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Lecture 8 
 
Parsers 
grammar derivations, recursive descent parser 
vs. CYK parser, Prolog vs. Datalog 

 

Ras Bodik      
Shaon Barman 

Thibaud Hottelier 

Hack Your Language! 
CS164: Introduction to Programming  
Languages and Compilers, Spring 2012 

UC Berkeley 



Administrativia 

You will earn PA extra credit for bugs in solutions, 
starter kits, handouts.   

 

 

Today is back-to-basic Thursday.   

We have some advanced material to cover. 
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Today: Parsing 

Why parsing?  Making sense out of these sentences: 

 

This lecture is dedicated to my parents, Mother Teresa 
and the pope. 

the (missing) serial comma determines whether M.T.&p. associate to “my 
parents” or to “dedicated to”. 

Seven-foot doctors filed a law suit. 
the dash associates “seven” to “foot” rather than to “doctors”. 

if E1 then if E2 then E3 else E4 

typical semantics associates “else E4” with the closest if (ie, “if E2”) 

In general, programs and data exist in text form  
which need to be understood by parsing 
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The cs164 concise parsing story 

Courses often spend two weeks on parsing.  CS164 deals with 
parsing in 2 lectures, and teaches non-parsing lessons along the way. 

1. Write a random expression generator. 

2. Invert this recursive generator into a parser by replacing print with 
scan and random with oracle. 

3. Now rewrite write this parser in Prolog, which is your oracle. 
This gives you the ubiquitous recursive descent parser. 

4. An observation: this Prolog parser has no negation. It’s in Datalog! 

5. Datalog programs are evaluated bottom-up (dynamic programming).  
Rewriting the Prolog parser into Datalog thus yields CYK parser. 

6. Datalog evaluation can be optimized with a Magic Set Transformation, 
which yields Earley Parser.  (Covered in Lecture 9.) 
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Grammar: a recursive definition of a language 

Language: a set of (desired) strings 

Example: the language of regular expressions (RE). 

RE can be defined as a grammar: 

base case:  any character c is regular expression; 

inductive case: if e1, e2 are  regular expressions then the 
following are also regular expressions: 

e1 | e2      e1 e2       e1*     (e1) 

 

Example: 

a few strings in this language:  

a few strings not in this language:  
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Terminals, Non-terminals, productions 

The grammar notation: 

R ::= c  |  R R   |   R|R   |   R*  |   ( R) 

 

terminals (red): input characters 

also called the alphabet (of the of the language) 

non-terminals: will be rewritten to terminals 

convention: capitalized 

start non-terminal: starts the derivation of a string 

convention: s.n.t. is always the first nonterminal mentioned 

productions: rules that governs string derivation 

ex has five: R ::= c, R ::= R R, R ::= R|R, R ::= R*, R ::=(R) 
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It’s grammar, not grammer.  

“Not all writing is due to bad grammer.”  (sic) 

 

Saying “grammer” is a lexical error, not a syntactic (ie, 
grammatic) one. 

 

In the compiler, this error is caught by the lexer.  

lexer fails to recognize “grammer” as being in the lexicon. 

 

In cs164, you learn which part of compiler finds errors. 

lexer, parser, syntactic analysis, or runtime checks? 
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Grammars vs. languages 

Write a grammar for the language all strings bai, i>0. 

grammar 1:   S ::= Sa | ba 

 

grammar 2:   S ::= baA        A ::= aA |  

 

A language can be described with multiple grammars 

L(G) = language (strings) described by grammar G 

 

Left recursive grammar: 

Right-recursive grammar: 

neither:  
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Why do we care about left-/right-recursion? 

Some parser can’t handle left-recursive grammars.  

It may get them into infinite recursion.   

Luckily, we can rewrite a l/r grammar into a r/r one. 

Example 1:     

S ::= Sa | a    is rewritten into    S ::= aS | a 

Example 2:   

E ::= a  |  E + E  |  E * E  |  (E)    

becomes  

E ::= T | T + E  

T = F | F * T 

F = a | ( E ) 
9 

T (a term) and F (a factor) introduce desirable 
precedence and associativity. More  in L9. 



Deriving a string from a grammar 

How is a string derived in a grammar: 

1. write down the start non-terminal S 

2. rewrite S with the rhs of a production S → rhs 

3. pick a non-terminal N 

4. rewrite N with the rhs of a production N → rhs 

5. if no non-terminal remains, we have generated a string. 

6. otherwise, go to 3. 

