing the final state of ps would contain n+1
guarded lists. Because lists of the same length are merged element-
wise, filtering a list of n symbolic values results in a symbolic union
with n+1 merged lists of length 0 through n. All primitive symbolic
values (list guards and elements) created during these merges are
also polynomially-sized, since primitive values are merged logically,
as in bounded model checking.

4.2 A core solver-aided language
We describe the SVM evaluation process on HL, a small solver-
aided host language shown in Figure 7. The language extends core
Scheme with mutation [33] to include symbolic values, assertions
and the solve query. We omit other queries for brevity, since their
evaluation is analogous to that of the solve query.

Like Scheme, HL supports first-class procedures, procedure
application, conditional execution and mutation expressions. It
also includes a set of built-in procedures for operating on its five
core3 data types: booleans, finite precision integers, immutable

3 In Scheme [33], procedures cons, car and cdr operate on pairs, and lists
are represented as null terminated pairs. We omit the pair data type to
simplify the presentation, and restrict pair operations to work only on lists.



expressions e ::= l | x | (lambda (x) e) | (e e . . .) | (if e e e) |
(set!x e) | (assert e) | (solve e)

l ::= true | false | integer literal | null
x ::= identifier | equal? | union? | number? | boolean? |

procedure? | list? | cons | car | cdr | length |
= | < | + |- | * | \ | . . .

definitions d ::= (definex e) | (define-symbolicx e)
forms f ::= d | e
programs p := f . . .

Figure 7. The HL language

lists, procedure objects, and symbolic unions. Figure 7 shows (the
identifiers for) a few sample built-in procedures.

Integers and booleans can be either concrete values, symbolic
constants (introduced by define-symbolic), or symbolic expressions
(obtained, e.g., by applying primitive procedures to symbolic con-
stants). Lists are concrete, immutable, finite sequences ofHL values.
Procedures are created using lambda expressions in the usual way.
Symbolic unions are sets of guarded values, which are pairs of the
form [b, v] ∈ B× (V \U), where B and U stand for all boolean and
union values, and V stands for all HL values. The guards in each
union are disjoint with respect to all concrete interpretations.

Thanks to the inclusion of lists, first-class procedures and muta-
tion,HL forms the core of a rich solver-aided language that supports
multiple programming styles. For example, lists and higher order
functions facilitate a functional programming style, while closures
and mutation enable construction of mutable storage—e.g., vectors
and objects—for use in imperative and object-oriented program-
ming. We therefore show how to build an SVM for this core lan-
guage, but note that the approach presented here can be naturally
extended with rules for handling richer features and data types. Our
prototype SVM implements direct evaluation and merging rules for
(im)mutable vectors and user-defined record types, although both
could be represented and evaluated in terms of the core features.

4.3 SVM Evaluation and Merging Rules
Figure 8 shows a representative subset of the SVM evaluation rules
for HL. A rule 〈f, σ, π, α〉 → 〈v, σ′, π′, α′〉 says that a succesful
execution of the form f in the program state 〈σ, π, α〉 results in the
value v and the state 〈σ′, π′, α′〉. A program state consists of the
program store σ, the path condition π, and the assertion store α.
The program store maps program identifiers to values and procedure
pointers to procedure objects, as described below; the path condition
is a boolean value encoding the branch decisions taken to reach the
current state; and the assertion store is the set of boolean values (i.e.,
constraints) that have been asserted so far. We use 〈f, σ, π, α〉 → ⊥
to indicate that the evaluation of f in the given state leads to a failure.
Meta-variables v, w, and u denote any HL value, while b, i, l, and
pp stand for booleans, integers, lists, and procedures, respectively.

The evaluation process starts with the TOP rule, which populates
the program store with bindings from built-in procedure identifiers
(such as +) to procedure pointers, which are in turn bound to the
corresponding procedure objects (such as +). Procedure pointers,
rather than the objects themselves, represent HL procedure values,
and a new pointer is created with each evaluation of a lambda

expression (see the PROC rule).
Rules DEF1 and PL1 demonstrate the basic mechanisms for

handling primitive symbolic values (booleans and integers). DEF1
uses the constant constructor Lx : tM to create a new symbolic
constant x of type t. PL1 uses the expression constructor Li1 + i2M
to create a value that represents the sum of i1 and i2. The expression
constructor evaluates its arguments, creating a symbolic expression
whenever either of the arguments is symbolic. Symbolic expressions
are represented as DAGs that share common subexpressions.

