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Announcement 

The CS164 Parser Contest.   

 

Part 1: speed of your HW4 parser 

Prize: fun, fame, and extra credit (for speed of your HW4) 

Submit your parser for speed evaluation even before 
deadline. You will receive your current standing in class. 

Part 2: Speed and code readability of your PA4-6 

Prize: fun and fame and a gift certificate. 

Measured at the end of the semester. 

Fa10 winner 5x faster than staff parser.  Can you beat that? 
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Today is a no-laptop Thursday 

If you are bored, here’s a puzzle: 

 

Write a regex that tests whether a number is prime. 

 

Hint: 

\n matches the string matched by the nth regex group 
Ex: regex c(aa|bb)\1  matches  strings  caaaa and cbbbb 

the prime tester must be a regex, not a regular expression!  
the latter do not support \n 
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Where are we in CS164? 

We have now built enough tools (coroutines, parser) 
to go after our mission: build small languages so that 
programmers can become more productive. 

 

When building small languages, we program under 
the abstraction: we implement abstractions for others 
to use.  

 

Today, we’ll learn what’s under the abstraction of 
regular expressions. 
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Next three lectures: small languages 

What small languages have we already seen? 

unit calculator, regexes, grammars, queues, jQuery, Prolog  
well, Prolog is not so small; it’s a rather general-purpose langauge 

 

Today: regular expressions 

the best-studied small language 

 

We will look at three questions. How to  

– integrate regular expressions with a host language 

– implement regular expressions efficiently 

– design composable, clear semantics (REs vs. regexes) 
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Sample Uses of Regular Expressions  
and of string processing in general 



Sample string processing problems 

Web scraping and rewriting (HW1) 

also, find and “linkify” mailing addresses 

Cucumber, a Ruby testing framework with “NLP” 
When I go to "Accounts" Then I should see link "My Savings" 

Lexical analysis in interpreters and compilers 

float x=3.14   -->  FLOATTYPE, ID("x"), EQ, FLOATLIT(3.14) 

Config tools include “file name manipulation” languages 

${dir}\foo  --> "c:\\MyDir\\foo" 

Editors, search and replace 

`quoted text’ D`Souza --> `quoted text’ D’Souza 
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1. Web scraping and rewriting 

Rewrite a web page using GreaseMonkey scripting. 

 

The idea: web pages are more readable when you 
view the print-friendly, ad-free pages.  Automate this! 

Approach: Your script will rewrite links on a page to 
point to the print-friendly version of target page. 

How: When user clicks on a link, fetch (but do not 
display) the target page; use a regex to find in the 
target HTML text the (best-guess) link to the print-
friendly page; rewrite the link to point to that page; 
follow the rewritten link to display the friendly page. 

8 



2. Cucumber: a Ruby testing framework 

A sample Cucumber test file: 
Scenario: Test the banking web service 

 Given I log in as "bonnie" with password "clyde" 

 When I go to "Accounts"  

 Then I should see a link "Our Robbery Savings"  

 When I follow this link 

 Then I the value of "Interest" should be "$1,024.00" 

Meaning of this test: 
"Given" makes the script go to login to the web site. 

"When" clause clicks on the link Accounts. 

"Then" clause tests that resulting page contains a link to given account. 

We could implement a similar tool with GreaseMonkey: 

regexes can be used to parse the command.  
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3. Lexical analysis in a compiler/interpreter 

Input: a program 
function timedCount() { // my function 

 document.getElementById('txt').value=c; 

} 

 

Output: a sequence of tokens 
FUNCTION, ID("timedCount"), LPAR, RPAR, LCUR, 
ID("document"), DOT, ID("getElementById"), LPAR, 
STRING("txt"), RPAR, DOT, ID("value"), ASGN, ID("c"), 
SEMI, RCUR 

 

REs facilitate concise description of tokens 
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Notes on lexical analysis 

The lexer partitions the input into lexemes 

 

Lexemes are mapped to tokens 

 

The stream of tokens is fed to the parser 

 

