

Ras Bodik Hack Your Language!
Shaon Barman
Thibaud Hottelier

Lecture 9

Syntax-Directed Translation

 grammar disambiguation, Earley parser, syntax-directed translationCS164: Introduction to Programming

Languages and Compilers, Spring 2012
UC Berkeley

Hidden slides

This slide deck contains hidden slides that may help in studying the material.

These slides show up in the exported pdf file but when you view the ppt file in Slide Show mode.

Today

Refresh CYK parser

builds the parse bottom up
Grammar disambiguation
select desired parse trees without rewriting the grammar
Earley parser
solves CYK's inefficiency
Syntax-directed translation
it's a rewrite ("evaluation") of the parse tree

Grammars, derivations, parse trees

Example grammar

$$
\begin{aligned}
& \text { DECL --> TYPE VARLIST }[;] \\
& \text { TYPE --> int | float } \\
& \text { VARLIST --> id | VARLIST, id }
\end{aligned}
$$

Example string int id , id ;

Derivation of the string
DECL --> TYPE VARLIST ;
--> int VARLIST ;
--> ... -->
--> int id , id ;

CYK execution

Key invariant

Edge (i,j, \bar{T}) exists iff T -->* input[iij]
-T -->* input[i:j] means that the i:j slice of input can be derived from T in zero or more steps

- T can be either terminal or non-terminal

Corollary:

- input is from $L(G)$ iff the algorithm creates the edge $(0, N, S)$
- N is input length

Constructing the parse tree from the CYK graph

CYK graph to parse tree

Parse tree nodes

obtained from CYK edges are grammar productions

Parse tree edges
obtained from reductions (ie which rhs produced the lhs)

CYK Parser

Builds the parse bottom-up

given grammar containing $A \rightarrow B C$, when you find adjacent $B C$ in the CYK graph, reduce $B C$ to A

See the algorithm in Lecture 8

CYK: the algorithm

CYK is easiest for grammars in Chomsky Normal Form
CYK is asymptotically more efficient in this form
$\mathrm{O}\left(\mathrm{N}^{3}\right)$ time, $\mathrm{O}\left(\mathrm{N}^{2}\right)$ space.

Chomsky Normal Form: production forms allowed:
$A \rightarrow B C$ or
$A \rightarrow d \quad$ or
$S \rightarrow \varepsilon \quad$ (only start non-terminal can derive ε)

Each grammar can be rewritten to this form

CYK: dynamic programming

Systematically fill in the graph with solutions to subproblems

- what are these subproblems?

When complete:

- the graph contains all possible solutions to all of the subproblems needed to solve the whole problem
Solves reparsing inefficiencies
- because subtrees are not reparsed but looked up

Complexity, implementation tricks

Time complexity: $\mathrm{O}\left(\mathrm{N}^{3}\right)$, Space complexity: $\mathrm{O}\left(\mathrm{N}^{2}\right)$

- convince yourself this is the case
- hint: consider the grammar to be constant size?

Implementation:

- the graph implementation may be too slow
- instead, store solutions to subproblems in a 2D array
- solutions[i,j] stores a list of labels of all edges from ito j

Removing Ambiguity in the Grammar

How many parse trees are here?

grammar: $\mathrm{E} \rightarrow \mathrm{id}|\mathrm{E}+\mathrm{E}| \mathrm{E} * \mathrm{E}$ input: id+id*id

PA5 warning: "Nested ambiguity"

Work out the CYK graph for this input: id+id*id+id.

Notice there are multiple "ambiguous" edges

- ie, edges inserted due to multiple productions
- hence there is exponential number of parse trees
- even though we have polynomial number of edges

The point:
don't worry about exponential number of trees
We still need to select the desired one, of course

CYK on ambiguous grammar

same algorithm, but may yield multiple parse trees

- because an edge may be reduced (ie, inserted into the graph) using to multiple productions
we need to chose the desired parse tree
- we'll do so without rewriting the grammar
example grammar

$$
\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}|\mathrm{E} * \mathrm{E}| \mathrm{id}
$$

One parse tree only!