TOP

σ0 = {[+ 7→ pp+] [pp+ 7→ +] . . .} π = true α0 = {}
〈fi, σi−1, π, αi−1〉 → 〈vi, σi, π, αi〉 where fi ∈ {f1, . . . , fn}

〈f1 . . . fn, σ0, π, α0〉 → 〈vn, σn, π, αn〉

PROC
λ = (lambda (x) e) pp 6∈ dom(σ)

〈λ, σ, π, α〉 → 〈pp, σ[pp 7→ λ], π, α〉

DEF1

〈e, σ, π, α〉 → 〈v, σ0, π, α0〉 u = Lx : σ0(v)M
σ0(v) ∈ {boolean?,number?} ∀y∈dom(σ0)σ0(y) 6= u

〈(define-symbolic x e), σ, π, α〉 → 〈void, σ0[x 7→ u], π, α0〉

PL1

〈e0, σ, π, α〉 → 〈pp+, σ0, π, α0〉
〈e1, σ0, π, α0〉 → 〈i1, σ1, π, α1〉 〈e2, σ1, π, α1〉 → 〈i2, σ2, π, α2〉

〈(e0 e1 e2), σ, π, α〉 → 〈Li1 + i2M, σ2, π, α2〉

IF1

〈e0, σ, π, α〉 → 〈v0, σ0, π, α0〉 b = isTrue(v0) isSymbolic(b)
〈e1, σ0, π1, α0〉 → 〈v1, σ1, π1, α1〉 π1=Lπ ∧ bM isTrue(π1) 6= false
〈e2, σ0, π2, α0〉 → 〈v2, σ2, π2, α2〉 π2=Lπ∧¬bM isTrue(π2) 6= false
σ3 = {x 7→ µ(b, σ1(x), σ2(x)) | x ∈ dom(σ0), isIdentifier(x)}∪

{pp 7→ σ0(pp) | pp ∈ dom(σ0), isProcedure(pp)}∪
{y 7→ σ1(y) | y ∈ dom(σ1) \ dom(σ0)}∪
{y 7→ σ2(y) | y ∈ dom(σ2) \ dom(σ0)}
〈(if e0 e1 e2), σ, π, α〉 → 〈µ(b, v1, v2), σ3, π, α1 ∪ α2〉

CO1

〈e0, σ, π, α〉 → 〈ppcons , σ0, π, α0〉
〈e1, σ0, π, α0〉 → 〈v1, σ1, π, α1〉 〈e2, σ1, π, α1〉 → 〈v2, σ2, π, α2〉

isUnion(v2) u = {[b, cons(v1, l)] | [b, l] ∈ v2, isList(l)}
|u| > 1 bu = Lπ ⇒

∨
[b,l]∈u b M

〈(e0 e1 e2), σ, π, α〉 → 〈u, σ2, π, α2 ∪ {bu}〉

AP1

〈e0, σ, π, α〉 → 〈pp, σ0, π, α0〉 σ0(pp) = (lambda (x) e)
〈e1, σ0, π, α0〉 → 〈v1, σ1, π, α1〉

〈e[x := y], σ1[y 7→ v1], π, α1〉 → 〈v, σ2, π, α2〉 fresh y

〈(e0 e1), σ, π, α〉 → 〈v, σ2, π, α2〉

AP2

〈e0, σ, π, α〉 → 〈v0, σ0, π, α0〉 〈e1, σ0, π, α0〉 → 〈v1, σ1, π, α1〉
v0 = {[b0, pp0] [b1, pp1]} b1 = L¬b0M

σ2 = σ1[x0 7→ b0, x1 7→ pp0, x2 7→ pp1, x3 7→ v1]
fresh x0, x1, x2, x3

〈(if x0 (x1 x3) (x2 x3)), σ2, π, α1〉 → 〈v, σ3, π, α2〉
〈(e0 e1), σ, π, α〉 → 〈v, σ3, π, α2〉

AS1
〈e, σ, π, α〉 → 〈v, σ1, π, α1〉 isTrue(v) = false

〈(assert e), σ, π, α〉 → ⊥

AS2
〈e, σ, π, α〉 → 〈v0, σ1, π, α1〉 b = isTrue(v0) b 6= false

〈(assert e), σ, π, α〉 → 〈void, σ, π, α ∪ {Lπ ⇒ bM}〉

SQ1
〈e, σ, π, α〉 → 〈v, σ0, π, α0〉 ∃M ` L

∧
a∈α0

aM

〈(solve e), σ, π, α〉 → 〈modelToList(M), σ0, π, α〉

isTrue(v) :=


v if isBool(v)

L
∨

[bi,vi]∈v
bi ∧ (isBool(vi)⇒ vi)M if v = {[bi, vi] . . .}

true otherwise

Li1 + i2M :=

{
i1 + i2 if i1, i2 ∈ Z
(int + i1 i2) otherwise

Lx : boolean?M := (bool x) Lx : number?M := (int x)

