
1

Hack Your Language!

CS164: Introduction to Programming
Languages and Compilers, Spring 2012

UC Berkeley

Ras Bodik
Shaon Barman

Thibaud Hottelier

Lecture 1: Why Take CS164?

Today

What is a programming language

Why you will write a few in your life

How you will learn language design skills in cs164

2

Outline

• Ten examples of languages you may write

• A puzzle

• The puzzle solved in Prolog

• Evolution of programming abstractions

• Why you will write a small language, sw.eng. view

• The course project

• The final project: your small language

• Other course logistics

3

What will I do with knowledge from cs164?
or, why you will develop a language

4

1. You work in a little web search company

Boss says: “We will conquer the world only if our search box
answers all questions the user may ask.”

You build gcalc:

Then you remember cs164 and easily add unit conversion.
You can settle bar bets such as: How long a brain could function on 6 beers,
provided alcohol energy was not converted to fat?:

You are so successful that Yahoo and Bing try to imitate you.
5

2. Then you work in a tiny browser outfit

You observe JavaScript programmers and take pity. Instead of

 var nodes = document.getElementsByTagName('a');

 for (var i = 0; i < nodes.length; i++) {

 var a = nodes[i];

 a.addEventListener('mouseover', function(event) { event.target.style.backgroundColor=‘orange'; }, false);

 a.addEventListener('mouseout', function(event) { event.target.style.backgroundColor=‘white'; }, false);

 }

you let them write this, abstracting from iteration and events

 jQuery('a').hover(function() { jQuery(this).css('background-color', 'orange'); },

 function() { jQuery(this).css('background-color', 'white'); });

 jQuery was developed by John Resig, now at Mozilla

6

… and the fame follows

7

3. Then you write visual scripting for musicians

Allowing non-programmers produce interactive music
by “patching” visual metaphors of electronic blocks:

Guitair Zeros: a S.F. band enabled

by the Max/MSP language.

http://www.youtube.com/watch?v=uxzPCt7Pbds

Max/MSP was created by Miller Puckette and is now developed by Cycling ’74.

8

http://www.youtube.com/watch?v=uxzPCt7Pbds
http://www.youtube.com/watch?v=uxzPCt7Pbds
http://www.youtube.com/watch?v=uxzPCt7Pbds
http://www.youtube.com/watch?v=uxzPCt7Pbds
http://www.youtube.com/watch?v=uxzPCt7Pbds

4. Then you live in open source

You see Linux developers suffer from memory bugs, eg buffer
overruns and dangling pointers (accesses to freed memory).
 x = new Foo()

 y=x

 …

 free(y)

 …

 x.f = 5

You design a tool that associates each byte in memory with a
shadow “validity bit”, set by new and reset by free. When a
memory location is accessed, you check its validity bit.

To add these checks, the implementation rewrites the binary
of the program, and adds shadow memory.

Valgrind was developed by Julian Seward

9

5. Then you decide to get a PhD

You get tired of PowerPoint and its animations.
Or you realize you are not a WYSIWIG person.
You embed a domain-specific language (DSL) into Ruby.

 see slide 8 in http://cs164fa09.pbworks.com/f/01-rfig-tutorial.pdf

10
…

http://cs164fa09.pbworks.com/f/01-rfig-tutorial.pdf
http://cs164fa09.pbworks.com/f/01-rfig-tutorial.pdf
http://cs164fa09.pbworks.com/f/01-rfig-tutorial.pdf
http://cs164fa09.pbworks.com/f/01-rfig-tutorial.pdf
http://cs164fa09.pbworks.com/f/01-rfig-tutorial.pdf