Example:  

grammar G:   E ::= T | T + E        T = F | F * T      F = a | ( E ) 

derivation of a string from L(G):  S → T + E → F + E → a + E  

→ a + T → a + F → a + a 
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Generate a string from L(G) 

Is there a recipe for printing all strings from L(G)? 

Depends if you are willing to wait.  L(G)may be infinite.    

 

Write function gen(G) that prints a string s  L(G). 

If L(G) is finite, rerunning gen(G) should eventually print any 
string in L(G). 
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gen(G) 

Grammar G and its language L(G):   

G:    E ::=  a | E + E | E * E  

L(G) = { a, a+a, a*a, a*a+a, … } 

 

For simplicity, we hardcode G into gen()  

def gen() {  E(); print EOF } 
def  E() { 

    switch (choice()):     

    case 1: print "a" 

    case 2: E(); print "+"; E() 

    case 3: E(); print "*"; E() 

} 12 



Visualizing string generation with a parse tree 

The tree that describe string derivation is parse tree. 

 

 

 

 

 

 

 

Are we generating the string top-down or bottom-up? 

Top-down.  Can we do it other way around?  Sure.  See CYK. 
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Parsing 

Parsing is the inverse of string generation:  

given a string, we want to find the parse tree 

If parsing is just the inverse of generation, let’s obtain 
the parser mechanically from the generator! 
 

def gen() {  E(); print EOF } 
def  E() { 

   switch (choice()):     

   case 1: print “a" 

   case 2: E(); print "+"; E() 

   case 3: E(); print "*"; E() 

} 
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Generator vs. parser 

def gen() {  E(); print EOF } 
def E() {  switch (choice()) {    

              case 1: print “a" 

              case 2: E(); print "+"; E() 

              case 3: E(); print "*"; E() }} 

 

def parse() {  E(); scan(EOF) } 
def E() {  switch (oracle()) { 

              case 1: scan("a") 

              case 2: E(); scan("+"); E() 

              case 3: E(); scan("*"); E() }}  

def scan(s) { if input starts with s,  

              consume s; else abort } 
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Parsing == reconstruction of the parse tree 

Why do we need the parse tree?  

 

We evaluate it to obtain the AST, or perhaps to 
directly compute the value of the program. 

 

Next slide shows use of parse tree for evaluation. 

 

Exercise: construct AST from a parse tree. 
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Example 1: evaluate an expression (calculator) 

 

Input: 2 * (4 + 5)  

 

 

 

 

 

 

Annotated Parse Tree:  

E  (18) 

T  (18) 

F  (9) T  (2) 

F  (2) 
E (9) 

T  (5) 

F  (5) 

E  (4) 

T  (4) 

F  (4) 

* 

) 

+ 

( 

int (2) 

int (4) 

int (5) 
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Parse tree vs. abstract syntax tree 

Parse tree = concrete syntax tree  

– contains all syntactic symbols from the input 

– including those that the parser needs “only” to discover 
• intended nesting: parentheses, curly braces 

• statement termination: semicolons 

 

Abstract syntax tree (AST) 

– abstracts away these artifacts of parsing,  

– abstraction compresses the parse tree 
• flattens parse tree hierarchies  

• drops tokens 



Add parse tree reconstruction to the parser 

def parse() {  root = E(); scan(EOF);  

               return root } 

def E() {   

 switch (oracle()) { 

   case 1: scan("a") 

           return (“a”,) 

   case 2: left = E() 

           scan("+") 

           right = E() 

         return (“+”, left, right) 

   case 3: // analogous 

}} 
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How to implement our oracle?  (hidden slide) 

Recall amb: the nondeterministic evaluator from cs61A 

(amb 1 2 3 4 5)  evaluates to 1 or .. or 5 

Which option does amb choose?  One leading to success. 

in our case, success means parsing successfully 

How was amb implemented? 

backtracking 

Our parser with amb: 

def E() { switch (amb(1,2,3)) { 

              case 1: scan("a“) 

              case 2: E(); scan("+“); E() 

              case 3: E(); scan("*"); E() }}  
Note: amb may not work with any left-recursive grammar 
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How do we implement the oracle  

We could implement it with coroutines.   
We’ll use use logic programming instead.  

After all, we already have oracle functionality in our Prolog 

 

We will define a parser as a logic program  

backtracking will give it exponential time complexity 

 

Next we observe that the parser has special structure  

and permits polynomial time algorithm (via Datalog) 
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Backtracking parser in Prolog 

Our grammar: 

 E ::= a  

 E ::= a + E 

Backtracking parser for this grammar in Prolog 

e([a|Out], Out).  

e([a,+,R], Out) :- e(R,Out). 

parse(S) :- e(S,[]). 