Some tokens are associated with their lexemes 

 

Whitespace and comments are typically skipped 
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Another  challenge question 

The lexical analyzer produces a list of tokens without 
consulting with the parser  

i.e., tokenizing is syntax insensitive 

 

Q: Give a JavaScript scenario where the tokenizing 
depends on the context of the parser. 

i.e., lexer cannot tokenize input w/out feedback from parser 
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4. File name processing languages 

In shell scripts and IDEs, command line args can refer 
to variables such as workspace_loc: 

 

 

 

This is translated into program arguments: 
args = { "--inputDir", "c:\\wspace\\MyDirectory",  

       "--outputDir", ".\\temp dir" } 
 

Must escape \ and quotes during translation 

Tricky design. Eclipse designed this substitution language 
wrong: their escaping rules prevent you from expressing 
some values that you may want to pass into the program.  
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5. Search for strings in text editors 

Imagine you want to search for names containing  
a ' and correct them.  Examples: 

 

 D'Souza --> D’Souza 

 D`Souza --> D’Souza 

 

The challenge: your replacement should not change 
quotes used in quotations: 

`quoted text’ 

 

Again, this can be solved conveniently with REs 

 

  

14 



Useful string processing operations 

Accept: the whole string match 

Does the entire string s match a pattern r? 

Match: a prefix match 

Does some prefix of s  match a pattern r? 

Search: find a substring 

Does a substring of s  match a pattern r? 

Tokenize: Lexical analysis 

Partition s into lexemes, each accepted by a pattern r 

Extract: as match and search but extract substrings 

Regex r indicates, with ( ), which substrings to extract 

Replace: replace substrings found with a new string 
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Discovering automata and REs 
a revisionist history 



Programming model of a small language 

Design of a small (domain-specific) language starts 
with the choice of a suitable programming model 

Why is a new model may be needed? Because procedural 
abstraction (a procedure-based library) cannot always hide 
the plumbing (implementation details) 

For string-based processing, automata and regular 
expressions are usually the right programming model 

regexes are hard to hide under a procedure library, 
although HW2 showed how to do it with coroutines. 

 

Let’s use string processing as a case study on how to 
discover the programming model for small languages 
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Let's write a lexer (a.k.a. tokenizer, scanner) 

First, we’ll write the scanner by hand 

• We'll examine the scanner’s repetitious plumbing 

• Then we'll hide the plumbing in a programming model 

 

A simple scanner will do.  Only four tokens: 

TOKEN Lexeme 

ID a sequence of one or more letters or 
digits starting with a letter 

EQUALS “==“ 

PLUS “+” 

TIMES “*” 



 

 

Imperative scanner 

 

c=nextChar(); 

if (c == ‘=‘) { c=nextChar(); if (c == ‘=‘) {return EQUALS;}} 

if (c == ‘+’) { return PLUS; } 

if (c == ‘*’) { return TIMES; } 

if (c is a letter) {  

 c=NextChar();  

 while (c is a letter or digit) {  c=NextChar(); } 

 undoNextChar(c); 

 return ID; 

} 

 

 

 

Note: this scanner does not handle errors.  What happens if the input is "var1 = 
var2“?  It should be var1 == var2.  An error should be reported at around '='. 



 

 

Imperative scanner 

You could write your entire scanner in this style 
– and for small scanners this style is appropriate 

Why does this code break as the task gets bigger? Try to add: 
– lexemes that start with the same string: “if” and “iffy” 

– C-style comments: /* anything here /* nested comments */ */ 

– string literals with escape sequences: “…\t … \”…” 

– error handling, e.g., “a string literal missing a closing quote  

Real-world imperative scanners can get unwieldy 
– the lexical structure of the language may be hard to read out 

– the scanner code obscures it by spreading the string comparisons 
and other actions across the scanner code (rather than keeping it in 
a single specification table) 



Real scanner get unwieldy (ex: JavaScript) 
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From http://mxr.mozilla.org/mozilla/source/js/src/jsscan.c 



