
1

Lecture 6

Logic Programming
introduction to Prolog, facts, rules

Ras Bodik
Shaon Barman

Thibaud Hottelier

Hack Your Language!
CS164: Introduction to Programming
Languages and Compilers, Spring 2012

UC Berkeley

Today

Introduction to Prolog

Assigned reading: a Prolog tutorial (link at the end)

Today is no-laptop Thursday

but you can use laptops to download SWI Prolog and solve
excercises during lecture.

2

Software

Software:

download SWI Prolog

Usage:

?- [likes]. # loads file likes.pl

Content of file likes.pl:

likes(john,mary).

likes(mary,jim).

After loading, we can ask query:

?- likes(X,mary). #who likes mary?

X = john ; # type semicolon to ask “who else?”

false. # no one else

3

Facts and queries

Facts:

likes(john,mary).

likes(mary,jim).

Boolean queries

?- likes(john,jim).

false

Existential queries

?- likes(X,jim).

mary

4

Terminology

Ground terms (do not contain variables)

father(a,b). # fact (a is father of b)

?- father(a,b). # query (is a father of b?)

Non-ground terms (contain variables)

likes(X,X). # fact: everyone likes himself

?- likes(X,mary). # query: who likes mary?

Variables in facts are universally quantified

for all X, it is true that X likes X

Variables in queries are existentially quantified

does there exist an X such that X likes mary?

5

Generalization (a deduction rule)

Facts

father(abraham,isaac).

Query

?- father(abraham,X). # this query is a generalization above fact

We answer by finding a substitution {X=isaac}.

6

Instantiation (another deduction rule)

Rather than writing

plus(0,1,1). plus(0,2,2). …

We write

plus(0,X,X). # 0+x=x

plus(X,0,X). # x+0=x

Query

?- plus(0,3,3). # this query is instantiation of plus(0,X,X).

yes

We answer by finding a substitution {X=3}.

7

Rules

Rules define new relationships in terms of existing ones

parent(X,Y) :- father(X,Y).

parent(X,Y) :- mother(X,Y).

grandfather(X,Y) :- parent(X,Z), parent(Z,Y).

Load family.pl

[family]

?- grandfather(X,Y).

X = john,

Y = jim ;

false.

 8

Database programming

A database programming rule

brother(Brother, Sib) :-

 parent(P, Brother),

 parent(P, Sib),

 male(Brother),

 Brother \= Sib. # same as \=(Brother,Sib)

In cs164, we will translate SQL-like queries to Prolog.
But Prolog can also express richer (recursive) queries:

descendant(Y,X) :- father(X,Y).

descendant(Y,X) :- father(X,Z), descendant(Y,Z).

 9

Compound terms

Compound term = functors and arguments.

Name of functor is an atom (lower case), not a Var.

example: cons(a, cons(b, nil))

A rule:

car(Head, List) :- List = cons(Head,Tail).

car(Head, cons(Head,Tail)). # equivalent to the above

Query:

?- car(Head, cons(a, cons(b, nil)).

10

Must answer to queries be fully grounded?

11

Program:

eat(thibaud, vegetables).

eat(thibaud, Everything).

eat(lion, thibaud).

Queries:

eat(thibaud, X)?

A simple interpreter

A representation of an abstract syntax tree

int(3)

plus(int(3),int(2))
plus(int(3),minus(int(2),int(3)))

An interpreter

eval(int(X),X).

eval(plus(L,R),Res) :-

 eval(L,Lv),

 eval(R, Rv),

 Res is Lv + Rv.

eval(minus(L,R),Res) :-

 # same as plus
12

Lists

Lists are just compounds with special, clearer syntax.

Cons is denoted with a dot ‘.’

.(a,[]) is same as [a|[]] is same as [a]

.(a,.(b,[])) [a|[b|[[]]] [a,b]

.(a,X) [a|X] [a|X]

13

Am a list? predicate

Let’s test is a value is a list

list([]).

list([X|Xs]) :- list(Xs).

Note the common Xs notation for a list of X’s.

14

Let’s define the predicate member

Desired usage:

?- member(b, [a,b,c]).

true

15

Lists

car([X|Y],X).

cdr([X|Y,Y).

cons(X,R,[X|R]).

meaning ...

The head (car) of [X|Y] is X.

The tail (cdr) of [X|Y] is Y.

Putting X at the head and Y as the tail constructs (cons) the
list [X|R].

From: http://www.csupomona.edu/~jrfisher/www/prolog_tutorial 16

http://www.csupomona.edu/~jrfisher/www/prolog_tutorial
http://www.csupomona.edu/~jrfisher/www/prolog_tutorial

An operation on lists:

The predicate member/2:

member(X,[X|R]).

member(X,[Y|R]) :- member(X,R).

One can read the clauses the following way:

X is a member of a list whose first element is X.

X is a member of a list whose tail is R if X is a member of R.

17

List Append

append([],List,List).

append([H|Tail],X,[H|NewTail]) :-
 append(Tail,X,NewTail).

?- append([a,b],[c,d],X).

X = [a, b, c, d].

?- append([a,b],X,[a,b,c,d]).

X = [c, d].

Hey, “bidirectional” programming!

Variables can act as both inputs and outputs

18

More on append

?- append(Y,X,[a,b,c,d]).

Y = [],

X = [a, b, c, d] ;

Y = [a],

X = [b, c, d] ;

Y = [a, b],

X = [c, d] ;

Y = [a, b, c],

X = [d] ;

Y = [a, b, c, d],

X = [] ;

false.
19

Exercise for you

Create an append query with infinitely many answers.

?- append(Y,X,Z).

Y = [],

X = Z ;

Y = [_G613],

Z = [_G613|X] ;

Y = [_G613, _G619],

Z = [_G613, _G619|X] ;

Y = [_G613, _G619, _G625],

Z = [_G613, _G619, _G625|X] ;

20

Another exercise: desugar AST

Want to rewrite each instance of 2*x with x+x:

rewrite(times(int(2),R), plus(Rr,Rr)) :-

 !, rewrite(R,Rr).

rewrite(times(L,int(2)), plus(Lr,Lr)) :-

 !, rewrite(L,Lr).

rewrite(times(L,R),times(Lr,Rr)) :-

 !, rewrite(L,Lr),rewrite(R,Rr).

rewrite(int(X),int(X)).

21

And another exercise

Analyze a program:

1) Translate a program into facts.

2) Then ask a query which answers whether a program
variable is a constant at the of the program.

Assume the program contains two statement kinds

S ::= S* | def ID = n | if (E) ID = n

You can translate the program by hand

22

Some other cool examples to find in tutorials

compute the derivative of a function

this is example of symbolic manipulation

solve a math problem by searching for a solution:

“Insert +/- signs between 1 2 3 4 5 so that the result is 5.”

23

Reading

Required

download SWI prolog

go through a good prolog tutorial, including lists, recursion

Recommended

The Art of Prolog (this is required reading in next lecture)

24

