
1

Lecture 14

Data Abstraction
Objects, inheritance, prototypes

Ras Bodik
Shaon Barman

Thibaud Hottelier

Hack Your Language!
CS164: Introduction to Programming
Languages and Compilers, Spring 2012

UC Berkeley

Announcement

Ras will hold a review tomorrow 11-12 in the Woz

topics: parsing and coroutines; bring your questions

Project Proposals due Sunday

I will post remaining slides tonight

2

Where are we?

Our new constructs concerned control abstraction:

→ hiding complex (changes) to program control flow
under suitable programming constructs

- lazy iterators, built on coroutines

- backtracking in regexes, built with coroutines

- search for a proof tree, hidden in the Prolog interpreter

There must also be data abstraction. A few examples:

3

Objects (review from CS61B)

Why objects?

abstraction: hide implementation under encapsulation

Why inheritance?

reuse: specialization of an object’s behavior reuses its code

4

Our Design Rationale

We want to support objects

What is the minimum base language to support objects?

Our language already supports closures

which are similar in that they carry state and code

Can we build objects from this existing mechanism?

rather than adding support for objects into base language?

5

Single-Method Approach

6

We have seen closure-based objects already

Where did we use closures as objects?

Iterators are single-method objects

on each call, iterators return the next element and
“advance” their iterator state

7

Use of single-method object

 d = newObject(0)

 print d("get") --> 0

 d("set", 10)

 print d("get") --> 10

8

Multi-method object represented as a closure

function newObject (value)

 function (action, v) {

 if (action == "get“) {

 value

 } else if (action == "set“) {

 value = v

 } else {

 error("invalid action")

} } }

9

Objects as tables

10

Recall tables

Create a table

{}

{ key1 = value1, key2 = value2 }

Add a key-value pair to table (or overwrite a k/w pair)

t = {}

t[key] = value

Read a value given a key

x = t[key]

11

Object as a table of attributes

Account = {balance = 0}

Account[“withdraw”] = function(v) {

 Account[“balance”] = Account[“balance”] - v
}

Account[“withdraw”](100.00)

What syntactic sugar we add to clean this up?

12

Sugar design

13

Syntactic sugar

p.f → p[“f”] → get(p, “f”)

Careful: we need to distinguish between reading p.f

translated to get

and writing into p.f

translated to put

14

Object as a table of attributes, revisited

Account = {balance = 0}

function Account.withdraw (v) {
 Account.balance = Account.balance - v
}

Account.withdraw(100.00)

a = Account

Account = nil

a.withdraw(100.00) -- ERROR!

15

Introduce self

Account = {balance = 0}

function Account.withdraw (self, v) {
 self.balance = self.balance - v
}

a1 = Account

Account = nil

a1.withdraw(a1, 100.00) -- OK

a2 = {balance=0, withdraw = Account.withdraw}
a2.withdraw(a2, 260.00)

16

The colon notation

function Account:withdraw (v) {
 self.balance = self.balance - v
}

a:withdraw(100.00)

How to desugar?

17

Rewriting E:ID()

18

Discussion

What is the inefficiency of our current objects?

too much space wasted by each object carrying its objects
and fields that are constant across many objects

19

Meta-Methods

20

The __index metamethod

When a lookup of a field fails, interpreter consults the
__index field:

setmetatable(a, {__index = b})

21

Prototypes
poor man’s classes

22

What runtime setup do we want?

A prototype is an object that behaves like a class

23

Create an object

function Account:new (o) {

 -- create object if user does not provide one
 o = o or {}

 setmetatable(o,self)
 self.__index = self
 o
}

a = Account:new({balance = 0})
a:deposit(100.00)

24

Note about cs164 projects

We may decide not to use metatables, just the
__index field. The code

function Account:new (o) {

 o = o or {}

 setmetatable(o,self)
 self.__index = self
 o
}

Would become

function Account:new (o) {

 o = o or {}
 o.__index = self
 o }

25

Inheritance

26

Inheritance allows reuse of code …

… by specializing existing class (prototype)

How to accomplish this with a little “code wiring”?

Let’s draw the desired run-time organization:

Assume class A, subclass B, and b an instance of B

27

Must set this up in the constructor

Tasks that we need to perform

28

Define a class

Account = {balance = 0}
function Account:new (o) {
 o = o or {}

 setmetatable(o, sel)
 self.__index = self
 o

}

function Account:deposit (v) {
 self.balance = self.balance + v }
function Account:withdraw (v) {
 if (v > self.balance) {

 error"insufficient funds" }
 self.balance = self.balance - v
} 29

Create subclass of Account

SpecialAccount = Account:new()

s = SpecialAccount:new({limit=1000.00})

s:deposit(100.00)

function SpecialAccount:withdraw (v)
 if (v - self.balance >= self:getLimit()) {
 error"insufficient funds"
 }
 self.balance = self.balance - v
}

function SpecialAccount:getLimit () {
 self.limit or 0
} 30

Discussion of prototype-based inheritance

Notice the sharing:

constant-value object attributes (fields) remain stored in
the prototype until they are assigned.

After assignment, the object stores the attribute rather
than finding it in the prototype

31

Multiple Inheritance

32

“Privacy”

protecting the implementation

33

Our goal

Support large programmer teams.

Bad scenario:

– programmer A implements an object O

– programmer B uses O relying on internal details of O

– programmer A changes how O is implemented

– the program now crashes on customer’s machine

How do OO languages address this problem?

- private fields

34

Language Design Excercise

Your task: design an analogue of private fields

Lua/164 supports meta-programming

it should allow building your own private fields

35

Object is a table of methods

function newAccount (initialBalance)
 def self = {balance = initialBalance}

 def withdraw (v) {

 self.balance = self.balance – v }
 def deposit (v) {

 self.balance = self.balance + v }
 def getBalance () { self.balance }

 {
 withdraw = withdraw,
 deposit = deposit,
 getBalance = getBalance
} }

36

Use of this object

acc1 = newAccount(100.00)
acc1.withdraw(40.00)
print acc1.getBalance() --> 60

37

Discussion of Table of methods approach

This approach supports private data

Users of the object cannot access the balance except via
objects methods.

Why is this useful?

implementation is hidden in functions and can be swapped

because the client of this object is not reading its fields

How can we extend the object with private methods?

38

We can safely change the implementation

function newAccount (initialBalance)
 def self = {

 balance = initialBalance,

 LIM = 1000,

 }

 def extra() {

 if (self.balance > self.LIM)

 { self.balance * 0.1 } else { 0 }

 }

 def getBalance () { self.balance + extra() }

 // as before
 { /* methods */ }

} 39

More discussion

Can the table-of-methods objects be extendedto
support inheritance?

40

Reading

Required:

Chapter 16 in PiL

41