Figure 8. A subset of the SVM evaluation rules for HL

Rule IF1 illustrates type-driven state merging. The rule employs
the meta-function µ, defined in Figure 9, to merge states from
alternative execution paths. The key idea is to partition HL values
into classes, and to merge values in the same class without creating
symbolic unions. Unions are used only to merge values from
different classes. The boolean and integer types, for example, form
two of these classes; their members are merged logically using φ
expressions. If other primitive types were added to the language, they
would also be merged logically. Two lists of length k are merged
element-wise. In general, we use such structural merging for non-
primitive immutable values, with the details of the merging process
specific to their type. Pointer values, such as procedure pointers, are
merged only if they represent the same location in the program store,
implementing sound tracking of aliasing relationships. Unions are



u ≈Prim v := isBool(v) ∧ isBool(u) ∨ isInt(v) ∧ isInt(u)
u ≈List v := isList(v) ∧ isList(u) ∧ len(v) = len(u)
u ≈Ptr v := u = v
u ≈ v := (u ≈Ptr v) ∨ (u ≈Prim v) ∨ (u ≈List v)
b ◦ u :=

⋃
[bi,ui]∈u

{[Lb ∧ biM, ui]}
µ(b, u, v) :=

u if b = true

v if b = false

u if u = v

Lφ(b, u, v)M if u ≈Prim v

(w0, . . . , wn) if u ≈List v andwi = µ(b, u[i], v[i]) for 0 ≤ i ≤ len(u)

µ(L¬bM, v, u) if ¬isUnion(u) and isUnion(v)

u′ ∪ v′ if isUnion(u),¬isUnion(v), 6 ∃[bi, ui] ∈ u. ui ≈ v,
u′ = b ◦ u, and v′ = {[L¬bM, v]}

u′ ∪ v′ if isUnion(u),¬isUnion(v), [bi, ui] ∈ u, ui ≈ v,
u′ = b ◦ (u \ {[bi, ui]}) and
v′ = {[Lb⇒ biM, µ(b, ui, v)]}

w ∪ u′ ∪ v′ if u = {[bi, ui], . . .}, v = {[bj , vj ], . . .},
w = {[Lb ∧ bi ∨ ¬b ∧ bjM, µ(b, ui, vj)] | ui ≈ vj},
u′ = b ◦ {[bi, ui] | 6 ∃vj .ui ≈ vj}), and
v′ = L¬bM ◦ {[bj , vj ] | 6 ∃ui.ui ≈ vj})

{[b, u] [L¬bM, v]} otherwise

Figure 9. Merging function for HL values

merged member-wise, so that the resulting union contains at most
one member from each class of values.

We include one sample rule, CO1, that shows how built-in
procedures handle union arguments. The primitive cons procedure
adds a value to the beginning of a concrete list. Given a value v1 and
a union v2 containing multiple lists, the rule produces a new union
by applying cons to v1 and every list in v2. To ensure soundness,
the rule also extends the assertion store with a constraint stating that
at least one list guard must be true if the execution takes the path
π. Since union guards are disjoint by construction, this forces v2
(and the output u) to evaluate to exactly one list in every concrete
interpretation that satisfies π. In other words, rules such as CO1
emit assertions to ensure that unions flowing into built-in procedures
have the right dynamic types.

Rule AP2 illustrates the evaluation of an application expression
in which the first (procedure) subexpression evaluates to a symbolic
union. The rule combines the guarded results and effects of applying
all procedures in the union. This is analogous to how existing
bounded model checkers for object oriented languages (e.g., [16])
handle dynamic dispatch.

Evaluation of other HL rules, except for SQ1, is standard. Rule
SQ1 ensures that a (solve e) query succeeds only if there is an
interpretation of symbolic constants (i.e., a model) satisfying all
assertions in the state obtained by evaluating the expression e,
which includes the assertions collected before the evaluation of
solve. That is, the solve query searches for a feasible path through
the entire program up to and including e. Other queries are evaluated
similarly—by searching for a model or a minimal unsatisfiable core
of a logical formula that combines the constraints in the assertion
store. For example, the verification query searches for a model of
the formula L

∨
b∈α ¬bM. These formulas are easy to compile to input

languages of modern solvers, since all constraints in the assertion
store are expressed solely in terms of symbolic primitives.

4.4 Correctness of SVM Evaluation
It can be shown by structural induction on HL that the SVM eval-
uation rules are correct in the following sense [14]: the program
state produced by each evaluation step represents all and only those
concrete states that could be reached via some fully concrete ex-
ecution, using the semantics of core Scheme with mutation [33].
An important point to note is that this is only possible because HL

excludes Scheme’s eq? and eqv? operators, which, unlike equal?,
allow Scheme programs to distinguish between two concrete im-
mutable objects that represent the same value. If these operators
were allowed in HL, then our strategy for merging lists would be
unsound, and they would have to be treated as pointers.

