.
RNRE

Ras Bodik
Shaon Barman
Thibaud Hottelier

Lecture 6

Logic Programming

introduction to Prolog, facts, rules

Hack Your Language!

CS164: Introduction to Programming
Languages and Compilers, Spring 2012

UC Berkeley

Today

_‘w

Introduction to Prolog

Assigned reading: a Prolog tutorial (link at the end)

Today is no-laptop Thursday

but you can use laptops to download SWI Prolog and solve
excercises during lecture.

Software
e

Software:
download SWI Prolog
Usage:
?- [likes]. # loads file likes.pl

Content of file likes.pl:
likes(john,mary).
likes(mary,jim).
After loading, we can ask query:
2- likes(X,mary). #who likes mary?
X =john; # type semicolon to ask “who else?”
false. # no one else

Facts and queries
B —

Facts:
likes(john,mary).
likes(mary,jim).

Boolean queries
?- likes(john,jim).
false

Existential queries
2- likes(X,jim).
mary

Terminology

Ground terms (do not contain variables)
father(a,b). # fact (a is father of b)
?- father(a,b). # query (is a father of b?)
Non-ground terms (contain variables)
V likes(X,X). # fact: everyone likes himself
A 2-likes(X,mary). # query: who likes mary?
Variables in facts are universally quantified

~

for all X, it is true that X likes X

Variables in queries are existentially quantified
does there exist an X such that X likes mary?

Generalization (a deduction rule)
e

Facts
father(abraham,isaac).

Query

?- father(abraham,X). # this query is a generalization above fact

We answer by finding a substitution {X=isaac}.

Instantiation (another deduction rule)

Rather than writing
plus(0,1,1). plus(0,2,2). ...

We write

plus(0,X,X). M)
plus(X,0,X).

Query
2- plus(0,3,3).
yes

0+X=X

X+0=X

chmdinte s e Ao Lok ke 44 7%,

this query is instantiation of plus(0,X,X).

We answer by finding a substitution {X=3}.

/

—

Rules

Rules define new relationships in terms of existing ones

parent(X,Y) :- father(X,Y). o 357
parent(X,Y) :- mother(X,Y). —7 '
grandfather(X,Y) :- parent(X,Z@parent(Z,Y).
V)
Load family.pl
[family]
?- grandfather(X,Y).
X =john,
Y =jim;
false.

Database programming

A database programming rule | ok didller
-~ X
brother(Brother, Sib) :- l\u‘ (Xuk\ ,\(>

parent(P, Brother), dis\ikeer (mup
parent(P, Sib), Ais Lileev L(&iwu3§'
male(Brother),

Brother \=Sib. # same as \=(Brother,Sib)

In cs164, we will translate SQL-like queries to Prolog.
But Prolog can also express richer (recursive) queries:
descendant(Y,X) :- father(X,Y).
descendant(Y,X) :- father(X,Z), descendant(Y,Z2).

Compound terms

Compound term = functors and arguments.

Name of functor is an atom (lower case), not a Var.
example: cons(a, cons(b, nil))

A rule:
car(Head, List) :- List = cons(Head, Tail).
car(Head, cons(Headﬁ?ii)). # equivalent to the above

L —
’l.s COT(“.X> .

Query: Co V\S
?- car(Head, cons(a, cons(b, nil)). X /7

{Wﬂaksq I Hmé M

10

Must answer to queries be fully grounded?

Fe
Program: fa!
eat(thibaud, vegetables).

eat(thibaud, Everything). &« ° »
eat(lion, thigaud). R~ rla(ﬁ&

St i
Queries: ot fwk o
eat(thibaud, X)? X = \‘48) e /2/
K = - Eventung
S=o- g,
‘\\ g{e \10‘(\0\0\ G/?ig
” Cf(\f\/\ V)th 11

+ Rv

A representation of an abstract syntax tree
int(3) > 5

plus(int(3),int(2)) < +
plus(int(3),minus(int(2),int(3)))

4y
An mterpret%-/j L
Eval(int(X),X), 1
/
Z

/ eval(plus(l:_:R)) BQS_) -
eval(L,Lv),

eval(R,Rv), /\
____Res ishz J 2 1
eval(minus(L,R),Res) :-
same as plus

12

Lists

_—w

Lists are just compounds with special, clearer syntax.