To parse, run query:  

?- parse([a,+,a]). 

true 
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How does this parser work? 

Let’s start with this (incomplete) grammar: 

e([a|T],T).  

Sample queries: 

e([a,+,a],Rest).        

--> Rest = [+,a] 

 

e([a],Rest). 

-->Rest = [] 

 

e([a],[]). 

--> true    // parsed successfully 
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Parser for the full expression grammar 

E = T | T + E            T = F | F * T         F = a  

 
e(In,Out) :- t(In, Out). 

e(In,Out) :- t(In, [+|R]), e(R,Out). 
 

t(In,Out) :- f(In, Out). 

t(In,Out) :- f(In, [*|R]), t(R,Out). 
 

f([a|Out],Out).  

 

parse(S) :- e(S,[]). 

 

?- parse([a,+,a,*,a],T). --> true 
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Construct also the parse tree 

E = T | T + E            T = F | F * T         F = a  

 
e(In,Out,e(T1))      :- t(In, Out, T1). 

e(In,Out,e(T1,+,T2)) :- t(In, [+|R], T1), e(R,Out,T2). 

t(In,Out,e(T1))      :- f(In, Out, T1). 

t(In,Out,e(T1,*,T2)) :- f(In, [*|R], T1), t(R,Out,T2). 

f([a|Out],Out,a).  

 

parse(S,T) :- e(S,[],T). 

 

?- parse([a,+,a,*,a],T). 

T = e(e(a), +, e(e(a, *, e(a))))  
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Construct also the AST 

E = T | T + E            T = F | F * T         F = a  

 
e(In,Out,T1)          :- t(In, Out, T1). 

e(In,Out,plus(T1,T2)) :- t(In, [+|R], T1), e(R,Out,T2). 

t(In,Out,T1)          :- f(In, Out, T1). 

t(In,Out,times(T1,T2)):- f(In, [*|R], T1), t(R,Out,T2). 

f([a|Out],Out, a).  

 

parse(S,T) :- e(S,[],T). 

 

?- parse([a,+,a,*,a],T). 

T = plus(a, times(a, a))  
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Running time of the backtracking parser 

We can analyze either version.  They are the same. 
 

amb: 

def E() { switch (oracle(1,2,3)) { 

            case 1: scan("a“) 

            case 2: E(); scan("+“); E() 

            case 3: E(); scan("*"); E() }}  

Prolog:  

e(In,Out) :- In==[a|Out].  

e(In,Out) :- e(In,T1), T1==[+|T2], e(T2,Out) 

e(In,Out) :- e(In,T1), T1==[*|T2], e(T2,Out) 
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Recursive descent parser 

This parser is known as recursive descent parser (rdp) 

 

The parser for the calculator (Lec 2) is an rdp. 

Study its code.  rdp is the way to go when you need a 
small parser.   

 

Crafting its grammar carefully removes exponential 
time complexity. 

Because you can avoid backtracking by facilitating making 
choice between rules based on immediate next input.  See 
the calculator parser. 
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CYK parser 
(can we run our parser in polynomial time?) 



Datalog: a well-behaved subset of Prolog 

From wikipedia:  Query evaluation in Datalog is based 
on first order logic, and is thus sound and complete. 

See The Art of Prolog for why Prolog is not logic (Sec 11.3) 

Datalog is a restricted subset of Prolog 

disallows compound terms as arguments of predicates 
p(1, 2) is admissible but not p(f1(1), 2).  Hence can’t use lists. 

only allows range-restricted variables,  
each variable in the head of a rule must also appear in a not-negated 
clause in the body of this rule.  Hence we can compute values of 
variables from ground facts. 

imposes stratification restrictions on the use of negation 
it’s sufficient that we don’t use negation 
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http://en.wikipedia.org/wiki/First_order_logic
http://en.wikipedia.org/wiki/Soundness
http://en.wikipedia.org/wiki/Completeness
http://en.wikipedia.org/wiki/Predicate_(logic)
http://en.wikipedia.org/wiki/Stratification_(mathematics)


Why do we care about Datalog? 

Predictable semantics: 

Restrictions make the set of all possible proofs finite, with 
the consequence that all Datalog programs terminate 
(unlike Prolog programs).  

Efficient evaluation: 

Uses bottom-up evaluation (dynamic programming). 

Various methods have been proposed to efficiently perform 
queries, e.g. the Magic Sets algorithm,[3] 

 

If interested, see more in wikipedia. 
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More why do we care about Datalog? 

We mechanically derive a famous parsing algorithms. 