The role of the grammar

- distinguish between syntactically legal and illegal programs

But that's not enough: it must also define a parse tree

- the parse tree conveys the meaning of the program
- associativity: left or right
- precedence: * before +

What if a string is parseable with multiple parse trees?

- we say the grammar is ambiguous
- must fix the grammar (the problem is not in the parser)

Ambiguity (Cont.)

Ambiguity is bad

- Leaves meaning of some programs ill-defined

Ambiguity is common in programming languages

- Arithmetic expressions
- IF-THEN-ELSE

Ambiguity: Example

Grammar

$$
\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}|\mathrm{E} * \mathrm{E}|(\mathrm{E}) \mid \text { int }
$$

Strings
int + int + int
int * int + int

Ambiguity. Example

This string has two parse trees

+ is left-associative

Ambiguity. Example

This string has two parse trees

* has higher precedence than +

Dealing with Ambiguity

No general (automatic) way to handle ambiguity Impossible to convert automatically an ambiguous grammar to an unambiguous one (we must state which tree desired)
Used with care, ambiguity can simplify the grammar

- Sometimes allows more natural definitions
- We need disambiguation mechanisms

There are two ways to remove ambiguity:

1) Declare to the parser which productions to prefer works on most but not all ambiguities
2) Rewrite the grammar
a general approach, but manual rewrite needed we saw an example in Lecture 8

Disambiguation with precedence and associativity declarations

Precedence and Associativity Declarations

Instead of rewriting the grammar

- Use the more natural (ambiguous) grammar
- Along with disambiguating declarations

Bottom-up parsers like CYK and Earley allow declaration to disambiguate grammars
you will implement those in PA5

Examples ...

Associativity Declarations

Consider the grammar $E \rightarrow E+E \mid$ int
Ambiguous: two parse trees of int + int + int

Left-associativity declaration: \%left +

Precedence Declarations

Consider the grammar $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}|\mathrm{E} * \mathrm{E}|$ int

- And the string int + int * int

Precedence declarations:

$$
\begin{aligned}
& \text { \%left + - } \\
& \text { \%left * / }
\end{aligned}
$$

Ambiguity declarations

These are the two common forms of ambiguity

- precedence: * higher precedence than +
- associativity: + associates from to the left

Declarations for these two common cases

\%left + -	+ and - have lower precedence than * and /
$\%$ left * / these operators are left associative	

Implementing disambiguity declarations

To disambiguate, we need to answer these questions:

Assume we reduced the input to $\mathrm{E}+\mathrm{E} * \mathrm{E}$. Now do we want parse tree ($\mathrm{E}+\mathrm{E}$)*E or $\mathrm{E}+(\mathrm{E} * \mathrm{E})$?

Similarly, given $\mathrm{E}+\mathrm{E}+\mathrm{E}$, do we want parse tree $(\mathrm{E}+\mathrm{E})+\mathrm{E}$ or $\mathrm{E}+(\mathrm{E}+\mathrm{E})$?

Example

Implementing the declarations in CYK/Earley

precedence declarations

- when multiple productions compete for being a child in the parse tree, select the one with least precedence
left associativity
- when multiple productions compete for being a child in the parse tree, select the one with largest left subtree

Precedence
ambiguity what are children of E_{6} choices $\begin{aligned} & E_{4} * E_{3} \\ & E_{1}+E_{5} \text { plus to he } \\ & \text { evaled after }\end{aligned}$

Associativity
same ambiguity $=\begin{aligned} & E_{1}+E_{1} E_{5} \\ & E_{4}+2 E_{3}\end{aligned}$

$\%$ left +1

b spans more t

Where is ambiguity manifested in CYK?