 

 

Where is the logic? 
 

c=nextChar(); 

if (c == ‘=‘) { c=nextChar(); if (c == ‘=‘) {return EQUALS;}} 

if (c == ‘+’) { return PLUS; } 

if (c == ‘*’) { return TIMES; } 

if (c is a letter) {  

 c=NextChar();  

 while (c is a letter or digit) {  c=NextChar(); } 

 undoNextChar(c); 

 return ID; 

} 

 



 

 

Imperative Lexer: what vs. how 

c=nextChar(); 

if (c == ‘=‘) { c=nextChar(); if (c == ‘=‘) {return EQUALS;}} 

if (c == ‘+’) { return PLUS; } 

if (c == ‘*’) { return TIMES; } 

if (c is a letter) {  

 c=NextChar();  

 while (c is a letter or digit) {  c=NextChar(); } 

 undoNextChar(c); 

 return ID; 

}      

 little logic, much plumbing 



 

 

Identifying the plumbing (the how, part 1) 

c=nextChar(); 

if (c == ‘=‘) { c=nextChar(); if (c == ‘=‘) {return EQUALS;}} 

if (c == ‘+’) { return PLUS; } 

if (c == ‘*’) { return TIMES; } 

if (c is a letter) {  

 c=NextChar();  

 while (c is a letter or digit) {  c=NextChar(); } 

 undoNextChar(c); 

 return ID; 

}        

 characters are read always the same way 



 

 

Identifying the plumbing (the how, part 2) 

c=nextChar(); 

if (c == ‘=‘) { c=nextChar(); if (c == ‘=‘) {return EQUALS;}} 

if (c == ‘+’) { return PLUS; } 

if (c == ‘*’) { return TIMES; } 

if (c is a letter) {  

 c=NextChar();  

 while (c is a letter or digit) {  c=NextChar(); } 

 undoNextChar(c); 

 return ID; 

}  

       tokens are always return-ed 



 

 

Identifying the plumbing (the how, part3) 

c=nextChar(); 

if (c == ‘=‘) { c=nextChar(); if (c == ‘=‘) {return EQUALS;}} 

if (c == ‘+’) { return PLUS; } 

if (c == ‘*’) { return TIMES; } 

if (c is a letter) {  

 c=NextChar();  

 while (c is a letter or digit) {  c=NextChar(); } 

 undoNextChar(c); 

 return ID; 

}        

 the lookahead is explicit (programmer-managed) 



 

 

Identifying the plumbing (the how) 

c=nextChar(); 

if (c == ‘=‘) { c=nextChar(); if (c == ‘=‘) {return EQUALS;}} 

if (c == ‘+’) { return PLUS; } 

if (c == ‘*’) { return TIMES; } 

if (c is a letter) {  

 c=NextChar();  

 while (c is a letter or digit) {  c=NextChar(); } 

 undoNextChar(c); 

 return ID; 

}    

 must build decision tree out of nested if’s (yuck!) 



 

 

Can we hide the plumbing? 

In a cleaner code, we want to avoid the following  
– if’s and while’s to construct the decision tree 

– calls to the read method 

– explicit return statements 

– explicit lookahead code 

Ideally, we want code that looks like the specification: 

TOKEN Lexeme 

ID a sequence of one or more letters or digits starting with a 
letter 

EQUALS “==“ 

PLUS “+” 

TIMES “*” 



 

 

Separate out the how (plumbing) 

The code actually follows a simple pattern: 

– read next char, 

– compare it with some predetermined char 

– if matched, jump to the next read of next char 

– repeat this until a lexeme is built; then return a token. 

What’s a programming model for encoding this? 

