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Implementing Coroutines 
compile AST to bytecode, bytecode interpreter 
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Languages and Compilers, Spring 2012 

UC Berkeley 



What you will learn today 

Implement Asymmetric Coroutines 

– why a recursive interpreter with implicit stack won’t do 

Compiling AST to bytecode 

- this is your first compiler; compiles AST to “flat” code 

Bytecode Interpreter 

- bytecode can be interpreted without recursion 

- hence no need to keep interpreter state on the call stack  
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PA2 

PA2 was released today, due Sunday 

– bytecode interpreter of coroutines 

– after PA2, you will be able to implement iterators 

– in PA3, you will build Prolog on top of your coroutines 

– extra credit: cool use of coroutines (see L4 reading) 

HW3 has been assigned: cool uses of coroutines 

This homework is not graded. While it is optional,  
you are expected to know the homework material: 

1) lazy list concatenation 

2) regexes 

Solve at least the lazy list problem before you start on PA2 
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Code 4 Cal Hackathon 

Friday, February 3, 9:00pm to Saturday, February 4 5:00pm  

 

Soda Hall  Wozniak Lounge  

Grand Prize: $1,500!!! 

Register @ http://code4cal.eventbrite.com/ 

More information about the event at http://stc.berkeley.edu. 

 

The Student Technology Council (STC), an advisory council for the UC 
Berkeley CIO, Shel Waggener, is hosting Code 4 Cal, a hackathon for 
students to create innovative, sustainable, and most of all, useful 
applications or widgets for Cal students. Student-developed app could be 
adopted by the University! Cash prizes start at $1,500. 
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Review of L4: Why Coroutines 

Loop calls iterator function to get the next item 

eg the next token from the input 

The iterator maintains state between two such calls 

eg pointer to the input stream. 

Maintenance of that state may be difficult 

see the permutation generator in L4 

See also Python justification for coroutines  

called generators in Python 
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Review of L4: Three coroutine constructs 

co = coroutine(body) lambda --> handle 

creates a coroutine whose body is the argument lambda, 

returns a handle to the coroutine, which is ready to run 

yv = resume(co, rv) handle x value --> value 

resumes the execution into the coroutine co, passing  

a to co’s yield expression (v becomes return value of yield) 

rv = yield(yv)  value --> value 

transfers control to the coroutine that resumed into the 
current coroutine, passing yv to resume 
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Example 

f(1,2) 

 

def f(x,y) { 

  cg=coroutine(g) 

  resume(cg,x,y) 

} 
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def g(x,y) { 

  ck=coroutine(k) 

  h(x,y) 

  def h(a,b) {  

    3 + yield(resume(ck,a,b)) 

} } 

def k(x,y) { 

   yield(x+y) 

} 

The call f(1,2) evaluates to 3.  



Corner-case contest 

Identify cases for which we haven’t defined behavior: 

 

1) yield executed in the main program 

let’s define main as a coroutine; yield at the top level thus 
behaves as exit() 

2) resuming to itself* 

illegal; can only resume to coroutines waiting in yield 
statements or at the beginning of their body 

3) return statement 

the (implicit) return statement yields back to resumer and 
terminates the coroutine 

*exercise: test your PA2 on such a program 
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States of a coroutine 

How many states do we want to distinguish?   

suspended, running, terminated 

 

Why do we want to distinguish them? 

to perform error checking at runtime: 

 

- do not resume into a running coroutine 

- do not resume into a terminated coroutine 
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The timeline 

cg=coroutine(g) 

 

v=resume(cg,1,2) 

 

 

 

 

 

 

 
resume continues 

print  
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def g(x,y) { 

  

coroutine(k) 

 

resume(ck,a,b) 

 
resume continues 

 

yield 
 

} 

 
def k(x,y){ 

 

yield(x+y) 

 

} 



Are coroutines like calls? 

Which of resume, yield behaves like a call? 

 

resume, for two reasons: 

- like in regular call, control is guaranteed to return to 
resume (unless the program runs into an infinite loop) 

- we can specify the target of the call (via corou. handle) 

yield is more like return: 

- no guarantee that the coroutine will be resumed (eg, 
when a loop decides it need not iterate further) 

- yield cannot control where it returns (always returns to 
its resumer’s resume expression) 
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Language design question (1) 

Since resume behaves like a call, do we need to 
introduce a separate construct to resume into a 
coroutine?  Could we just do this? 

 

co = coroutine(…)  // creates a coroutine 

co(arg)    // resume to the coroutine 

 

Yes, we could.  But we will keep resume for clarity. 

Compare: in Python generators, resume is a method call 
.next() in a generator object. Do you like the fact that 
resume appears to be a call? 
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Language design question (2) 

In 164/Lua, a coroutine is created with corutine(lam). 

In Python, a coroutine is created by a call to function 
that syntactically contains a yield: 

 
def fib():        # function fib is a generator/corou 

    a, b = 0, 1 

    while 1: 

        yield b         # … because it contains a yield 

        a, b = b, a+b 

 

it = fib()         # create a coroutine 

print it.next();   # resume to it with .next() 

print it.next(); print it.next() 
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Language design question (2, cont’d) 

Python creates coroutine by calling a function with 
yield? How does it impact programming? 

What if the function with yield needs to call itself 
recursively, as in permgen from Lecture 4?   

 
def permgen(a,n) { ... yield(a) ... permgen(a,n-1) ... } 

def permutations(a) { 

    def co = coroutine( permgen ) 

    lambda () { resume(co, a) } 

} 

You should know a workaround from this limitation 

That is, how would you write permgen in Python? 