The animation in rfig, a Ruby-based language

slide!('Overlays',

 'Using overlays, we can place things on top of each other.',

 'The pivot specifies the relative positions',

 'that should be used to align the objects in the overlay.',

 overlay('0 = 1', hedge.color(red).thickness(2)).pivot(0, 0),

 staggeredOverlay(true, # True means that old objects disappear

 'the elements', 'in this', 'overlay should be centered', nil).pivot(0, 0),

 cr, pause, # pivot(x, y): -1 = left, 0 = center, +1 = right

 staggeredOverlay(true,

 'whereas the ones', 'here', 'should be right justified', nil).pivot(1, 0),

 nil) { |slide| slide.label('overlay').signature(8) }

rfig was developed by Percy Liang, a Berkeley student

11

More examples of how cs164 will help

12

6. ProtoVis, a DSL for data visualization

7. Roll your own make/ant in Python (Bill McCloskey)

8. Ruby on Rails (another system on top of Ruby)

9. Custom scripting languages (eg for testing)

10. Custom code generators (eg for new hardware)

11. Your language or tool here.

12. Choose the right language (reduce lines 10x)

13

Summary

Summary: Don’t be a boilerplate programmer.

Instead, build tools for users and other programmers

– libraries

– frameworks

– code generators

– small languages (such as configuration languages)

– and why not also big languages?

– we just saw 10 concrete examples

Take historical note of textile and steel industries:

do you want to build machines and tools or

do you want to operate those machines?

14

Take cs164. Become unoffshorable.

“We design them here, but the labor is cheaper in Hell.”

How is this PL/compiler class different?

Not really a compiler class.

It’s about:
a) foundations of programming langauges

b) but also how to design your own languages

c) how to implement them

d) and about PL tools, such as analyzers and bug finders

e) and also about some classical C.S. algorithms.

15

a 5-minute intermission with a puzzle
solve with your neighbor

16

Puzzle: Solve it. It’s part of the lecture.

From The Lady or the tiger, R. Smulyan

17

Solution

18

Languages as thought shapers

19 http://soft.vub.ac.be/~tvcutsem/whypls.html>

http://soft.vub.ac.be/~tvcutsem/whypls.html

Language as a thought shaper

We will cover less traditional languages, too.

The reason:

A language that doesn't affect the way you think about
programming, is not worth knowing.

 an Alan Perlis epigram <http://www.cs.yale.edu/quotes.html>

One of thought-shaper languages is Prolog.

You will both program in it and implement it.

20

http://www.cs.yale.edu/quotes.html
http://www.cs.yale.edu/quotes.html

Solving the puzzle with Prolog (part 1)

We’ll use integers 1..7 to denote the stamps.

Numbers 1 and 2 denote red stamps.

Yellow stamps are 3 and 4 …

red(1).

red(2).

yellow(3).

yellow(4).

green(5).

green(6).

green(7).

21

Solving the puzzle with Prolog (part 2)

S is variable that can be bound to a stamp, ie to a number 1, 2, ..7.

With the following, we say that a stamp is either a red stamp or a yellow
stamp or a green stamp.

stamp(S) :- red(S) ; yellow(S) ; green(S).

We now state what three stamps, A, B, C, we may see on the three heads.

(We are saying nothing more than no stamp may appear on two heads.)

valid(A,B,C) :- stamp(A), stamp(B), stamp(C), A\=B, B\=C, A\=C.

22

Solving the puzzle with Prolog (part 3)

Now to the interesting parts. Here we encode the fact that logician a can't
rule out any color after seeing colors B and C on b’s and c’s heads.

We define the so-called predicate a_observes(B,C) such that it is true iff
all of red, yellow, green are valid colors for a’s head given colors B and C.

a_observes(B,C) :- red(R), valid(R,B,C),

 yellow(Y), valid(Y,B,C),

 green(G), valid(G,B,C).

23

Solving the puzzle with Prolog (part 4)

How to read this rule: a_observes(B,C) is called with B and C bound to
colors on b and c’s heads, say B=3 and C=6. The rule the “reduces” to

a_observes(3,6) :- red(R), valid(R,3,6),

 yellow(Y), valid(Y,3,6),

 green(G), valid(G,3,6).

The Prolog interpreter then asks:

Does there exist a red stamp that I can assign to R such that it forms valid
stamps assignment with 3 and 6? Same for the yellow Y and the green G.

24

Solving the puzzle with Prolog (part 5)

Similarly, we encode that the logician b can't rule out any color either.