for $\mathrm{i}=0, \mathrm{~N}-1$ do enqueue ($(\mathrm{i}, \mathrm{i}+1$, input $[i])$) -- create terminal edges while queue not empty do
($\mathrm{j}, \mathrm{k}, \mathrm{B}$)=dequeue()
for each edge ($\mathrm{i}, \mathrm{j}, \mathrm{A}$) do -- for each edge "left-adjacent" to ($\mathrm{j}, \mathrm{k}, \mathrm{B}$) for each rule $T \rightarrow A B$ do
if edge ($\mathrm{i}, \mathrm{k}, \mathrm{T}$) does not exists then
add (i,k,T) to graph
enqueue((i,k,T))
else -- Edge ($\mathrm{i}, \mathrm{k}, \mathrm{T}$) already exists, hence potential ambiguity:
-- Edges (i,j,A)(j,k,B) may be another way to reduce to (i,k,T).
-- That is, they may be the desired child of (i,k,T) in the parse tree.
end while
(Find the corresponding points in the Earley parser)

More ambiguity declarations

\%left, \%right declare precedence and associativity

- these apply only for binary operators
- and hence they do not resolve all ambiguities

Consider the Dangling Else Problem
$E \rightarrow$ if E then $E \mid$ if E then E else E
On this input, two parse trees arise

- input: if e1 then if e2 then e3 else e4
- parse tree 1: if e1 then \{if e2 then e3 else e4\}
- parse tree 2: if e1 then \{if e2 then e3\} else e4

Which tree do we want?

\%dprec: another declaration

Another disambiguating declaration (see bison)

```
\(E \rightarrow\) if \(E\) then \(E \quad\) \% dprec 1
    | if E then E else E \% dprec 2
    OTHER
```

Without \%dprec, we'd have to rewrite the grammar:

```
E MIF -- all then are matched
    | UIF -- some then are unmatched
MIF }->\mathrm{ if E then MIF else MIF
    | OTHER
UIF }->\mathrm{ if E then E
    | if E then MIF else UIF
```


Need more information?

See handouts for projects PA4 and PA5 as well as the starter kit for these projects

Grammar Rewriting

Rewriting

Rewrite the grammar into a unambiguous grammar While describing the same language and eliminating undesirable prase trees
Example: Rewrite

$$
\mathrm{E} \Omega \mathrm{E}+\mathrm{E}|\mathrm{E} * \mathrm{E}|(\mathrm{E}) \mid \mathrm{int}
$$

into

$$
\begin{aligned}
& E \Omega E+T \mid T \\
& T \Omega T * \text { int } \mid \text { int } \mid(E)
\end{aligned}
$$

Draw a few parse trees and you will see that new grammar

- enforces precedence of * over +
- enforces left-associativity of + and *

Parse tree with the new grammar

The int * int + int has ony one parse tree now

note that new nonterminals have been introduced

Rewriting the grammar: what's the trick?

Trick 1: Fixing precedence (* computed before +)
$E \rightarrow E+E|E * E| i d$
In the parse tree for id + id *id, we want id*id to be subtree of $\mathrm{E}+\mathrm{E}$.

How to accomplish that by rewriting?
Create a new nonterminal (T)

- make it derive id*id, ...
- ensure T's trees are nested in E's of $\mathrm{E}+\mathrm{E}$

New grammar:

Rewriting the grammar: what's the trick? (part 2)

Trick 2: Fixing associativity (+, *, associate to the left)

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{E}+\mathrm{E} \mid \mathrm{T} \\
& \mathrm{~T} \rightarrow \mathrm{~T}^{*} \mathrm{~T} \mid \mathrm{id}
\end{aligned}
$$

In the parse tree for id +id +id, we want the left id+id to be subtree of the right E+id. Same for id*id*id.

Use left recursion

- it will ensure that +, * associate to the left

New grammar (a simple change):
$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E} \quad \mid \mathrm{T}$
$\mathrm{T} \rightarrow \mathrm{T}^{*} \mathrm{~T} \mid \mathrm{id}$

Ambiguity: The Dangling Else

Consider the ambiguous grammar
$S \rightarrow$ if E then S
| if E then S else S
| OTHER

The Dangling Else: Example

- The expression
if E_{1} then if E_{2} then S_{3} else S_{4}
has two parse trees

Typically we want the second form

The Dangling Else: A Fix

Usual rule: else matches the closest unmatched then

We can describe this in the grammar

Idea:

- distinguish matched and unmatched then's
- force matched then's into lower part of the tree

