
1

Lecture 12

Ideas for the Final Project
DSLs in real world; language extensions

Ras Bodik
Shaon Barman

Thibaud Hottelier

Hack Your Language!
CS164: Introduction to Programming
Languages and Compilers, Spring 2012

UC Berkeley

Final project

Think of it as self-designed PA10

The goal: convince yourself you can use CS164 skills to
solve a real problem.

Typical final project: design and implement a small
language.

Instead of final exam, you’ll have free pizza and can
demo your work!

2

CS164 Fall 2009 Demo session

3

Also will announce winners of contests

4

Best Parser Contest.
Best PA9 Browser Demo Contest.

Fall 2010

Project timeline

5

Final project proposal

Find a problem solvable with CS164 skills

Your customers: programmers, end-users, web designers, …

Document how the problem is solved today

Give example of typical code (illustrate today’s problems)

Show how your small language would solve it (design)

Rewrite typical code in your language

Outline the implementation

Internal/external/hybrid? Compiled/interpreted?

One page of text. Due Sun Mar 3.

Work in pairs or triples.
6

Finding the right problem is half the solution

A problem well stated is a problem half solved.

Inventor Charles Franklin Kettering (1876–1958)

We're all fairly good at problem solving. That's the skill we
were taught and endlessly drilled on at school. Once we have a
problem, we know how to turn the crank and get a solution.
Ah, but finding a problem—there's the rub.

Engineering education is based on the presumption that there
exists a predefined problem worthy of a solution. If only it
were so!

From When the Problem is the Problem, Robert Lucky

7

http://web.mit.edu/invent/iow/kettering.html
http://web.mit.edu/invent/iow/kettering.html
http://spectrum.ieee.org/at-work/innovation/when-the-problem-is-the-problem

Today

What you’ll have built after PA9

– Your final project can build on PA1-9

Examples of cs164 projects

animation

browser extensions

debugger for 164

distributed continuations

Examples of influential DSLs

protovis

memoize

mapReduce family

8

Programming Assignments

PA4-6: parser and compilers

You’ll know: write a grammar,

translate programs to other language

interpret programs, limited natural
language processing

PA7-9: browser w/ modern scripting

Parse and layout a subset of HTML;

a subset of jQuery;

reactive programming

9

Reactive Programming with events

<div id="box" style="position:absolute; background: yellow;”>

 My box

</div>

<script>

document.addEventListener (

 'mousemove',

 function (e) {

 var left = e.pageX;

 var top = e.pageY;

 setTimeout(function() {

 document.getElementById("box").style.top = top;

 document.getElementById("box").style.left = left;

 } , 500);

 }, false);

</script>

PA9-like language

body.column.div
delay 500

delay 500

mouse

top

left

top

left

Program structure is clearer when data and control is explicit
• in dataflow version: changing mouse coordinates are streams
• coordinate streams adjust box position after they are delayed
• structured names of document element allow analysis

 memoize

12

memoize

Memoize: a replacement for make.

Author: Bill McCloskey, Berkeley

Allows writing build scripts in "common" languages

eg in Python or the shell

rather than forcing you to rely on make's hopelessly
recondite makefile language.

http://benno.id.au/memoize.py

13

http://benno.id.au/memoize.py

Example 1: a shell script calling memoize

#!/bin/sh

memoize.py gcc -c file1.c

memoize.py gcc -c file2.c

memoize.py gcc -o program file1.o file2.o

14

Example 2: a python script calling memoize

#!/usr/bin/env python

import sys

from memoize import memoize

def run(cmd):

 status = memoize(cmd)

 if status: sys.exit(status)

run('ocamllex x86lex.mll')

run('ocamlyacc x86parse.mly')

run('ocamlc -c x86parse.mli')

run('ocamlc -c x86parse.ml')

run('ocamlc -c x86lex.ml')

run('ocamlc -c main.ml')

run('ocamlc -o program x86parse.cmi x86parse.cmo
x86lex.cmo main.cmo')

15

How would you make it work?

Let's try to design it.

Goal: determine if a command needs to be rerun.