To see that the rules correctly encode the HL subset of Scheme,
first note that they reduce to Scheme rules in the absence of symbolic
values (e.g., PL1 and AP1). Next, observe that the SVM behaves
just like a bounded model checker on programs that require only
values of the same primitive type to be merged. Finally, recall that
the merging function µ soundly combines non-primitive values (in
particular, by precisely tracking aliasing relationships); that the rules
for applying built-in procedures (e.g., CO1) enforce the relevant
(dynamic) type constraints; and that the generic rules for procedure
application (e.g., AP2) work correctly when the target of a call may
be one of several procedures.

4.5 Efficiency of SVM Evaluation
Like bounded model checking, and unlike symbolic execution, the
SVM evaluation is efficient in that it is free of path or state explo-
sion.4 In particular, all values generated during SVM evaluation,
including symbolic unions, are polynomial in the size of the (fini-
tized) input program. We show this for unions, and note that similar
reasoning can be applied to derive polynomial bounds on the size of
symbolic expressions and concrete values.

Precise symbolic encoding techniques operate, implicitly or ex-
plicitly, on finite acyclic programs, obtained from general programs
by unwinding loops finitely many times and inlining calls to user-
defined (non-primitive) procedures. Symbolic execution and the
SVM perform this finitization implicitly, during evaluation (see, e.g.,
rules AP1 and AP2). In bounded model checking, the finitization
step is explicit [16]. The SVM generates unions that are at worst
linear in the size of such finitized programs.

Without loss of generality, suppose that the SVM is applied to
an already finitized HL program P = (f1 . . . fn). Let |P | be the
number of forms that comprise the syntactic representation of P ;
that is, |P | = |f1|+ . . .+ |fn|, where |x| = 1 for an identifier x,
|(e1 . . . ek)| = 1 + |e1|+ . . .+ |ek| for an application expression,
and so on. Because P is finitized, it is free of loops, recursion and
non-primitive procedure calls. As a result, the only forms in P
that may produce a union value are if expressions (see IF1) and
primitive procedure applications (see, e.g., CO1). These unions are
linear in |P |, as shown next.

An if expression creates unions by applying the merging func-
tion µ to values from different branches. Recall that µ maintains
the following invariant on the structure of unions it creates: a union
contains at most one boolean, at most one integer, at most one
list of length k, and any number of distinct procedure pointers. A
procedure pointer may appear in a union created by µ only if the
evaluation of some form in P generates such a pointer. The same
is true for a list of length k. To show that unions produced by µ are
linear in |P |, we therefore need to establish that the SVM evaluation
of P creates at most O(|P |) distinct procedure pointers and at most
O(|P |) differently-sized lists.

Since P is finite, the SVM evaluates every lambda expression
in P at most once. As a result, evaluating P produces at most
|P | distinct procedure pointers. Similarly, P contains at most |P |
applications of the cons primitive procedure, which grows the size
of a concrete input list by 1. Since the application of cons is the only
way to construct lists in HL, P cannot construct a list that is longer
than |P |. Hence, P can create at most |P | differently-sized lists.

Having shown that if expressions produce unions of sizeO(|P |),
we can now show that the same bound holds for unions produced by

4 Of course, state explosion may still happen in the solver.



primitive procedure applications. Recall that all members of a union
are themselves either symbolic constants, or symbolic expressions,
or concrete values. When a primitive HL procedure (e.g., cons) is
applied to such a value, it yields another symbolic or concrete value,
but never a union. Hence, when a primitive procedure is applied to
all members of a union of size O(|P |), as in the CO1 rule, the size
of the resulting union is also O(|P |).

4.6 Loops and Recursion
Although the SVM encodes only finite executions of programs to
formulas (see SQ1), our evaluation rules do not artifically finitize
executions by explicitly bounding the depth of recursion. Instead,
the SVM assumes that its input programs are self-finitizing, and
it fails to terminate on those that are not. This design decision is
intentional, for two reasons.

First, many SDSLs implementations and programs use loops and
recursion only to iterate over data structures (e.g., lists), and all such
code is self-finitizing. Since the shape of data structures remains
concrete during SVM evaluation, looping or recursive traversals
over these structures are automatically unwound as many times as
needed. This is true for our running example (Fig. 5a), as well as
the code in Section 2.

Second, the SVM is designed for use within a solver-aided host
language, which provides facilities for defining bounded looping
constructs, if these are needed by an SDSL. In our prototype
language, for example, bounded looping constructs are easy to
implement with the help of macros [39]. We therefore leave the
control of finitization to SDSL designers, allowing them to define
finitization behaviors that are best suited to their application domain.

4.7 Symbolic Reflection
In Section 2, we introduced symbolic reflection as a mechanism
for extending symbolic evaluation to advanced language features,
such as regular expressions, that are hard to support in classic solver-
aided tools. The SVM supports symbolic reflection by exposing
symbolic unions and primitives as first-class values in the host
language. Our host language provides several useful operations on
unions, such as the for/all lifting macro from Section 2.3 (which
is implemented much like the CO1 rule). ROSETTE code can also
obtain the cardinality of a union, which is useful for controling the
SVM’s finitization behavior. For example, if a procedure asserts that
the size of a union returned by a recursive call does not exceed a
given concrete threshold, the SVM will stop unwinding the recursion
when that threshold is exceeded.