Rewritten if-then-else grammar

New grammar. Describes the same set of strings

- forces all matched ifs (if-then-else) as low in the tree as possible
- notice that MIF does not refer to UIF,
- so all unmatched ifs (if-then) will be high in the tree

UIF

$S \rightarrow$ MIF
 | UIF

MIF \rightarrow if E then MIF else MIF
OTHER
UIF \rightarrow if E then S

/* some then are unmatched 神UIF

| if E then MIF else UIF

The Dangling Else: Example Revisited

- The expression if E_{1} then if E_{2} then S_{3} else S_{4}

- A valid parse tree (for a UIF)

- Not valid because the then expression is not a MIF

Earley Parser

Inefficiency in CYK

CYK may build useless parse subtrees

- useless = not part of the (final) parse tree
- true even for non-ambiguous grammars

Example
grammar: E::= E+id|id
input: id+id+id

Can you spot the inefficiency?
This inefficiency is a difference between $\phi\left(n^{3}\right.$) and $O\left(n^{2}\right)$ It's parsing 100 vs 1000 characters in the same time!

Example

grammar: $\mathrm{E} \rightarrow \mathrm{E}+\underset{=}{\mathrm{id} \mid \text { id }}$

three useless reductions are done ($\mathrm{E}_{7}, \mathrm{E}_{8}$ and E_{10})

Earley parser fixes (part of) the inefficiency

space complexity:

- Earley and CYK are $\mathrm{O}\left(\mathrm{N}^{2}\right)$
time complexity:
- unambiguous grammars: Earley is $\mathrm{O}\left(\mathrm{N}^{2}\right), \mathrm{CYK}$ is $\mathrm{O}\left(\mathrm{N}^{3}\right)$
- plus the constant factor improvement due to the inefficiency
why learn about Earley?
- idea of Earley states is used by the faster parsers, like LALR
- so you learn the key idea from those modern parsers
- You will implement it in PA4
- In HW4 (required), you will optimize an inefficient version of Earley

Key idea

Process the input left-to-right

as opposed to arbitrarily, as in CYK
Reduce only productions that appear non-useless
consider only reductions with a chance to be in the parse tree
Key idea
decide whether to reduce based on the input seen so far
after seeing more, we may still realize we built a useless tree
The algorithm
Propagate "context" f the parsing process.
Context tells us what nonterminals can appear in the parse at
the given point of input. Those that cannot won't be reduced.

Key idea: suppress useless reductions

grammar: $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{id} \mid$ id

The intuition

Use CYK edges (aka reductions), plus more edges.
Idea: We ask "What CYK edges can possibly start in node 0?"

1) those reducing to the start non-terminal
2) those that may produce non-terminals needed by (1)
3) those that may produce non-terminals needed by (2), etc

Prediction

Prediction (def):

determining which productions apply at current point of input
performed top-down through the grammar
by examining all possible derivation sequences
this will tell us
which non-terminals we can use in the tree
(starting at the current point of the string)
we will do prediction not only at the beginning of parsing but at each parsing step

Example (1)

Initial predicted edges:
grammar:

$$
\begin{aligned}
& \text { E --> T + id | id } \\
& \text { T --> E }
\end{aligned}
$$

E--> . T + id

Example (1.1)

Let's compress the visual representation:
these three edges \rightarrow single edge with three labels

Example (2)

We add a complete edge, which leads to another complete edge, and that in turn leads to a inprogress edge

```
E--> . T + id
E--> . id
T -->.E
```

grammar:

$$
\begin{aligned}
& E-->T+i d \mid \text { id } \\
& T-->E
\end{aligned}
$$

Example (3)

We advance the in-progress edge, the only edge we can add at this point.

```
E--> . T + id
E--> . id
T -->.E
```

grammar:

```
E --> T + id | id
    T --> E
```


Example (4)

Again, we advance the in-progress edge. But now we created a complete edge.

Example (5)

The complete edge leads to reductions to another complete edge, exactly as in CYK.

Example (6)

We also advance the predicted edge, creating a new in-progress edge.