Careful, though: In addition to making deductions from the stamps b can
see (A,C), b also considers whether the logician a would answer “No” for
each of the possible colors of B and C.

b_observes(A,C) :- red(R), valid(A,R,C), a_observes(R,C),

 yellow(Y), valid(A,Y,C), a_observes(Y,C),

 green(G), valid(A,G,C), a_observes(G,C).

25

Finding solution with Prolog (part 6)

Predicate solution(A,B,C) will be true if stamps A,B,C meet the
constraints of the problem statement (ie, a and b both answer “No”).

solution(A,B,C) :- stamp(A), stamp(B), stamp(C),

 a_observes(B,C),

 b_observes(A,C).

We can ask for a solution, ie an assignment of stamps to heads

?- solution(A,B,C).

A = 1

B = 2

C = 5

Yes

26

Finding solution with Prolog (part 7)

Finally, we can ask whether there exists a solution where a particular stamp
has a given color. Here, we ask if c’s color can be red, and then green:

?- solution(A,B,C),red(C).

No

?- solution(A,B,C),yellow(C).

No

?- solution(A,B,C),green(C).

A = 1

B = 2

C = 5

Yes

27

Prolog summary

Forces you to think differently than a, say, object-
oriented language. Sometimes this way of thinking
fits the problem well, as in the case of our puzzle.

You will implement Prolog, program in it, and write a
simple translator from a simple natural language to
Prolog programs --- a puzzle solver!

28

Programming Abstractions
what are they?

29

30

ENIAC (1946, University of Philadelphia)

ENIAC program for external ballistic equations:

31

Programming the ENIAC

32

ENIAC (1946, University of Philadelphia)

programming done by

– rewiring the interconnections

– to set up desired formulas, etc

Problem (what’s the tedious part?)

– programming = rewiring

– slow, error-prone

solution:

– store the program in memory!

– birth of von Neuman paradigm

33

UDSAC (1947, Cambridge University)

the first real computer

– large-scale, fully functional, stored-program electronic
digital computer (by Maurice Wilkes)

problem: Wilkes realized:

– “a good part of the remainder of my life was going to be
spent in finding errors in ... programs”

solution: procedures (1951)

– procedure: abstracts away the implementation

– reusable software was born

34

Assembly – the language (UNIVAC 1, 1950)

Idea: mnemonic (assembly) code
– Then translate it to machine code by hand (no compiler yet)

– write programs with mnemonic codes (add, sub),
with symbolic labels,

– then assign addresses by hand

Example of symbolic assembler
clear-and-add a

add b

store c

translate it by hand to something like this (understood by CPU)
B100 A200

C300

35

Assembler – the compiler (Manchester, 1952)

• it was assembler nearly as we know it, called AutoCode
• a loop example, in MIPS, a modern-day assembly code:

loop: addi $t3, $t0, -8

 addi $t4, $t0, -4

 lw $t1, theArray($t3) # Gets the last

 lw $t2, theArray($t4) # two elements

 add $t5, $t1, $t2 # Adds them together...

 sw $t5, theArray($t0) # ...and stores the result

 addi $t0, $t0, 4 # Moves to next "element“

 # of theArray

 blt $t0, 160, loop # If not past the end of

 # theArray, repeat

 jr $ra

36

Assembly programming caught on, but

Problem: Software costs exceeded hardware costs!

John Backus: “Speedcoding”

– An interpreter for a high-level language

– Ran 10-20 times slower than hand-written assembly
• way too slow

37

FORTRAN I (1954-57)

Langauge, and the first compiler
– Produced code almost as good as hand-written

– Huge impact on computer science (laid foundations for cs164)

– Modern compilers preserve its outlines

– FORTRAN (the language) still in use today

By 1958, >50% of all software is in FORTRAN

Cut development time dramatically
– 2 weeks  2 hrs

– that’s more than 100-fold

38

FORTRAN I (IBM, John Backus, 1954)

Example: nested loops in FORTRAN
– a big improvement over assembler,

– but annoying artifacts of assembly remain:
• labels and rather explicit jumps (CONTINUE)