5. Case Studies
In this section, we evaluate the effectiveness of our prototype SVM
on a collection of benchmarks from three different SDSLs: an im-
perative language for solver-aided development of OpenCL kernels;
a declarative SDSL for web scraping; and a functional SDSL for
specifying executable semantics of secure information-flow control
(IFC) mechanisms. We show that our type-driven state merging
effectively controls state explosion on a range of applications, and
that the SVM produces good encodings for these applications, as
measured by constraint solving time. The benchmarks are described
first, followed by presentation and discussion of results.

5.1 Benchmarks
SYNTHCL SYNTHCL is a new imperative SDSL for develop-
ment, verification and synthesis of OpenCL [22] code. OpenCL is a
programming model that supports both task and data (SIMD) par-
allelism. SYNTHCL focuses on the latter. A typical OpenCL (and
SYNTHCL) program consists of two parts: a host procedure, which
is executed on the CPU, and a kernel procedure, many of instances

of which are executed concurrently on the available parallel hard-
ware (such as a GPU). The host procedure manages the launching
of kernels that comprise the parallel computation.

The SYNTHCL language is designed to support stepwise refine-
ment of a sequential reference implementation into a vectorized
data-parallel implementation, from which a code generator can pro-
duce a pure OpenCL program. As such, it supports key OpenCL
primitive data types (booleans, integers and floats); their correspond-
ing vector and pointer data types; and common operators on these
types (arithmetic, bitwise, and logical). It also provides a model of
the OpenCL API, and an abstract model of the OpenCL runtime.
The SYNTHCL runtime distinguishes host memory from (global)
device memory, with implicit and conservative handling of mem-
ory barriers. In particular, the runtime emits assertions to ensure
that no two kernel instances ever perform a conflicting memory
access. These assertions are checked by the SYNTHCL verifier and
enforced by the synthesizer, along with any explicit assertions added
by programmers to their SYNTHCL code.

We used SYNTHCL to develop new fast vectorized versions
of three standard, manually optimized OpenCL benchmarks [1]:
Matrix Multiplication (MM), Sobel Filter (SF), and Fast Walsh
Transform (FWT). These benchmarks are representative of low-
level imperative programs that use the OpenCL framework. The
MM benchmark computes the dot product of two matrices with
dimensions n× p and p×m, both represented as one-dimensional
arrays of floats. SF performs edge detection on a w × h image,
represented as a w×h× 4 array of integers (i.e., an integer encodes
one of the four color components of a pixel). FWT computes the
Walsh transform [2] of an array of 2k numbers.

Each of these standard benchmarks is distributed with a sequen-
tial reference implementation, which we took as a starting point for
development. The development process involved two main phases,
broken up into several refinement steps. In the first phase, the ref-
erence implementation was transformed into a data-parallel imple-
mentation operating on scalar data types (e.g., int). In the second
phase, the scalar parallel implementation was refined to operate on
vector data types (e.g., int4), taking advantage of SIMD operations.
We used SYNTHCL verify and synthesize queries to ensure that
every refinement step resulted in a correct program. This refinement
process resulted in a total of 12 SYNTHCL implementations of the
three programs. We use these implementations and their queries as
benchmarks in our evaluation.

Table 1 describes the benchmarks in more detail. Each row
of the table shows a set of benchmark identifiers, together with
the query finitization bounds for those benchmarks. A benchmark
identifier includes the program name, the refinement step, and a
query descriptor (v for verification and s for synthesis). Query
bounds are expressed as bounds on the length of the input arrays
(of symbolic numbers) accepted by the benchmark programs. We
use 32-bit numbers for verification queries, and 8-bit numbers for
synthesis queries. Input bounds are the only source of finitization in
our queries; all loops in the benchmark programs are self-finitizing
(unwound precisely) with respect to the input bounds.

For example, the first row of Table 1 describes the bounds
for two verification queries, MM1v and MM2v . These queries
verify the correctness of the first and second refinement of MM
with respect to all possible pairs of input matrices comprised
of 32-bit numbers, with their dimensions drawn from the set
{4, 8, 12, 16}. There are 2409600 such pairs of matrices, where
409600 = 32 ∗

∑
n,p,m∈{4,8,12,16} n ∗ p+ p ∗m.