– finite-state automata 

– finite: number of states is fixed, i.e., input independent 

read a char read a char 
return  
a token 

compare with c1 compare with c2 



 

 

Separate out the what 

c=nextChar(); 

if (c == ‘=‘) { c=nextChar(); if (c == ‘=‘) {return EQUALS;}} 

if (c == ‘+’) { return PLUS; } 

if (c == ‘*’) { return TIMES; } 

if (c is a letter) {  

 c=NextChar();  

 while (c is a letter or digit) {  c=NextChar(); } 

 undoNextChar(c); 

 return ID; 

} 



 

 

Here is the automaton; we’ll refine it later 

ID 

TIMES 

PLUS 

EQUALS 
= = 

+ 

* 
letter 

letter or digit 

letter or digit 

NOT  letter or digit 
action: undoNextChar 



 

 

A declarative scanner 

Part 1: declarative (the what) 

describe each token as a finite automaton  
this specification must be supplied for each scanner, of course  
(it specifies the lexical properties of the input language) 

 

Part 2: operational (the how) 

connect these automata into a scanner automaton 
common to all scanners (like a library),  
responsible for the mechanics of scanning 

 



Automata are hard to draw.  Need a notation. 

For convenience and clarity, we want text notation 

 

 

 

Kleene invented regular expressions for the purpose: 

a b  a followed by b (sometimes written a.b) 

a*  zero or more repetitions of a 

a | b a or b 

 

Our example:  ab*c 
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state state final state 
a c 

b 



Regular expressions 

Regular expressions contain: 
– characters : these must match the input string 

– meta-characters: these serve as operators (*, |, [,], etc) 

Operators operate on REs (it’s a recursive definition) 
char  any character is a regular expression  

r1 r2  so is r1 followed by r2 

r*   zero or more repetitions of r 

r1 | r2 match r1 or r2 

 

r+   one or more instances of r, desugars to rr* 

[1-5] same as (1|2|3|4|5) ; [ ] denotes a character class 

[^a]  any character but a 

\d   matches any digit 

\w   matches any letter 
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Blog post du jour 

http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html 

… 

1957 - John Backus and IBM create FORTRAN. There's nothing funny about 
IBM or FORTRAN. It is a syntax error to write FORTRAN while not 
wearing a blue tie. 

… 

1964 - John Kemeny and Thomas Kurtz create BASIC, an unstructured 
programming language for non-computer scientists. 

1965 - Kemeny and Kurtz go to 1964. 

… 

1987 - Larry Wall falls asleep and hits Larry Wall's forehead on the keyboard. 
Upon waking Larry Wall decides that the string of characters on Larry 
Wall's monitor isn't random but an example program in a programming 
language that God wants His prophet, Larry Wall, to design. Perl is born. 
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Implementing Regular Expressions 



Compare performance of RE in three languages 

Consider regular expression X(.+)+X 

Input1:  "X=================X"       match 

Input2:  "X=================="       no match 

 

JavaScript:  "X====…========X".search(/X(.+)+X/) 

– Match: fast No match: slow 

Python:  re.search(r'X(.+)+X','=XX======…====X=') 

– Match: fast  No match: slow 

awk:  echo '=XX====…=====X=' | gawk '/X(.+)+X/' 

– Match: fast  No match: fast 
 

Sidenote: compare how the three languages integrate regular expressions. 
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This problem occurs in practice: HW1 fall 2010 

Problem: Find mailing addresses in HTML and wrap them in links to google maps. 

From  the course newsgroup: “I had been experiencing the same problem -- some 
of my regex would  take several minutes to finish on long pages. 

 

 /((\w*\s*)*\d*)*Hi There/   times out on my Firefox.  

 

 /Hi There((\w*\s*)*\d*)*/   takes a negligible amount of time.  

 

It is not too hard to see why this is. 

 

To fix this, if you have some part of the regex which you know must occur and does 
not depend on the context it is in (in this example,  the string "Hi There"), then you 
can grep for that in the text of the entire page very quickly. Then gather the some 
number of characters (a hundred or so) before and after it, and search on that for 
the given regex.  … 

 

I got my detection to go from several minutes to a second by doing just the first.” 38 



Why do implementations differ? 