• lexical columns: the statement must start in column 7

– The MIPS loop from previous slide, in FORTRAN:

 DO 10 I = 2, 40

 A[I] = A[I-1] + A[I-2]

 10 CONTINUE

39

Side note: designing a good language is hard

Good language protects against bugs, but lessons take a while.
An example that caused a failure of a NASA planetary probe:

 buggy line:

 DO 15 I = 1.100

 what was intended (a dot had replaced the comma):
 DO 15 I = 1,100

 because Fortran ignores spaces, compiler read this as:
 DO15I = 1.100

 which is an assignment into a variable DO15I, not a loop.

This mistake is harder to make (if at all possible) with the
modern lexical rules (white space not ignored) and loop syntax

 for (i=1; i < 100; i++) { … }

40

Goto considered harmful

L1: statement

if expression goto L1

statement

Dijkstra says: gotos are harmful

– use structured programming

– lose some performance, gain a lot of readability

how do you rewrite the above code into structured form?

41

Object-oriented programming (1970s)

The need to express that more than one object supports draw() :

draw(2DElement p) {
 switch (p.type) {
 SQUARE: … // draw a square
 break;
 CIRCLE: … // draw a circle
 break;
 }
}

Problem:
unrelated code (drawing of SQUARE and CIRCLE) mixed in same procedure

Solution:
Object-oriented programming with inheritance

42

Object-oriented programming

In Java, the same code has the desired separation:

 class Circle extends 2DElement {

 void draw() { <draw circle> }

 }

 class Square extends 2DElement {

 void draw() { <draw circle> }

 }

the dispatch is now much simpler:

p.draw()

43

Review of historic development

• wired interconnects  stored program (von Neuman
machines)

• lots of common bugs in repeated code  procedures
• machine code  symbolic assembly (compiled by hand)
• tedious compilation  assembler (the assembly compiler)
• assembly  FORTRAN I
• gotos  structured programming
• hardcoded “OO” programming  inheritance, virtual calls

Do you see a trend?

• Removal of boilerplate code

– also called plumbing, meaning it conveys no application logic

• Done by means of new abstractions, such as procedures
– They abstract away from details we don’t wish to reason about

44

Where will languages go from here?

The trend is towards higher-level abstractions
– express the algorithm concisely!

– which means hiding often repeated code fragments

– new constructs hide more of these low-level details.

Haven’t we abstracted most programming plumbing?
– we might have

– it is likely that new abstractions will be mostly
domain specific ==> small language will prevail

New Languages will Keep Coming

46

A survey: how many languages did you use?

Let’s list the more unusual here:

47

Be prepared to program in new languages

Languages undergo constant change
– FORTRAN 1953

– ALGOL 60 1960

– C 1973

– C++ 1985

– Java 1995

Evolution steps: 12 years per widely adopted language
– are we overdue for the next big one?

... or is the language already here?
– Hint: are we going through a major shift in what

computation programs need to express?

– your answer here:

48

Develop your own language

Are you kidding? No. Guess who developed:

– PHP

– Ruby

– JavaScript

– perl

Done by hackers like you

– in a garage

– not in academic ivory tower

Our goal: learn good academic lessons

– so that your future languages avoid known mistakes

Another reason why you’ll develop a language

Software architectures evolved from

• libraries

• frameworks

• small languages

Read in the lecture notes about MapReduce evolution

49

The course project assignments

50

Nine weekly
projects

51

interpreter (abstractions)

parser (syntax-directed xslation, external DSLs)

web browser (embedded DSLs, concurrency)

Language abstractions

prolog

with coroutines, it’s a few lines;

later used

52

yield: full coroutines

bytecode compiler, regex,
backtracking

interpreter
closures, lexical scoping,

desugaring, iterators

Parsing and external DSLs

53

google calculator

syntax-directed translation

disambiguation (%left, %prec)

Earley parser

Web browser: layout and scripting

54

Rx

from events to high-order dataflow;
reactive programming a`la RxJS

jQuery
embedded DSL for declarative
DOM manipulation

layout engine
from constraints to attribute
grammars; add OO to language

Contest winners in yellow jerseys

55

Testimonials

We are just about done with PA6, and I am still
marveling at what we have created.