See how Python writes recursive tree generators 
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Exercise on Lua vs. Python 

A recursive Lua Fibonacci iterator: 
 

def fib(a,b) { 

     yield b 

     fib(b,a+b) 

} 

def fibIterator() { 

    def co = coroutine( fib ) 

    lambda () { resume(co, 0, 1) } 

} 

Rewrite it into a recursive Python generator. 
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Symmetric vs. asymmetric coroutines 

Symmetric: one construct (yield) 

– yield(co,v): can yield to an arbitrary coroutine 

– all transfers happen with yield (no need for resume) 

 

Asymmetric:  

– resume transfers from resumer (master) to corou (slave) 

– yield(v) always returns to its resumer 
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A language sufficient to explain coroutines 

Language with functions of two arguments: 

 

P ::= D*, E       sequence of declarations followed by an expression 

D ::= def f(ID,ID) { P } 

 

E ::= n  

    | ID(E,E)  

    | def ID = coroutine(ID)  

    | resume(ID,E,E)  

    | yield(E) 
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Implementation 

• historical perspective on Lua and stackless Python 

 

• Stackless Python is a controversial rethinking of the 
Python core (PEP 255) 

19 
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High-level outline of coroutine interpreter 

Each coroutine has its own instance of interpreter 

each instance evaluates an AST with bottom-up traversal 

Interpreter instances share the environment 

scoping and frames work as in PA1 

Each instance has its own call stack 

a coroutine can make calls, even recursive ones 

resume(co) calls co’s interpeter, which returns at yield 

the idea is to somehow resume co’s interpreter 

Simple, elegant. Almost works. Where’s the problem? 

let’s analyze where this implementation breaks down … 
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An attempt for a recursive corou. interpreter 

def eval(node) { 

 switch (node.op) { 

     case ‘n’:    node.val 

     case ‘call’: def t1 = eval(node.arg1) 

                  def t2 = eval(node.arg2) 

    call(lookup(node.fun), t1, t2) 

   case ‘resume’: co = eval(n.arg).code  get handle (this is OK) 

     eval(co) resume (works only on first resume to co) 

  case ‘yield’: return eval(node.arg) returns to eval in same coro,  

                                                               not to resumer 

   }   

   def call(fun, v1, v2) { … eval(…) … } 

} 
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Draw env and call stacks at this point 

f(1,2) 

def f(x,y) { 

  cg=coroutine(g) 

  resume(cg,1,2) 

} 
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def g(x,y) { 

  ck=coroutine(k) 

  h(x,y) 

  def h(a,b) {  

    yield(m(a,b)+resume(ck,a,b)) 

} } 

def k(x,y) { 

   yield(x+y) 

} 

Draw the environment frames and the calls stacks. 
The Python call stacks contain the recursive eval() calls,  
including the variables t1 and t2 (see the prev slide). 
The recursive calls of eval() define the interpreter context. 



The recursive PA1 interpreter 

Program represented as an AST 

– evaluated by walking the AST bottom-up 

Where is the state of the interpreter maintained? 

- on the call stack (created when Python eval() calls itself) 

What’s in the state? 

1) temporary values, eg t1, t2 two slides ago 

2) knowledge of which AST nodes are being evaluated 

3) the call stack of the program being interpreted 
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Why PA1 fails 

The interpreter for a coroutine c must return 

– when c encounters a yield 

The interpreter will be called again 

– when some coroutine invokes resume(c, …)  

Problem:  

returning from the (deep) evaluation recursion would lose 
the interpreter state that is kept in the Python call stack  
(we need to keep the eval(), eval(), eval() context somewhere) 
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Changes to interpreter 

We must not rely on the Python call stack 

so that we can return from a coroutine’s interpreter while 
keeping its state stored somewhere, to resume later 

Note that explicit stack is ok 

we can preserve such a data structure across return-resume  

Decisions, decisions: 

1) temp values will go to “temporary registers” (bytecode) 

2) the position of the evaluation will be kept in a PC 

3) the call stack will be in an explicit stack (it will store 
return addresses) 
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AST vs. bytecode 

Abstract Syntax Tree: 

values of sub-expressions do not have explicit names 

Bytecode:  

– list of instructions of the form  x = y + z 

– x, y, z can be temporary variables invented by compiler 

– temporaries stores values that would be in the stack of 
the stack-based interpreters 

Example: AST (x+z)*y translates to: 
 

 $1 = x+z   // $1, $2: temp vars  

 $2 = $1+z  // return value of AST is in $2 
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Compile AST to bytecode 

Traverse AST, emit code rather than evaluate AST 

when the generated code is executed, it evaluates the AST 

 

What’s the type of translation function b? 

b :: AST -> (Code, RegName) 

 

The function produces code c and register name r s.t.: 

when c is executed, the value of tree resides in register r 
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Compile AST to bytecode (cont) 

def b(tree): 

 switch tree.op:  

 +: (c1,r1) = b(t.left) 

  (c2,r2) = b(t.right) 

  r = freshReg() 

  instr = “%s = %s1 + %s\n” % (r, r1, r2) 

  return (c1 + c2 + ist, r) 

 n: complete this so that you can correctly compile 2+3+4 

 

 

 =:     complete this so that you can correctly compile  

  x = 1+3 +4 

  y = x + 2 
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Bytecode interpreter 

What changes shall we make to the recursive one? 

 

Must maintain: 

 

 - program counter 

 - explicit call stack 

 

The rest pretty much the same as in PA1 
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Reading  

Required: 

see the reading for Lecture 4 

Recommended: 

Implementation of Python generators 

Fun: 

continuations via continuation passing style 
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Summary 

Implement Asymmetric Coroutines 

– why a recursive interpreter with implicit stack won’t do 

Compiling AST to bytecode 

- btw, compilation to assembly is pretty much the same 

Bytecode Interpreter 

- can exit without losing its state 
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