WEBSYNTH WEBSYNTH [39] is a small declarative SDSL for
example-based web scraping. Given an HTML tree and a few
representative examples of the data to be scraped, WEBSYNTH
synthesizes an XPath expression that retrieves the desired data. The
synthesizer works by checking that every example datum is reached



benchmark bounds on input length
MM1v , MM2v {〈n ∗ p, p ∗m〉 |n, p,m ∈ {4, 8, 12, 16}}
MM2s {〈n ∗ p, p ∗m〉 |n, p,m ∈ {8}}
SF1v , SF2v , SF3v , SF4v , SF5v {w ∗ h ∗ 4 |w, h ∈ {1, 2, . . . , 9}}
SF6v , SF7v {w ∗ h ∗ 4 |w, h ∈ {3, 4, . . . , 9}}
SF3s {w ∗ h ∗ 4 |w, h ∈ {1, 2, 3, 4}}
SF7s {w ∗ h ∗ 4 |w, h ∈ {4}}
FWT1v , FWT2v {2k | k ∈ {0, 1, 2, 3, 4, 5, 6}}
FWT1s, FWT2s {2k | k ∈ {3}}

Table 1. Query bounds for SYNTHCL benchmarks.

benchmark # of tree nodes tree depth # of XPath tokens
iTuness 1104 10 150
IMDbs 2152 20 359
AlAnons 2002 22 161

Table 2. Query bounds for WEBSYNTH benchmarks.

benchmark # of instructions max sequence length
B1v , B2v 7 3
B3v 7 5
B4v 7 7
J1v 8 6
J2v 8 4
CR1v 9 7
CR2v , CR3v 9 8
CR4v 9 10

Table 3. Query bounds for IFCL benchmarks.

when a recursive XPath interpreter traverses the input tree according
to a symbolic XPath, represented as a list of symbolic constants. The
depth of the input tree provides a natural upper bound on the length
of the XPath to be synthesized and on the unwinding of recursive
traversals of the input tree. In particular, the WEBSYNTH interpreter
is self-finitizing with respect to the structure of the input tree. The
set of tokens from which XPath elements are drawn is also computed
from the structure of the tree.

We include three WEBSYNTH programs as evaluation bench-
marks; these synthesize XPaths for scraping data from three real
websites [39], using four input examples for each. Table 2 shows the
name of each website; the number of nodes in its HTML tree; the
depth of the tree; and the number of tokens from which XPath ele-
ments are drawn. Conceptually, a synthesis query searches a space
of td XPath candidates, where d is the depth of the tree and t is the
number of XPath tokens. For example, the iTuness search space
consists of 15010 ≈ 272 possible XPath candidates.

IFCL IFCL is a new functional SDSL for specifying and verify-
ing executable semantics of abstract stack-and-pointer machines that
track dynamic information flow, in order to enforce security proper-
ties. An IFCL program is an implementation of a set of instructions
that define such a stack machine. Inituitively, an IFCL machine
is “secure” if it does not allow secret inputs to influence publicly
observable outputs. The verification problem therefore involves find-
ing two indistinguishable sequences of machine instructions, which
produce distinguishable final states when executed.

We used IFCL to implement the ten (versions of the) machine
semantics described in [20], and to confirm that they are buggy with
respect to the desired security property, also known as end-to-end
non-interference [20]. We use these semantics implementations and
the corresponding verification queries as our benchmarks.

Table 3 shows the verification bounds for all benchmarks, in
terms of the size of each benchmark’s instruction set, as well as the
upper bound on the length of instruction sequences explored by the
verifier. Given an upper bound of k, and a machine semantics with
n instructions, the verifier searches for two sequences of up to k
instructions drawn from that semantics, which violate the security
property in at most k steps. We use a 5-bit representation of numbers

for all queries, and the machine memory is limited to 2 cells (as
in [20]). For each benchmark, we pick the upper bound k to be
the length of the known counterexample [20] for that benchmark,
resulting in a space of 2 ∗ nk candidate instruction sequences.5 The
bound k, and the limit on the machine’s memory, are the only source
of finitization in IFCL programs. The execution of the symbolic
instruction sequences is self-finitizing with respect to k.

5.2 Results
Table 4 shows the results obtained by executing all three sets of
benchmarks with the ROSETTE SVM. The evaluation was performed
using the Z3 [13] solver (version 4.3.1) on a 2.13 GHz Intel Core
2 Duo processor with 4 GB of memory. For each benchmark, we
show the number of control-flow joins encountered during SVM
evaluation; the total number of symbolic unions that were created;
the sum of their cardinalities; the maximum cardinality; the SVM
execution time (in seconds); and the Z3 solving time (in seconds).
Execution times are averaged over three runs and rounded to the
nearest second.

Figure 10 presents an alternative set of results obtained by exe-
cuting one benchmark program, B1v , with different query bounds.
We varied the upper bound on the instruction sequence length from
1 to 15, inclusive. The resulting sums of cardinalities are plotted
against the number of control-flow joins encountered during each
execution. The data is fitted to the slow-growing quadratic curve
y = 0.00003122x2 + 1.2253x− 494.2, with R2 = 0.9993.