16

How memoize works

Key idea: determine if a command needs to run

Assumptions: a command is a pure function

– its output depends only on its input files

– common for compilers and other build tools

Computing Dependences (what cmd depends on):

– uses strace to intercept system calls, like open

– r = os.system('strace -f -o %s -e trace=%s /bin/sh -c "%s"' %
(outfile, calls, ecmd))

Computing file modification times:

– Alternative 1: use system file modification time

– Alternative 2: compute MD5 hash value for a value

Keep dependences and times in a file

17

 D3

18

D3: a JS DSL for manipulating data documents

19

D3 example

20

Problems solvable by DSLs

Where did we already use DSLs in cs164 project:

– grammars

– graph visualization

Additional DSLs that would come really handy

– tree rewriting

– grammar debuggers

– environment visualizers

21

Problems solvable by DSLs

• scripting of games, build processes, etc

• templating of web pages and other documents

• graph layout (GraphViz)

• tree rewriting (GrGen)

22

MediaWiki Template DSL

The Template:Weather page has the text:

The Weather in {{{1}}} is always {{{2}}}.

An editor can then add the template {{Weather}} on
several other wikipages. On the State of Maine page:

{{Weather|Maine|cold}}

Displays:

The Weather in Maine is always cold.

On the State of Florida page:

{{Weather|Florida|hot}}

Displays:

The Weather in Florida is always hot.
23

MapReduce family

• MapReduce

• Sawsall

• PlumeJava

24

Example projects from past cs164

Grainline: constraint language for tailors

TablUI:

25

brainstorming

26

Customers of your DSLs

27

Discussion continued

28

Low-risk final projects

• These projects are safe in that you don't need to
come up with a problem to be solved by the
language. You will still need to do some good
thinking before you can implement these
languages.

• Can implement in 164 or in another langauge (eg
Lua, Python, JavaScript, etc)

29

Extend an existing DSL

• write a plugin for jQuery: example of a plugin that
adds if/else to jQuery (this is a nice example bit it is
too small for a final project)

• make jQuery animation a bit richer, for example
allow some of these composable animations

• add a new kind of "mark" to protovis

30

http://mar.anomy.net/entry/2008/11/04/20.00.32/
http://conal.net/Fran/tutorial.htm
http://conal.net/Fran/tutorial.htm
http://conal.net/Fran/tutorial.htm
http://code.google.com/p/protovis-js/wiki/PvBar

Rethink an existing DSL

• Do jQuery or protovis better

31

Grow the 164 language

• extend 164 with some cool features, such as meta-
programming (to support sugar directly)

32

Bug finding

• write a tool that finds a class of bugs (a program
analyzer).

– memory leaks

• This tool could instrument the program and identify
potential bugs

• generate interface for C programs from a config
file: examples: swig

33

http://www.swig.org/Doc1.1/HTML/Introduction.html

Compilation and source-to-source translation

1) Compile the 164 language into more efficient code

ex: turn hashtables into structs (tuples) when possible

May involve adding static types or program analysis

2) Translate 164 to a language with a fast interpreter

eg Lua (Python and JS don’t have full coroutines)

Motivation: remove interpretation overhead, thus
enable more exciting final projects

34

Debugger for 164 language

• especially one that can be easily given to students
in a starter kit

• breakpoints, pretty-printing of data

• exploit existing Python debuggers?

35

Pros

• Domain-specific languages allow solutions to be expressed
in the idiom and at the level of abstraction of the problem
domain. Consequently, domain experts themselves can
understand, validate, modify, and often even develop
domain-specific language programs.

• Self-documenting code.

• Domain-specific languages enhance quality, productivity,
reliability, maintainability, portability and reusability.

• Domain-specific languages allow validation at the domain
level. As long as the language constructs are safe any
sentence written with them can be considered safe.

36

Cons of DSLs

• Cost of learning a new language vs. its limited applicability

• Cost of designing, implementing, and maintaining a domain-
specific language as well as the tools required to develop
with it (IDE)

• Finding, setting, and maintaining proper scope.

• Difficulty of balancing trade-offs between domain-specificity
and general-purpose programming language constructs.

• Potential loss of processor efficiency compared with hand-
coded software.

• Proliferation of similar non-standard domain specific
languages, i.e. a DSL used within insurance company A
versus a DSL used within insurance company B.

37

http://en.wikipedia.org/wiki/Integrated_Development_Environment
http://en.wikipedia.org/wiki/Algorithmic_efficiency