I think this class was an amazing first choice at an
upper-div CS class. (Although the workload is pretty
brutal)

56

final project

Final project

Replaces the written final exam

show-and-tell with posters, demos and pizzas and t-shirts

You identify a problem solvable with a language

with our help

You design a small language

we give you feedback

You implement it

in two weeks, to see small languages can be built rapidly

See course calendar for milestones
58

course logistics
(see course info on the web for more)

Back-to-basic Thursdays

No laptops in the classroom on Thursdays

60

HW1: A simple mashup with GreaseMonkey

Assigned Today, due Sunday

Get familiar with the languages of the browser

HTML, JavaScript, regexes, DOM, GreaseMonkey

Observe that we program with multiple languages

each used for a distinct task

Reflect on the flaws of these languages

and suggest ideas improvements

61

Calendar (see link on course web page)

62

http://www.cs.berkeley.edu/~bodik/cs164/sp12/cs164 spring 2012 schedule.htm

Project assignment timing and logistics

• assigned Tuesday morning

• due Sunday night (11:59pm)

• one free late for each assignment

• two additional late days at 10% penalty

• HWs are individual

• Projects are in pairs

• Collaboration via bitbucket.org (mercurial)

63

Administrativia

Newsgroup

Piazza.com

Waitlist

Talk to Michael-David Sasson in CS Office

Accounts

Pick up accounts in tomorrow’s discussions

64

65

Academic (Dis)honesty

Read the policy at:
– http://www.eecs.berkeley.edu/Policies/acad.dis.shtml

We’ll be using a state-of-the art plagiarism detector.
– Before you ask: yes, it works very well.

You are allowed to discuss the assignment
– but you must acknowledge (and describe) help in your submission.

Conclusion

How is this PL/compiler class different?

Not intended for future compiler engineers

– there are few among our students

... but for software developers

– raise your hand if you plan to be one

But why does a developer or hacker need a PL class?

– we’ll take a stab at this question today

67

68

Why a software engineer/developer needs PL

New languages will keep coming

– Understand them, choose the right one.

Write code that writes code

– Be the wizard, not the typist.

Develop your own language.

– Are you kidding? No.

Learn about compilers and interpreters.

– Programmer’s main tools.

69

Trends in programming languages

programming language and its interpreter/compiler:

– programmer’s primary tools

– you must know them inside out

languages have been constantly evolving ...

– what are the forces driving the change?

... and will keep doing so

– to predict the future, let’s examine the history…

Summary. Take home points.

What is a language?

Why languages help write software.

How does Prolog solve the puzzle?

Examples of small languages and their abstractions.

History of abstractions in programming languages.

70

An optional exercise

List three new languages, or major features added to established major languages, that have appeared in
the last seven years. For each language, answer with one sentence these questions. (Use your own critical
thinking; do not copy text from the Web.)

• Why did the languages appear? Or, why have these features been added? Often, a new language is
motivated by technical problems faced by programmers. Sometimes the motivation for a new feature is
cultural, related to, say, the educational background of programmers in a given language.

• Who are the intended users of this language/feature? Are these guru programmers, beginners, end-users
(non-programmers)?

• Show a code fragment that you find particularly cool. The fragment should exploit the new features to
produce highly readable and concise code.

Links that may help you start your exploration of the programming language landscape:

• http://lambda-the-ultimate.org/

• http://bit.ly/ddH47v

• http://www.google.com

71

http://lambda-the-ultimate.org/
http://lambda-the-ultimate.org/
http://lambda-the-ultimate.org/
http://lambda-the-ultimate.org/
http://lambda-the-ultimate.org/
http://bit.ly/ddH47v
http://www.google.com/

Side notes

73

Where will languages go from here?

Another trend is to detect more bugs in programs
when the program is compiled or run

– with stricter type checking

– with tools that look for bugs in the program
or in its execution