Some are based on backtracking (can be slow) 

to conclude that X========== does not match X(.*)*X, 
backtracking needs to try all ways to match the string, 
including: (==)(===)(=)… and (=)(=)(==)… and … 

 

Some are based on automata 

automata can keep track of all possible matches at once 

 

There are semantic differences between the two 

see Lecture 11 
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Implementation via backtracking 



Implementation with backtracking via Prolog 

Turn RE into a context-free grammar.  

Build the parser for the grammar with Prolog (see L8). 

 

RE:    a* 

Grammar:   A ::= aA |  

Backtracking parser:  a([], []).   

    a([a|R], Out) :- a(R,Out). 

    parse(S) :- a(S,[]).  

 

RE:    (ba*)* 

Grammar:   S ::= bA |  

   A ::= aA |  41 



Implementation with btracking via coroutines 

Step 1: Use SDT to compile RE to AST 

Step 2:  Walk over AST and generate code to HW2 RE 
coroutine library 

 

RE:   (a(b)*)* 

AST:   

Generated code (approximate):  

 match(s,star(seq(char(“a”, star(prim(“b”)))))) 
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SDT to obtain AST of an RE  

%ignore /\n+/ 

 

%% 

 

// A regular expression grammar 

 

R ->  'a'        %{ return ('prim', n1.val) %} 

  | R R          %{ return ('seq', n1.val, n2.val) %} 

  | R '*'        %{ return ('star', n1.val)        %} 

  | R '|' R      %{ return ('alt', n1.val, n3.val) %} 

  | '(' R ')'    %{ return n2.val %} 

  ; 
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Generate code in SDT, w/out intermediate AST 

 

%ignore /\n+/ 

 

%% 

 

// A regular expression grammar 

 

R ->  'a'               %{ return 'prim("%s")' % n1.val           %} 

  | R R       %dprec 2  %{ return 'seq(%s,%s)' % (n1.val, n2.val) %} 

  | R '*'     %dprec 1  %{ return 'star(%s)' % n1.val             %} 

  | R '|' R   %dprec 3  %{ return 'alt(%s,%s)' % (n1.val,n3.val)  %} 

  | '(' R ')'           %{ return n2.val %} 

  ; 
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Implementation via automata 



Finite automata, in more detail 

Deterministic (DFA):   

- state transition unambiguously determined by the input 

- more efficient implementation 

 

Non-deterministic (NFA):  

- state transition determined by the input and an oracle 

- less efficient implementation  

- lend themselves to “composability”, which we’ll use to 
compile REs to automata 
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DFAs 
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Deterministic finite automata (DFA) 

We’ll use DFA’s as recognizers: 
– recognizer accepts a set of strings, and rejects all others 

 

For example, a DFA tells us if a string is a valid lexeme 
– DFA defining identifiers accepts “xyx” but rejects “+3e4” 
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Finite-Automata State Graphs 

• A state 

• The start state 

• A final state 

• A transition 
a 
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Finite Automata 

Transition 

s1 
a s2 

Is read 

In state s1 on input “a” go to state  s2 

 

String accepted if 

entire string consumed and automaton is in accepting state 

Rejected otherwise.  Two possibilities for rejection: 

– string consumed but automaton not in accepting state   

– next input character allows no transition (stuck automaton) 
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Deterministic Finite Automata 

Example:  JavaScript Identifiers 
sequences of 1+ letters or underscores or dollar signs or digits,  
starting with a letter or underscore or a dollar sign:  

letter | _ | $ 
letter | _ | $ | digit 

S A 
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Example: Integer Literals 

DFA that recognizes integer literals  

with an optional + or - sign: 

+ 

digit 

S 

B 

A 

- 

digit 

digit 
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And another (more abstract) example  

• Alphabet {0,1} 

• What strings does this recognize? 

0 

1 

0 

1 

0 

1 
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Formal Definition 

A finite automaton is a 5-tuple (, Q, , q, F) where: 

 

–  :  an input alphabet 

– Q:   a set of states  

– q:  a start state q 

– F:  a set of final states F  Q 

– :  a state transition function: Q x   Q  
(i.e., encodes transitions  state input state) 
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Language defined by DFA 

 

The language defined by a DFA is the set of strings 
accepted by the DFA.  

