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Today 

Static program analysis 

what is it and why do it 

Points-to analysis 

static analysis for understanding how pointer values flow  

Andersen’s algorithm 

via deduction 

Andersen’s algorithm in Prolog 

just four lines 

Andersen’s algorithm via CYK parsing (optional) 

CFL-reachability 



Static program analysis 

Answers questions about program properties 

– related to static type inference 

 

Static analysis == at compile time 

– that is, prior to seeing the actual input 

– hence, the answer must be correct for all inputs 

 

Sample program properties:  

Does var x have a constant value (for all inputs)? 

Does foo() return a table (whenever called, on all inputs)? 
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Motivation for static program analysis (1) 

Optimize the program.   

Ex: replace x[i] with x[1] if we know that i is always 1. 

  

Constant propagation 

i = 2 

… 

i = i+2 

… 

if (…) { …} 

… 

x[i] = x[i-1] 
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Motivation for static program analysis (2) 

Find potential security vulnerabilities  

Ex: in a server program, can a value flow from POST 
(untrusted, tainted source) to SQL interpreter (trusted sink) 
without passing through cgi.escape (a sanitizer)?  

 

This is taint analysis. Can be dynamically or static. 

Dynamic: mark values with a tainted bit.  Sanitization clears 
the bit.  An assertion checks that tainted values do not 
reach the interpreter.  http://www.pythonsecurity.org/wiki/taintmode/ 

 

Static: a compile-time variant of this analysis.  Proves that 
no input can ever make a tainted value flow to trusted sink. 
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Motivation for static program analysis (3) 

Optimization of  virtual calls in Java: 

virtual calls are costly, due to method dispatch 

Idea:  

Determine the target function of the call statically.   

If we can prove that the call has a single target, it is safe to 
rewrite the virtual call so that it calls the target directly. 

How to analyze whether a call has this property? 

1. Based on declared (static) types of pointer variables:  
Foo a = …; a.f()  // a could call Foo::f or Bar::f. Cant’ tell from def of a 

2. By analyzing what values flow to a=….   
That is, we try to compute the dynamic type of a more precisely 
than is given by the definition “Foo a”. 
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Example 

class A            { void foo() {…} } 

class B extends A  { void foo() {…} } 

void bar(A a) { a.foo() }  // can we optimize this call? 

B myB = new B(); 

A myA = myB; 

bar(myA); 

 
Declared type of a permits a.foo() to call both A::foo and B::foo. 

 

Yet we know only B::foo is the target, which allows optimization. 

 

What program property would reveal that the optimization is possible? 

7 



Client 2: Verification of casts 

In Java, casts are checked at run time  

– type system not expressive enough to check them statically 

– although Java generics help somewhat 

The anatomy of a cast check: (Foo) e  translates to 

– if ( dynamic_type_of(e) not compatible with Foo ) 

      throw ClassCast Exception 

– t1 compatible with t2: t1 = t2 or t1 subclass of t2 

Goal: prove that no exception will happen at runtime 

– Why do this?  The exception prevents any security holes, no? 

– Such static verification useful to catch bugs (Mars Rover). 
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Example 

class SimpleContainer { Object a; 

 void put (Object o) { a=o; }   

  Object get() { return a; }     }   

SimpleContainer c1 = new SimpleContainer(); 

SimpleContainer c2 = new SimpleContainer(); 

c1.put(new Foo()); c2.put(“Hello”); 

Foo myFoo = (Foo) c1.get();  // verify that cast does not fail 

 

Note: analysis must distinguish containers c1 and c2. 

– otherwise c1 will appear to contain string objects 

What property will lead to desired verification? 
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Motivation for static program analysis (4) 

Compile 164 into efficient code 

If p always refers to tables that contains fields f1 and f2, we 
can represent the table as a struct and compile p[“f2”] into 
an (efficient) instruction “load from address in p + 4 bytes”. 

The analysis 

Determine at compile time what fields the object may ever 
contain at run time.  