5.3 Discussion
Since the number of paths is expected to be roughly exponential in
the number of joins, the results in Table 4 and Figure 10 confirm the
effectiveness of our state merging strategy. None of the benchmarks
leads to an exponentially large representation of the symbolic
state, despite the exponential number of possible paths in each.
In particular, the sum of union cardinalities is polynomial in the
size of each (finitized) benchmark, as measured by the number of
control-flow joins.

Table 4 reveals a couple of different SVM execution patterns.
Many of the benchmarks were evaluated without the use of symbolic
unions even though they operate on complex data types (such as
mutable arrays in the case of SYNTHCL and a recursive data type
representing HTML trees in the case of WEBSYNTH). The reason
is simple—the operations on these complex data types were all
evaluated concretely, and the only values that needed merging were
the primitives comprising their contents (for SYNTHCL) or the
primitives computed by traversing their structure (for WEBSYNTH).

Unions were most heavily used in the encoding of SYNTHCL
synthesis queries (e.g., MM2s) and IFCL verification queries (e.g.,
CR4v). In the case of IFCL, for example, the instruction at each
program position is unknown, so executing one step of the machine
requires the SVM to merge all “next” machine states (represented
as immutable records) that could result from executing any of the
n possible machine instructions. Executing a sequence of symbolic
instructions also involves merging lists of different lengths, since we
use lists to represent the machine’s stack, which grows and shrinks
during execution.

For all but two benchmarks, solving times are less than 20
seconds, demonstrating that the SVM produces good (easy-to-solve)
encodings. Our IFCL verifier is not as fast as the specialized
random-testing tool from [20]. But unlike this tool, IFCL explores
the (same) bounded input space exhaustively, occasionally finding
shorter counterexamples. We also implemented the IFCL language

5 The solver’s search space is larger than this, because it also has to discover
the values of arguments for some of the instructions.



joins count sum max SVM (sec) Z3 (sec)
S

Y
N

T
H

C
L

MM1v 2,233,155 0 0 0 59 0
MM2v 1,586,947 0 0 0 64 1
MM2s 18,781 3,705 15,915 65 136 69
SF1v 576,636 0 0 0 28 0
SF2v 463,740 0 0 0 27 0
SF3v 465,868 0 0 0 28 0
SF4v 426,988 0 0 0 25 0
SF5v 385,980 0 0 0 23 0
SF6v 707,318 0 0 0 28 0
SF7v 553,948 0 0 0 23 0
SF3s 20,716 0 0 0 2 18
SF7s 4,258 48 3,120 65 9 6
FWT1v 21,644 0 0 0 1 0
FWT2v 16,914 0 0 0 0 0
FWT1s 3,419 279 894 9 3 3
FWT2s 945 50 142 9 0 0

W
E

B
S

Y
N

T
H iTuness 76,438 0 0 0 0 0

IMDbs 85,413 0 0 0 0 0
AlAns 279,543 0 0 0 0 0

IF
C

L

B1v 1,097 328 767 7 0 0
B2v 1,097 328 767 7 0 0
B3v 2,273 992 2,237 7 3 0
B4v 3,785 1,992 4,459 8 10 1
J1v 3,353 1,644 3,712 8 7 0
J2v 1,737 698 1,608 8 2 0
CR1v 6,099 3,488 7,770 9 27 5
CR2v 7,511 4,636 10,366 9 49 19
CR3v 7,669 4,636 10,366 9 48 8
CR4v 17,759 11,982 35,768 11 290 119

Table 4. SVM performance on all benchmarks with respect to the
number of control flow join points, as measured by the total number
of symbolic unions created during evaluation, the sum of their sizes,
SVM evalution time, and Z3 solving time.

0

5500

11000

16500

22000

0 3750 7500 11250 15000

y = 3.122E-5x2 + 1.2253x - 494.2
R² = 0.9993

su
m

 o
f u

ni
on

 c
ar

di
na

lit
ie

s

number of control-flow joins

Figure 10. SVM performance on B1v verification queries, with
respect to a range of verification bounds (1 to 15, inclusive). The
graph plots the sum of sizes of symbolic unions against the number
of control-flow joins encountered during evaluation of each query.

and its bounded verifier in just a few days, without having to develop
custom search algorithms or heuristics.

6. Related Work
We discussed the related work on standard symbolic execution
and bounded model checking techniques in Section 3, where we
illustrated the need for a new approach to compile solver-aided host
languages to constraints. In this section, we discuss other related
techniques for symbolic compilation and state merging.