 

in the language of the identifier DFA shown above:  
x, tmp2, XyZzy, position27.  

 

not in the language of the identifier DFA shown above:  
123, a?, 13apples.  
 



NFAs 
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Deterministic vs. Nondeterministic Automata 

Deterministic Finite Automata (DFA) 

– in each state, at most one transition per input character 

– no -moves: each transition consumes an input character 

Nondeterministic Finite Automata (NFA) 

– allows multiple outgoing transitions for one input 

– can have -moves 

Finite automata need finite memory 

– we only need to encode the current state 

NFA’s can be in multiple states at once 

– still a finite set 
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A simple NFA example 

Alphabet: { 0, 1 } 

 

 

 

Nondeterminism: 

when multiple choices exist, automaton “magically” 
guesses which transition to take so that the string can be 
accepted (if it is possible to accept the string) 

Example:  

on input “11” the automaton could be in either state  

1 

1 
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Epsilon Moves 

Another kind of transition: -moves 

 

The automaton is allowed to move from state A to 
state B without consuming an input character 

A B 
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Execution of Finite Automata (DFA) 

A DFA can take only one path through the state graph 

– completely determined by input  

 

Implementation: table-based  

nextState := transitions[currentState, nextChar] 
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Execution of Finite Automata (NFA) 

NFAs can choose 

– whether to make -moves 

– which of multiple transitions for a single input to take 

We can think of NFAs in two alternative ways: 

1) the choice is determined by an oracle 
the oracle makes a clairvoyant choice (looks ahead into the input) 

2) NFAs are in several states at once (see next slide) 
these states correspond to all possible past oracle choices 

We can emulate NFA 

Keep track of current states.  O(NS) time.  S=#states 

Or we can convert NFA to DFA.   

O(N) matching time.  But the DFA can be 2S in size. 
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Acceptance of NFAs 

An NFA can get into multiple states 

Input: 

0 

1 

1 

0 

1 0 1 

Rule: NFA accepts if it can get into a final state 

ie, there is a path from start to end labeled with the input 
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NFA vs. DFA (1) 

NFA’s and DFA’s are equally powerful 

each NFA can be translated into a corresponding DFA  
one that recognizes same strings 

NFAs and DFAs recognize the same set of languages 
called regular languages 

NFA’s are more convenient ... 

– allow composition of automata 

... while DFAs are easier to implement, faster 

– there are no choices to consider 

– hence automaton always in at most one state 
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NFA vs. DFA (2) 

For a given language the NFA can be simpler than a DFA 

0 
1 

0 

0 

0 
1 

0 

1 

0 

1 

NFA 

DFA 

DFA can be exponentially larger than NFA 
eg when the NFA is translated to DFA 



Translating an NFA to DFA 

Key idea: NFA can be in multiple states at once.   

“The blue tokens can be in any subset of NFA states.” 

Each such subset is called a configuration. 

Let’s create a DFA with a state for each configuration 

there are 2N such states 

How do we place transitions in this DFA? 
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if char ‘a’ moves tokens from 
NFA states 5, 7 into exactly 
states 9, 15, we add a-labeled 
edge between these 
configurations. 



Intermission: Answer to Primality Test puzzle 

First, represent a number n as a unary string 

7 == '1111111' 

Conveniently, we'll use Python's * operator 

str = '1'*n    # concatenates '1' n times 

n not prime if str can be written as ('1'*k)*m, k>1, m>1 

(11+)\1+ # recall that \1 matches whatever (11+) matches 

Special handling for n=1.  Also, $ matches end of string 

re.match(r'1$|(11+)\1+$', '1'*n) .group(1)  

Note this is a regex, not a regular expression 

Regexes can tell apart strings that reg expressions can't 
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Compiling r.e. to NFA 