A conservative rule (conservative=sufficient but not necessary):   

Compute, at compile time: 
• the set of fields are added to the table using stmt e.ID=e 

• the table’s fields must not be written or read through operator 
e[e] (only through e.ID) 
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Discussion 

Why is e[e] dangerous?  Consider:   

– p[read_input_string()]=… 

 

creates a field whose name is unknown statically 
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Example (JavaScript) 

var p = new Foo;   // line 1 
var r = p.field; 
var s = {}; 
s[r.f] = p; 
var t = s[input()]; 
t.g = … 

Consider the Foo objects created in line 1: 

Can we determine at compile time what fields these 
objects will contain during their lifetime (for any input)?  

If these objects are not accessed via e[e], then we can 
compute (a superset of) these fields. 

Can we tell if this program access Foo’s via e[e]? 
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Static analysis must be conservative  

When unsure, the analysis must answer such that it 
does not mislead the client of the analysis. 

Err on the side of caution.  Say, never optimize the program 
such that it outputs a different value. 

 

Several ways an analysis can be unsure: 

Property holds on some but not all execution paths.  

 

Property holds on some but not all inputs.  
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Misleading the client:  

Constant propagation:  

if x is not always a constant but is claimed to be so by the 
analysis to the client (the optimizer), this would lead to 
optimization that changes the semantics of the program.  
The optimizer broke the program. 

 

Taintedness analysis:  

Saying that a tainted value cannot flow may lead to missing 
a bug by the security engineer during program review.  Yes, 
we want find to find all taintendness bugs, even if the 
analysis reports many false positives (ie many warnings are 
not bugs). 
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What analysis that can serve these clients? 

Is there a program property useful to these clients? 

Yes.  

We want to understand how references “flow” 

References (pointer values):  how are they copied from 
variable to variable? 

Flow from creation of an object to its uses 

that is, flow from new Foo to myFoo.f  

Note: the pointer may flow via the heap  

– that is, a pointer may be stored in an object’s field 

– ... and later read from this field 
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Common Analysis 

The flow analysis can be explained in terms of  

– producers (creators of pointer values: new Foo) 

– consumers  (uses of the pointer value, eg, a call p.f()) 

Client virtual call optimization 

For a given call p.f() we ask which expressions new T() 
produced the values that may flow to p. 

we are actually interested in which values may not flow  

Knowing producers will tells us possible dynamic types of p. 

… and thus also the set of target methods 
and thus also the set of target methods which may not be called 
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Continued.. 

Client cast verification 

Same, but consumers are expressions (Type) p. 

Are they also produces? 

Client 164compilation 

– For each producer new Foo find if all consumers e1[e2] 
such that the producer flows to e1 

– If there are no such consumers, Foo can be implemented 
as a struct. 
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Assume Java 

For now, assume we’re analyzing Java 

– thanks to class defs, fields of objects are known statically 

– (also, assume the Java program does not use reflection) 

 

18 



Flow analysis as a constant propagation 

Initially we’ll only handle new and assignments p=r: 

 

if (…) p = new T1()  

else   p = new T2() 

r = p  

r.f()   // what are possible dynamic types of r? 
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Flow analysis as a constant propagation 

We (conceptually) translate the program to 

 

if (…) p = o1  

else   p = o2 

r = p  

r.f()   // what are possible symbolic constant values r? 
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Abstract objects 

The oi constants are called abstract objects 

– an abstract object oi stands for any and all dynamic 
objects allocated at the allocation site with number i 

– allocation site = a new expression  

– each new expression is given a number i 

 

When the analysis says a variable p may have value o7 

– we know that p may point to any object allocated in the 
expression “new7 Foo” 
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We now consider pointer dereferences 

x = new Obj();  // o1 

z = new Obj();  // o2 

w = x; 

y = x; 

y.f = z; 

v = w.f;  

 

To determine abstract objects that v reference, what 
new question do we need to answer? 

Can y and w point to same object? 
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Keeping track of the heap state 

Heap state:  what objects a variable may point to at a 
particular program point.  