Mechanically, without thinking too hard. 

Indeed, the rest of the lecture is about 

 

1) CYK == Datalog version of Prolog recursive descent 

2) Earley == Magic Set transformation of CYK 

 

A bigger lesson: 

restricting your language may give you desirable properties 
Just think how much easier your PA1 interpreter would be to 
implement without having to support recursion.  Although it would 
be much less useful without recursion. Luckily, with Datalog, we 
don’t lose anything when it comes to parsing. 32 



Turning our Prolog parser into Datalog 

Recursive descent in Prolog, for E ::= a | a+E   

e([a|Out], Out).  

e([a,+,R], Out) :- e(R,Out). 

 

Let’s check the datalog rules: 

No negation: check 

Range restricted: check 

Compound predicates: nope (uses lists) 
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Turning our Prolog parser into Datalog, cont. 

Let’s refactor the program a little, using the grammar 

E --> a  |  E + E  |  E * E 
Yes, with Datalog, we can use left-recursive grammars! 

 

Datalog parser: e(i,j) is true iff the input[i:j] can be 
derived (ie generated) from the non-terminal E. 

input[i:j] is input from index i to index j-1 

 

e(I,I+1) :- input[I]==‘a’.  

e(I,J)   :- e(I,K), input[K]==‘+’, e(K+1,J). 

e(I,J)   :- e(I,K), input[K]==‘*’, e(K+1,J). 
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Bottom-up evaluation of the Datalog program 

Input:   

a + a * a 

Let’s compute which facts we know hold 

we’ll deduce facts gradually until no more can be deduced 

Step 1: base case (process input segments of length 1) 

e(0,1) = e(2,3) = e(4,5) = true 

Step 2: inductive case (input segments of length 3) 

e(0,3) = true     // using rule #2 

e(2,5) = true     // using rule #3 

Step 2 again: inductive case (segments of length 5) 

e(0,5) = true    // using either rule #2 or #3 
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Visualize this parser in tabular form 
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A graphical way to visualize this evaluation 

Initial graph: the input (terminals) 

Repeat: add non-terminal edges until no more can be added. 
An edge is added when adjacent edges form rhs of a grammar production. 

a1 +2 *4 

E6 

a3 

E11 

a5 

E9 

E7 E8 

Input:  a + a * a 
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Home exercise: find the bug in this CYK algo 

We assume that each rule is of the form A→BC, ie two symbols on rhs. 

 

for  i=0,N-1 do   

 add (i,i+1,nonterm(input[i])) to graph  -- create nonterminal edges A→d 

 enqueue( (i,i+1,nonterm(input[i])) )      -- nonterm() maps d to A !  

while  queue not empty do 

 (j,k,B)=dequeue() 

 for each edge (i,j,A) do  -- for each edge “left-adjacent” to (j,k,B) 

  if rule T→AB  exists then               

      if edge e=(i,k,T) does not exists then  add e to graph; enqueue(e) 

 for each edge (k,l,C) do        -- for each edge “right-adjacent” to (j,k,B) 

  ... analogous ... 

end while 

if edge (0,N,S) does not exist  then “syntax error” 



Constructing the parse tree 

Nodes in parse tree correspond to edges in CYK 
reduction 

– edge e=(0,N,S) corresponds to the root of parse tree r 

– edges that caused insertion of e are children of r 

 

Helps to label edges with entire productions 

– not just the LHS symbol of the production 

– make symbols unique with subscripts 

– such labels make the parse tree explicit 
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A graphical way to visualize this evaluation 

Parse tree:  

a1 +2 *4 

E6 

a3 

E11 

a5 

E9 

E7 E8 

Input:  a + a * a 
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Summary 

Languages vs grammars 

a language can be described by many grammars 

Prolog vs Datalog 

top-down evaluation with backtracking vs bottom-up 
evaluation (table-filling dynamic programming) 

Grammars 

string generation vs. recognizing if string is in grammar 

random generator and its dual, oracular recognizer 

Parse tree: 

result of parsing is parse tree 

CYK is O(N3) time.  Recursive descent is exp time. 
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Example of CYK execution 

int1 id2 id4 

TYPE6-->int1 

,3 

DECL10  -->  TYPE6   VARLIST9    ;5 

;5 

VARLIST9-->VARLIST7   ,3   id4 

VARLIST7-->id2 VARLIST8-->id4 

DECL10 

TYPE6 VARLIST9 

VARLIST7 

id2 

,3 id4 

;5 

int1 
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you should be able to reconstruct the grammar from  

this parse tree (find the productions in the parse tree) 