How would you proceed? 
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Example of abstract syntax tree (AST) 

 

 (ac|de*)+ 
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Regular Expressions to NFA (1) 

For each kind of rexp, define an NFA 

– Notation: NFA for rexp M         

M 

• For : 
 

• For literal character a: 
a 
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Regular Expressions to NFA (2) 

For A  B 

A B 
 

For A | B 

A 

B 

 

 

 

 
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Regular Expressions to NFA (3) 

For A* 

A 

  

 

 



 

72 

Example of RegExp -> NFA conversion 

Consider the regular expression 

(1|0)*1 

The NFA is 

1 

0 
1 

  

 

 

 

  

 

 

A B 

C 

D 

E 

F 

G H I J 



SDT that visualizes RE-to-NFA translation 

SDT can translate (1|0)*1 not only to RE but 
also to a dotty file that visualizes this RE.  
Dotty file: 
 
digraph G {f7 -> f8 [label="a"] 

f7 [label=""] 

f8 [label=""]f9 -> f10 [label="b"] 

f9 [label=""] 

f10 [label=""] 

f11 -> f9 [label=""] 

f10 -> f12 [label=""] 

f11 -> f12 [label=""] 

f12 -> f11 [label=""] 

f11 [label=""] 

f12 [label=""]f13 -> f14 [label="c"] 

f13 [label=""] 

f14 [label=""] 

f15 -> f13 [label=""] 

f14 -> f16 [label=""] 

f15 -> f16 [label=""] 

f16 -> f15 [label=""] 

f15 [label=""] 

f16 [label=""] 

f17 -> f11 [label=""] 

f17 -> f15 [label=""] 

f12 -> f18 [label=""] 

f16 -> f18 [label=""] 

f17 [label=""] 

f18 [label=""] 

f19 -> f7 [label=""] 

f8 -> f17 [label=""] 

f18 -> f20 [label=""] 

f19 [label=""] 

f20 [label=""]} 73 



What strings can we tell apart with RE? 



Exercise 

Write a RE or automaton that accepts a string over 
the alphabet { (, ) } iff the string has balanced 
parentheses: 

(()(()))  balanced 

(()((())) not balanced 

 

Can’t be done.  We need to count open left parens.  

Since the input can be arbitrarily large, we need a 
counter or a set of states that is unbounded in size. 

Sadly, finite automata have only finite number of states. 
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Expressiveness of RE recognizers 

What does it mean to "tell strings apart"? 

Or "test a string" or "recognize a language",  
where language = a (potentially infinite) set of strings 

 

It is to accept only strings that have some property 

- e.g., can be written as ('1'*k)*m, for some k>1, m>1 

- or contain only balanced parentheses:  ((())()(())) 
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Primality testing revisited 

Why can't RE test if a string matches ('1'*k)*m,  k>1,m>1? 

 

It may seems that  

('1'*k)*m,  k>1,m>1 

is equivalent to  

(11+)(11+)+ 

 

Exercise: Find a string tha matches the latter but does 
not match the former. 
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To be continued in Lecture 11 

We will uncover surprising semantic differences 
between regexes and REs. 
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Concepts 

• SDT converts RE to NFA: an interesting compiler 

• recognizers: tell strings apart 

• NFA, DFA, regular expressions = equally powerful 

• but \1 (backreference) makes regexes more pwrful 

• Syntax sugar: e+ desugars to e.e* 

• Compositionality: be weary of greedy semantics 

– this will be covered in L11 

• Metacharacters: characters with special meaning 
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Summary of DFA, NFA, REs 

What you need to understand and remember 

– what is DFA, NFA, regular expression 

– the three have equal expressive power 

– what is meant by the “expressive power” 

– you can convert  
• RE  NFA  DFA 

• NFA  RE  

• and hence also DFA  RE, because DFA is a special case of NFA 

– NFAs are easier to use, more costly to execute 
• NFA emulation O(S2)-times slower than DFA 

• conversion NFADFA incurs exponential cost in space 
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