Heap state may change at each statement 

 

Analyses often don’t track state at each point separately  

– to save space, they collapse all program points into one 

– consequently, they keep a single heap state  

 

This is called flow-insensitive analysis 

why? see next slide 
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Flow-Insensitive Analysis 

Disregards the control flow of the program  

– assumes that statements can execute in any order … 

– … and any number of times 

Effectively, flow-insensitive analysis transforms this 

if (…) p = new T1(); else p = new T2(); 

r = p; p = r.f;  

into this control flow graph: 
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p = new T1() 

p = new T2() p = r.f 

r = p 



Flow-Insensitive Analysis 

Motivation: 

– there is a single program point,  

– and hence a single “version” of program state 

Is flow-insensitive analysis sound? 

– yes: each execution of the original program is preserved 

– and thus will be analyzed and its effects reflected 

But it may be imprecise 

1) it adds executions not present in the original program 

2) it does not distinguish value of p at distinct pgm points  
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Let’s develop the analysis! Canonical Stmts 

Java pointers give rise to complex expressions: 

– ex:  p.f().g.arr[i] = r.f.g(new Foo()).h 

Can we find a small set of canonical statements 

– ie, the core language understood by the analysis 

– we’ll desugar the rest of the program to these stmts 

We only need four canonical statements: 

p = new T() new 

p = r  assign 

p = r.f  getfield 

p.f = r  putfield 
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Canonical Statements, discussion 

Complex statements can be canonized 

p.f.g = r.f    

 →     

t1 = p.f 

t2 = r.f 

t1.g = t2 

 

Can be done with a syntax-directed translation 

like translation to byte code in PA2 
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Handling of method calls 

Issue 1: Arguments and return values: 

– these are translated into assignments of the form p=r 

 

Example:  

  Object foo(T x) { return x.f } 

  r = new T; s = foo(r.g) 

is translated into 

  foo_retval = x.f 

  r = new T; s = foo_retval; x = r.g 
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Handling of method calls 

Issue 2: targets of virtual calls 

– call p.f() may call many possible methods  

– to do the translation shown on previous slide, must 
determine what these targets are 

Suggest two simple methods: 

–   

 

–   
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Handling of arrays 

We collapse all array elements into one element 

– this array element will be represented by a field arr 

– ex: p.g[i] = r becomes p.g.arr = r 
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Andersen’s Algorithm 

For flow-insensitive flow analysis:  

 

Goal: compute two binary relations of interest: 

 x  pointsTo  o: holds when x may point to abstract object o 

 o  flowsTo  x:  holds when abstract object o may flow to x 

 

These relations are inverses of each other 

 

 x pointsTo o  <==>  o flowsTo x 
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These two relations  support our clients 

These relations allows determining: 

1. target methods of virtual calls 

2. verification of casts 

3. how JavaScript objects are used 

 

For 3) we need the flowsTo relation 

 

For 1) and 2) we need the x pointsTo o relation 
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Inference rule (1) 

p = newi T()     oi new p 

 

 

oi  new  p  →  oi  flowsTo  p  

 

33 



Inference rule (2) 

p = r   r  assign  p 

 

 

oi  flowsTo  r    r  assign p →  oi  flowsTo  p 
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Inference rule (3) 

p.f = a  a  pf(f)  p 

b = r.f  r  gf(f)  b 

 

oi flowsTo a        a pf(f) p      p alias r      r gf(f) b   
→  oi  flowsTo  b 
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Inference rule (4) 

it remains to define x alias y  

(x and y may point to same object): 

 

oi  flowsTo  x  oi  flowsTo  y  →  x  alias  y  
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Prolog program for Andersen algorithm 

new(o1,x).      % x=new_1 Foo() 

new(o2,z).      % z=new_2 Bar() 

assign(x,y).    % y=x 

assign(x,w).    % w=x 

pf(z,y,f).      % y.f=z 

gf(w,v,f).      % v=w.f 

 

flowsTo(O,X) :- new(O,X). 

flowsTo(O,X) :- assign(Y,X), flowsTo(O,Y). 

flowsTo(O,X) :- pf(Y,P,F), gf(R,X,F), aliasP,R), flowsTo(O,Y). 