Symbolic Compilation of Low-Level Languages Intermediate
Verification Languages (IVLs) [15, 17, 31] are low-level represen-
tations, designed to simplify development of verifiers for general-
purpose languages, such as Spec#, Java or Ruby. They are equipped
with basic programming and specification constructs, as well as sym-
bolic compilers that generate efficient logic encodings of program

verification queries. Developers of high-level verifiers benefit from
these compilers by translating their source languages to IVLs, rather
than lowering them directly to constraints. This eases some of the
engineering burden of building a verifier, but compilation to an IVL
still requires significant effort and expertise, especially when there
is a fundamental mismatch between the verifier’s source language
and the target IVL (e.g., a dynamically typed source language and a
statically typed IVL) [36]. IVL compilers are more limited than the
SVM in the kinds of queries they can encode, but their encodings
support full functional verification in the presence of unbounded
loops and domains [17, 31].

Symbolic Compilation of High-Level Languages Dafny [30] and
Spec# [5] are stand-alone, imperative, object-oriented languages
with solver-aided verification facilities. Both languages provide a
rich set of constructs for specifying contracts and invariants. These
specifications are verified at compile-time by translation to the
Boogie [31] IVL, whose symbolic compiler generates verification
queries (via a weakest precondition computation [4]) in the input
language of the Z3 [13] solver. Dafny and Spec# both support full
functional correctness verification. Neither, however, supports other
solver-aided queries or meta-programming.

Sketch [37] is a stand-alone, Fortran-like imperative language
with solver-aided synthesis facilities. Like the SVM, the Sketch
symbolic compiler is complete only for finite programs. But the
Sketch language is not designed for hosting SDSLs, and its compiler
is specialized for synthesis queries.

Leon [6] and Kaplan [26] are high-level languages embedded in
Scala. Leon supports verification and deductive synthesis queries for
programs in PureScala, a purely functional, Turing-complete subset
of Scala. The Leon compiler uses Z3 to discharge queries involving
unbounded domains and recursion, which cannot be handled by our
approach. Kaplan reuses Leon’s symbolic compiler to implement
a restricted form of angelic execution for PureScala. Unlike the
SVM, however, the Leon compiler does not support queries about
imperative programs with arbitrary mutation.

Rubicon [32] is an SDSL embedded in Ruby. It extends Ruby
with first-class symbolic values, which are used to specify bounded
verification queries about programs written in the Rails web pro-
gramming framework. The Rubicon symbolic compiler is imple-
mented similarly to ours, by selectively lifting Ruby’s own inter-
preter to operate on symbolic values. The two approaches differ in
their symbolic merging strategies: Rubicon performs logical merg-
ing of heap-allocated values, while we perform type-driven merging
of these values. Rubicon does not support other solver-aided queries.

State Merging Strategies Some symbolic execution engines (see,
e.g., [29]) employ heuristic state merging strategies as a means of
limiting path explosion. These engines work by selecting (either
statically or dynamically) a subset of states for logical merging, and
exploring the remaining states path-by-path. Unlike type-driven
merging, they are optimized for verification of low-level code,
preventing path explosion for some but not all programs.

Abstract interpretation [12] statically computes a set of abstract
facts about a program’s behavior, in order to verify that the program
satisfies a given property (e.g., the sum of two variables is zero). It
works by merging abstract states at join points, which may result
in a loss of precision and cause the verifier to report false positives.
Improving the precision of abstract interpretation typically entails
expanding [38] or modifying [34] the abstract domain so that the
property of interest is tracked (more) directly. Our work is similar
in that a property of the propagated value (e.g., the length of a
list) affects how the symbolic values are merged. We differ in
that the SVM never loses information at merge points, because
it tracks concrete semantics and never performs abstraction. How
we perform merges thus affects only the size of the resulting



symbolic representation. To reduce the representation size, the
SVM algebraically modifies merged expressions, distributing merge
operators across lists and other composite (immutable) values.

7. Conclusion
Solver-aided domain-specific languages (SDSLs) rely on satisfiabil-
ity solvers to automate program verification, debugging, synthesis
and non-deterministic (angelic) execution. Providing this automa-
tion requires translating programs to constraints, which is time-
consuming and hard even for domain-specific languages.

Our prior work [39] introduced a new way to build SDSLs that
avoids translation to constraints: SDSL designers implement their
languages simply by writing an interpreter or a library in a solver-
aided host language. In this paper, we showed how to implement
such a host language, by building a lightweight symbolic virtual
machine (SVM) that can efficiently translate SDSL implementations
and programs to constraints.

The SVM translates to constraints only a small lifted subset
of the host language, although SDSL designers are free to use
the entire language. Our approach relies on a novel state merging
strategy to eliminate path explosion during symbolic execution, and
it relies on concrete evaluation to strip away unlifed constructs.
Unlike classic solver-aided tools, the SVM is also easily extensible
with the help of symbolic reflection. This new mechanism allows
SDSL designers to write a few lines of code and extend the set of
lifted operations, without modifying the SVM. We showed that our
approach effectively translates a variety of SDSLs and programming
styles, generating easy-to-solve constraints in a simple logic.
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