Example (7)

We also advance the predicted edge, creating a new in-progress edge.

Example (8)

Advance again, creating a complete edge, which leads to a another complete edges and an in-progress edge, as before.

Example (a note)

Compare with CYK:
We avoided creating these six CYK edges.

Generalize CYK edges: Three kinds of edges

Productions extended with a dot ".'
. indicates position of input (how much of the rule we saw)
Completed: A --> B C .
We found an input substring that reduces to A
These are the original CYK edges.
Predicted: A -->. B C
we are looking for a substring that reduces to A ...
(ie, if we allowed to reduce to A)
... but we have seen nothing of $B C$ yet
In-progress: A --> B . C
like (2) but have already seen substring that reduces to B

Earley Algorithm

Three main functions that do all the work:

For all terminals in the input, left to right:
Scanner: moves the dot across a terminal found next on the input

Repeat until no more edges can be added:
Predict: adds predictions into the graph
Complete: move the dot to the right across a non-terminal when that non-terminal is found

HW4

You'll get a clean implementation of Earley in Python It will visualize the parse.
But it will be very slow.

Your goal will be to optimize its data structures
And change the grammar a little.
To make the parser run in linear time.

Syntax-directed translation

 evaluate the parse (to produce a value, AST, ...)
Example grammar in CS164

$$
\begin{aligned}
& \text { E -> } \underbrace{E \quad \text { '+' T }} \\
& \text { (T)-> T '*'F } \\
& \text { | F } \\
& \text { (F) }{ }^{\text {; }} \text {) / }[0-9]+/ \\
& \text { | '(' E ')' } \\
& \text {; }
\end{aligned}
$$

Build a parse tree for $10+2 * 3$, and evaluate

Same SDT in the notation of the cs164 parser

Syntax-directed translation for evaluating an expression

```
%%
E -> E '+' T %{ return n1.val + n3.val %}
    | T %{ return n1.val %}
    ;
T -> T '*' F %{ return n1.val * n3.val }%
    |
    ;
F -> /[0-9]+/ %{ return int(n1.val) }%
    | '(' E ')' %{ return n2.val }%
```


Build AST for a regular expression

\%ignore / $\mathrm{n}+$ /
\%\%
// A regular expression grammar in the 164 parser

\%\{ return n1.val \%\}
\%\{ return ('*', n1.val) \%\}
\%\{ return ('.', n1.val, n2.val) \%\}
\%\{ return ('|', n1.val, n3.val) \%\}
\%\{ return n2.val \%\}

Extra slides

Predictor

- procedure Predictor((u, v, A --> $\alpha . \mathrm{B} \beta$)) for each $B-->\chi$ do enqueue((???,v, B--> . χ)) end
- Intuition:
- new edges represent top-down expectations
- Applied when?
- an edge e has a non-terminal \mathbf{T} to the right of a dot
- generates one new state for each production of T
- Edge placed where?
- between same nodes as e

Completer

procedure Completer ($(\mathrm{u}, \mathrm{v}, \mathrm{B}$--> $\chi)$.
for each (u', u, A --> α. B β) do enqueue(($\left.u^{\prime}, v, A-->\alpha B . \beta\right)$)
end

- Intuition:
- parser has reduced a substring to a non-terminal B
- so must advance edges that were looking for B at this position in input. CYK reduction is a special case of this rule.
- Applied when:
- dot has reached right end of rule.
- new edge advances the dot over B.
- New edge spans the two edges (ie, connects u' and v)

Scanner

procedure Scanner((u,v, A --> α. d β)) enqueue($(u, v+1, A-->\alpha d . \beta))$
 end

- Applied when:
- advance dot over a terminal

The parse tree
represents the tree structure in flat sequences

Parse tree example

Source: 4*(2+3)

Parser input: NUM(4), TIMES, LPAR, NUM(2), PLUS, NUM(3),
RPAR
Parse tree:

To leaves are tokens (terminals), internal nodes are non-terminals

Another example

- Source: if $(x==y)\{a=1 ;\}$
- Parser input: IF, LPAR, ID, EQ, ID, RPAR, LBR, ID, AS, INT, SEMI, RBR
- Parser tree: STMT