 

alias(X,Y)   :- flowsTo(O,X), flowsTo(O,Y). 
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How to use the result of the analysis? 

When the analysis infers o flowsTo y, what did we prove?  
– nothing useful, usually, since  o flowsTo y does not imply that there 

is a program input for which o will definitely flow to y. 

 

The useful result is when the analysis can’t infer o flowsTo y 
– then we have proved that o cannot flow to y for any input 

– this is useful information! 

– it may lead to better optimization, verification, compilation 

 

Same arguments apply to alias, pointsTo relations 
– and other static analyses in general  
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Inference Example (1) 

The program: 

x = new Foo(); // o1 

z = new Bar(); // o2 

w = x; 

y = x; 

y.f = z; 

v = w.f; 
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Inference Example (2): 

The program is converted to six facts: 

 

o1 new x    o2  new z 

x  assign  w  x  assign  y 

z  pf(f)  y   w  gf(f)  v 



Inference Example (3), infering facts 

o1 new x    o2  new z 

x  assign  w  x  assign  y 

z  pf(f)  y   w  gf(f)  v 

The inference: 

o1 new x   →  o1 flowsTo  x    

o2 new z    →  o2 flowsTo  z  

o1 flowsTo  x     x  assign  w →  o1 flowsTo  w 

o1 flowsTo  x     x  assign  y →   o1 flowsTo  y 

o1 flowsTo  y     o1 flowsTo  w →  y alias w 

o2 flowsTo  z     z  pf(f)  y     y alias w   w  gf(f)  v →  
o2 flowsTo  v 

... 
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Example: visualizing Prolog deductions 
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o2 

y 

z 
new 

w 

v 

x 

o1 
new 

pf[f] gf[f] 



Example, deriving the relations 
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o2 

y 

z 
new 

w 

v 

x 

o1 
new 

pf[f] gf[f] 



Example (4): 

Notes:  
– inference must continue until no new facts can be derived 

– only then we know we have performed sound analysis 

Conclusions from our example inference: 
– we have inferred o2 flowsTo  v 

– we have NOT inferred o1 flowsTo  v 

– hence we know v will point only to instances of Bar 

– (assuming the example contains the whole program) 

– thus casts (Bar) v will succeed 

– similarly, calls v.f() are optimizable 
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“Parsing the graph” 

Visualization of inferences on slides 41 and 42 parses 
the strings in the “graph of binary facts” using the 
CYK algorithm (Lecture 8) 

 

Details on this style of inference are in the rest of the 
slide, under CFL-reachability (optional material) 
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Adaptation for JavaScript 

Need to handle more language constructs: 

– property read e1[e2] 

– property write e1[e2] = e3 

– assume that e2 can return any value,  

– and the analysis does not analyze the value 

Extensions to the algorithm: 

- analysis must determine whether an object might appear 
as e1 in e1[e2] = e3 

- if yes, we must conservatively assume that we don’t 
know objects fields 

- more similar rules are needed … 
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Summary 

Determine run-time properties of programs statically 

– example property: “is variable x a constant?” 

Statically: without running the program 

– it means that we don’t know the inputs 

– and thus must consider all possible program executions 

We want sound analysis: err on the side of caution. 

– allowed to say x is not a constant when it is 

– not allowed to say x is a constant when it is not  

Static analysis has many clients 

– optimization, verification, compilation 
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The technique 

Flow-insensitive analysis: 

– collapse into one all program points (ie, stmt entry and 
exits) 

– reduces the amount of analysis state to maintain 

– reduces precision, too, of course 

Transform this program  

if (…) p = new T1();  

else p = new T2(); 

r = p; p = r.f; 

into this one: 
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p = new T1() 

p = new T2() p = r.f 

r = p 



Andersen’s algorithm 

• Deduces the flowsTo relation from program 
statements 

– statements are facts 

– analysis is a set of inference rules 

– flowsTo relation is a set of facts inferred with analysis 
rules 

• Statement facts: we’ll write them as x 
predicateName y 

– p = newi T() oi new p 

– p = r  r assign p 

– p = r.f  r gf(f) p 

– p.f = r  r pf(f) p 
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CFL-Reachability 

deduction via parsing of a graph 
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Inference via graph reachability 

Prolog’s search is too general and expensive. 

may in general backtrack (exponential time) 

 

Can we replace it with a simpler inference algorithm? 

possible when our inference rules have special form 

 

We will do this with CFL-rechability 

it’s a generalized graph reachability 
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(Plain) graph reachability 

Reachability Def.:  
Node x is reachable from a node y in a directed graph G if 

there is a path p from y to x. 