Cons is denoted with a dot ‘.’

(a,[]) issameas [a|[]] issameas [a]
(a,-(b,[])) a|[b|[[]]] a,b]
(3,X) a]X] a|X]

13

Am a list? predicate
B

Let’s test is a value is a list

list([]).
list([X|Xs]) :- list(Xs).

Note the common Xs notation for a list of X’s.

14

Let’s define the predicate member
e ——

Desired usage:
?- member(b, [a,b,c]).
true

15

- cac(Cays m},x)

Lists cdi — |—)([5 (FR
car([X|Y],X). @% Ao L on ca, Ca(y(Con s
cdr([X]|Y,Y). @AVQM [

cons(X,R, [X|R]).

[H T

meaning ... SUAJYW(OQ“
The head (car) of [X|Y] is X. oo d) ey

The tail (cdr) of [X|Y] is Y.
Putting X at the head and Y as the tail constructs (cons) the
list [X|R].

From: http://www.csupomona.edu/~jrfisher/www/prolog_tutorial 16

http://www.csupomona.edu/~jrfisher/www/prolog_tutorial
http://www.csupomona.edu/~jrfisher/www/prolog_tutorial

-

member (X, [X|R]).
member (X, [Y|R]) :- member(X,R).

One can read the clauses the following way:

Xis a member of a list whose first element is X.
Xis a member of a list whose tail is R if Xis a member of R.

17

List Append

w
append([],List,List).

append([H|Tail], X, [H|NewTail]) :-
append(Tail, X,NewTail).

?- append([a,b],[c,d],X).

X =[a, b, c, d].

?- append([a,b],X,[a,b,c,d]).
X =[c, d].

Hey, “bidirectional” programming!
Variables can act as both inputs and outputs

18

More on append
————— e —— e

?- append(Y,X,[a,b,c,d]).
=[],
= :aJ b, c, d] ’

= [b, ¢, d] ;

(3, b],

= :C, d] ’

= [a, b, c],

= [d] ;

= [a, b, ¢, d],

X < X < X < X < X <
|
Q

19

Exercise for you
B EE—— R

Create an append query with infinitely many answers.

?- append(Y,X,Z).

Y =[],
X =7 ;

Y = [_G613],
Z = [_G613|X] ;

Y = [G613, G619],
Z = [G613, _G619|X] ;

- P o P]

Another exercise: desugar AST
B E—

Want to rewrite each instance of 2*x with x+x:
rewrite(times(int(2),R), plus(Rr,Rr)) :-
I, rewrite(R,Rr).
rewrite(times(L,int(2)), plus(Lr,Lr)) :-
I, rewrite(L,Lr).
rewrite(times(L,R),times(Lr,Rr)) :-
', rewrite(L,Lr),rewrite(R,Rr).
rewrite(int(X),int(X)).

21

And another exercise
e ——

Analyze a program:
1) Translate a program into facts.

2) Then ask a query which answers whether a program
variable is a constant at the of the program.

Assume the program contains two statement kinds
Su=S* | defID=n | if(E)ID=n
You can translate the program by hand

22

Some other cool examples to find in tutorials
e

compute the derivative of a function
this is example of symbolic manipulation

solve a math problem by searching for a solution:
“Insert +/- signs between 12 3 4 5 so that the resultis 5.”

23

Reading

_—w

Required
download SWI prolog
go through a good prolog tutorial, including lists, recursion

Recommended
The Art of Prolog (this is required reading in next lecture)

24

