
1

Lecture 16

Unification Static Types
type inference as constraint solving with Prolog

Ras Bodik
Shaon Barman

Thibaud Hottelier

Hack Your Language!
CS164: Introduction to Programming
Languages and Compilers, Spring 2012
UC Berkeley

Type inference

In OO static types like Java’s, programmers annotate
variables/parameters with types.

Foo myFunction(Bar b)

Why ask for these annotations when the type can be
(often) inferred automatically?

today we will look at one such type inference

2

Example

Consider this factorial program.

def fact(n):

if (n==0) { 1 } else { n * fact(n-1) }

Let's type this function. Typing a function includes
type inference and type checking. Three questions:

– what is the type of the parameter n?

– what is the return type of fact?

– is the function type safe, ie will it perform only
operations sanctioned by their type?

 3

Let’s write type rules of our arithmetic

Conveniently, we will use Prolog:

type(0,int). % 0 is an int value

type(1,int).

mult(int,int,int). % E * E

mult(float,float,float).

sub(int,int,int). % E - E

sub(float,float,float).

comparable(int,int). % E == E

comparable(float,float).

These rules hold for all programs in our language. 4

Collect constraints from the program

Now translate a program into type constraints.

def fact(n):

 if (n==0) {

 1

 } else {

 n * fact(n-1)

 }

If all these constraints hold, fact is type safe.

5

Constraints for the factorial function

fact(fun(I,O)) :- % I is the type of n

 type(0,T0), % T0 is the type of value 0

 type(1,T1), % T1 is the type of value 1

 comparable(I,T0), % is n==0 legal?

 T1=O, % type(1) must equal ret type

 mult(I,O,O),

 sub(I,T1,I). % (2)

6

Solving type constraints

We ask Prolog to solve these constraints.

?- fact(fun(I,O)).

I = int

O = int

There is a solution to these constraints, so fact is type
safe when if called with the parameter type I=int.

We also learn that it will return value of type O=int.

7

Notes

fun(I,O) is our (Prolog) way of denoting the function
type. The usual notation is I -> O

How do we know that the return type of fact(n-1) is
O?

We have decided that fact has the same type in each
invocation, hence the type fact(n-1) must be the same
as that of fact(n), which we denoted O.

8

ML

A language that has influenced moder static
languages, such as Scala.

ML is based on unification type system, like we used in our
fact example.

Let’s look at ML’s type more closely.

9

Function definition are composed of cases

Function definition:

fun fact 0 = 1

 | fact n = n * fact(n-1);

If the definition type checks, the compiler
accepts the definition, and prints out:

val fact = fn : int -> int

10

Lists

The cons operator

1::2::3::[]

is the same as

[1,2,3]

The :: operator is a binary function with infix syntax.

11

Type inference for lists

Let’s type this recursive function:

fun sumof [] = 0

 | sumof (h::t) = h + sumof t;

val sumof = fn : ______________________

12

More list type inference

What’s different in this function definition?

fun map(f, []) = []

 | map(f,(h::t)) = f(h)::(map(f, t));

Two usage examples

map (sqrt, [1.0,2.0,3.0])

map (rev, [[1,2,3],[4,5,6],[7,8,9]])

13

Polymorphic types

What would be the type of function :: ?

'a * 'a list -> 'a list

:: is a polymorphic function

14

Let’s work out the type inference

fun map(f, []) = []

 | map(f,(h::t)) = f(h)::(map(f, t));

15

Another version of map

fun map f [] = []

 | map f (h::t) = (f h)::(map f t);

val map = fn : ('a -> 'b) -> ('a list -> 'b list)

val sqrtall = map sqrt;

val sqrtall = fn : real list -> real list

sqrtall [1.0,4.0,9.0];

val it = [1.0, 2.0, 3.0] : real list

16