 
How to compute reachability? 

depth-first search, complexity O(N+E) 
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Context-Free-Language-Reachability 

CFL-Reachability Def.:  
Node x is L-reachable from a node y in a directed labeled graph G if  
– there is a path p from y to x, and  
– path p is labeled with a string from a context free language L. 
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The context-free language L: 

 

matched → matched matched 

 |   ( matched )  

 |   [  matched ] 

 |   e  

 |    

[ ( e [ e ] ] 

e 

e ) 

] 
s t 

Is  t reachable from s according to the language L? 



Computing CFL-reachability 

Given  

– a labeled directed graph P and  

– a grammar G with a start nonterminal S,  

we want to compute whether x is S-reachable from y  

– for all pairs of nodes x,y 

– or for a particular x and all y 

– or for a given pair of nodes x,y 

We can compute CFL-reachability with CYK parser 

– x is S-reachable from y if CYK adds an S-labeled edge 
from y to x 

– O(N3) time 
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Convert inference rules to a grammar 

The inference rules 

ancestor(P,C) :- parentof(P,C). 

ancestor(A,C) :- ancestor(A,P), parentof(P,C). 

Language over the alphabet of edge labels 

ANCESTOR  ::=  parentof   

       |    ANCESTOR  parentof 
 

Notes:  

– initial facts are terminals (perentof) 

– derived facts are non-terminals (ANCESTOR) 
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grandma 

So, which rules can be converted to CFL-reachability? 

ANCESTOR  ::=  parentof    |    ANCESTOR  parentof 

 

Is “son” ANCESTOR-reachable from “grandma”? 
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parentof parentof parentof 

mom me son 

ANCESTOR 

ANCESTOR 

ANCESTOR 



grandma 

What rules can we convert to CFL-rechability? 

Let’s add a rule for SIBLING: 

ANCESTOR  ::=  parentof    |    ANCESTOR  parentof 

SIBLING  ::=  ??? 

 

We want to ask whether “bro” is SIBLING-reachable from 
“me”. 

57 

parentof parentof parentof 

mom me son 

parentof 

bro 



Conditions for conversion to CFL-rechability 

• Not all inference rules can be converted 

• Rules must form a “chain program” 

• Each rule must be of the form:  
foo(A,D) :- bar(A,B), baz(B,C), baf(C,D) 

• Ancestor rules have this form 
ancestor(A,C) :- ancestor(A,P), parentof(P,C). 

• But the Sibling rules cannot be written in chain form 
– why not?  think about it also from the CFL-reachability angle 

– no path from x to its sibling exists, so no SIBLING-path exists 

• no matter how you define the SIBLING grammar 
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Andersen’s Algorithm with Chain Program 

converts the analysis into a graph parsing 
problem 
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Back to Andersen’s analysis 

Rules in logic programming form: 
flowsTo(O,X) :- new(O,X). 

flowsTo(O,X) :- flowsTo(O,Y), assign(Y,X). 

flowsTo(O,X) :- flowsTo(O,Y), pf(Y,P,F), alias(P,R), 
gf(R,X,F). 

alias(X,Y)   :- flowsTo(O,X), flowsTo(O,Y). 