IF LPAR ID $==$ ID RPAR LBR ID $=$ INT SEMI RBR

The Abstract Syntax Tree

a compact representation of the tree structure

AST is a compression of the parse tree

Another example

- Parse tree determined by the grammar AST determined by the syntax-directed translation (many designs possible)

Parse Tree Example

Given a parse tree, reconstruct the input:

Input is given by leaves, left to right. In our case: 2*(4+5)

Can we reconstruct the grammar from the parse tree?:

Yes, but only those rules that the input exercised. Our tree tells us the

Another application of parse tree: build AST

What to do with the parse tree?

Applications:

- evaluate the input program P (interpret P)
- type check the program (look for errors before eval)
- construct AST of P (abstract the parse tree)
- generate code (which when executed, will evaluate P)
- compile (regular expressions to automata)
- layout the document (compute positions, sizes of letters)
- programming tools (syntax highlighting)

When is syntax directed translation performed?

Option 1: parse tree built explicitly during parsing

- after parsing, parse tree is traversed, rules are evaluated
- less common, less efficient, but simpler
- we'll follow this strategy in PA6

Option 2: parse tree never built

- rules evaluated during parsing on a conceptual parse tree
- more common in practice
- we'll see this strategy in a HW (on recursive descent parser)

Syntax-directed translation (SDT)

SDT is done by extending the grammar

- a translation rule is defined for each production:
given a production
$\mathrm{X} \rightarrow \mathrm{dABC}$
the translation of X is defined in terms of
- translation of non-terminals A, B
- values of attributes of terminals d, c
- constants
translation of a (non-)terminal is called an attribute
- more precisely, a synthesized attribute
- (synthesized from values of children in the parse tree)

Specification of syntax-tree evaluation

Syntax-directed translation (SDT) for evaluating an expression

$$
\begin{array}{ll}
\mathrm{E}_{1}::=\mathrm{E}_{2}+\mathrm{T} & \mathrm{E}_{1} \cdot \text { trans }=\mathrm{E}_{2} \cdot \text { trans }+\mathrm{T} . \text { trans } \\
\mathrm{E}::=\mathrm{T} & \mathrm{E} . \text { trans }=\mathrm{T} . \text { trans } \\
\mathrm{T}_{1}::=\mathrm{T}_{2} * \mathrm{~F} & \mathrm{~T}_{1} \cdot \text { trans }=\mathrm{T}_{2} \cdot \text { trans } * \mathrm{~F} . \text { trans } \\
\mathrm{T}::=\mathrm{F} & \mathrm{~T} . \text { trans }=\mathrm{F} . \text { trans } \\
\mathrm{F}::=\text { int } & \mathrm{F} . \text { trans }=\text { int.value } \\
\mathrm{F}::=(\mathrm{E}) & \mathrm{F} . \text { trans }=\mathrm{E} . \text { trans }
\end{array}
$$

SDT = grammar + "translation" rules
rules show how to evaluate parse tree

Same SDT in the notation of the cs164 parser

Syntax-directed translation for evaluating an expression

Example SDT: Compute type of expression + typecheck

```
E -> E + E if ((E E .trans == INT) and (E E.trans == INT))
            then E E .trans = INT
            else E 
E -> E and E if (( }\mp@subsup{E}{2}{}.\mathrm{ .trans == BOOL) and (E E.trans == BOOL))
            then E E .trans = BOOL
            else E E .trans = ERROR
E -> E == E if (( }\mp@subsup{E}{2}{}.\mathrm{ .trans == E 3.trans) and
    (E E .trans != ERROR))
    then E E .trans = BOOL
    else E 1.trans = ERROR
    E.trans = BOOL
    E.trans = BOOL
    E.trans = INT
    E
```


AST-building translation rules

```
E
E T T
T
T }->\textrm{F
F }->\mathrm{ int
F.trans = new IntLitNode(int.value)
F ( E ) F.trans = E.trans
```


Example: build AST for 2 * $(4+5)$