Problem: some predicates are not binary 
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Andersen’s algorithm inference rules 

Translate to binary form  

put field name into predicate name,  

must replicate the third rule for each field in the program 

 

flowsTo(O,X) :- new(O,X). 

flowsTo(O,X) :- flowsTo(O,Y), assign(Y,X). 

flowsTo(O,X) :- flowsTo(O,Y), pf[F](Y,P),  

             alias(P,R), gf[F](R,X). 

alias(X,Y)   :- flowsTo(O,X), flowsTo(O,Y). 
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Andersen’s algorithm inference rules 

Now, which of these rules have the chain form? 
 

flowsTo(O,X) :- new(O,X).     yes 

 

flowsTo(O,X) :- flowsTo(O,Y), assign(Y,X).   yes 

 

flowsTo(O,X) :- flowsTo(O,Y), pf[F](Y,P), alias(P,R), gf[F](R,X).    yes 

 

alias(X,Y)   :- flowsTo(O,X), flowsTo(O,Y).   no 
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Making alias a chain rule 

We can easily make alias a chain rule with pointsTo.  Recall: 
flowsTo(O,X)  :-  pointsTo(X,O) 

pointsTo(X,O) :- flowsTo(O,X) 

Hence 
alias(X,Y)   :- pointsTo(X,O), flowsTo(O,Y). 

 

If we could derive chain rules for pointsTo, we would be done.  
Let’s do that. 
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Idea:  add terminal edges also in opposite direction 

For each edge o new x, add  edge x new-1  o 

– same  for other terminal edges 

 

Rules for pointsTo will refer to the inverted edges 

– but otherwise these rules are analogous to flowsTo 

 

What it means for CFL reachability? 

there exists a path from o to x labeled with s  L(flowsTo) 
  

there exists a path from x to o labeled with s’L(pointsTo). 
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Inference rules for pointsTo 
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p = newi T() oi  new p p new-1 oi 

 
oi   new   p     →   oi  flowsTo  p   Rule 1 

p  new-1 oi      →  p  pointsTo oi   Rule 5 

 

p = r  r  assign  p p assign-1 r 

 
oi  flowsTo  r  and  r  assign p →   oi  flowsTo  p Rule 2 

p assign-1 r and  r pointsTo oi → p  pointsTo  oi Rule 6 

 



Inference rules for pointsTo (Part 2) 

 

We can now write alias as a chain rule. 
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p.f = a  a  pf(f)  p p  pf(f)-1  a 

b = r.f  r  gf(f)  b   b  gf(f)-1  r 

 

oi flowsTo a  a pf(f) p   p alias r  r gf(f) b →   oi  flowsTo  b 

b gf(f)-1 r  r alias p  p pf(f)-1 a  a flowsTo oi →   b pointsTo  oi 

        Rules 3, 7 

Both flowsTo and pointsTo use the same alias rule: 

x  pointsTo  oi  oi  flowsTo  y  →   x  alias  y Rule 8 

 



The reachability language 

All rules are chain rules now 

– directly yield a CFG for flowsTo, pointsTo via CFL-
reachability : 

 

flowsTo  →   new     

flowsTo  →   flowsTo  assign    

flowsTo   →   flowsTo  pf[f]  alias  gf[f]  

pointsTo →   new-1 

pointsTo  →   assign-1  pointsTo 

pointsTo  →   gf[f]-1  alias  pf[f]-1  pointsTo 

alias  →   pointsTo  flowsTo 
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Example: computing pointsTo-, flowsTo-
reachability 

Inverse terminal edges not shown, for clarity.   
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Summary (Andersen via CFL-Reachability) 

The pointsTo relation can be computed efficiently 

– with an O(N3) graph algorithm 

 

Surprising problems can be reduced to parsing  

– parsing of graphs, that is 
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CFL-Reachability:  Notes 

The context-free language acts as a filter 

– filters out paths that don’t follow the language 

We used the filter to model program semantics 

– we filter out those pointer flows that cannot actually 
happen 

What do we mean by that? 

– consider computing x pointsTo o with “plain” reachability 
• plain = ignore edge labels, just check if a path from x to o exists 

– is this analysis sound?  yes, we won’t miss anything 
• we compute a superset of pointsTo relation based on CFL-

reachability 

– but we added infeasible flows, example:  
• wrt  plain reachability, pointer stored in p.f can be read from p.g 
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