
1 

Lecture 24 
 
Subverting a Type System, 
Hiding Exploit in Compilers 
turning bitflip into an exploit; bootstrapping 

 

Ras Bodik      
Shaon Barman 

Thibaud Hottelier 

Hack Your Language! 
CS164: Introduction to Programming  

Languages and Compilers, Spring 2012 
UC Berkeley 



Announcement  

Classroom presentations start on Thursday 

 

See piazza for announcements and talk schedule 

2 



Today’s outline: Two Parts 

Safety guarantees we get from the type system 

under what assumptions do we get privacy? (ie, which 
constructs need to be banned from the language) 

 

how hardware failures can subvert type system guarantees 

 

Hiding an exploit in a self-generating compiler 

 
Bootstrapping the compiler 

 

“teaching” the compiler a value that gets preserved as the 
compiler is recompiled 

3 



Private object fields 

Recall the lecture on embedding OO into Lua 

 

We created an object with a private field  

the private field could store a password that could be 
checked against a guessed password for equality but the 
stored password could not be leaked 

 

Next slide shows the code 

4 



Object with a private field 

// Usage of an object with private field 

 

def safeKeeper = SafeKeeper(“164rocks”) 

print safeKeeper.checkPassword(“164stinks”)  -->  False 

 

function SafeKeeper (password) 
    def pass_private = password 
   
    def checkPassword (pass_guess) {  

        pass_private == pass_guess   

    }  

    // return the object, which is a table 
    { checkPassword = checkPassword } 

} 
 

5 



Let’s try to read out the private field! 

Assume I agree to execute any code you give me.   
Can you print the password (without trying all passwords)? 

 
def safeKeeper = SafeKeeper(“164rocks”) 

def yourFun = <paste any code here> 

// I am even giving you a ref to keeper 

yourFun(safeKeeper) 

 

Which features of the 164 language do we need to disallow to 
prevent reading of pass_private? 

1. overriding == with our own method that prints its arguments 

2. access to the environment of a function and printing the content of 
the environment 

 6 



Same in Java 

class SafeKeeper { 

    private long pass_private; 

    SafeKeeper(password) { pass_private = password } 
   
    Boolean checkPassword (long pass_guess) {  

        return pass_private == pass_guess   

}   }  
 

SafeKeeper safeKeeper = new SafeKeeper(920342094223942) 

print safeKeeper.checkPassword(1000000000001)  -->  False 

 

Redoing the exercise in Java illustrates that the issues 
exist in a statically typed language, too. 

7 



Challenge: how to read out the private field? 

Different language.  Same challenge.  

 
SafeKeeper safeKeeper = new SafeKeeper(19238423094820) 

<paste your code here; it can refer to ‘safeKeeper’> 

 

Which features of Java do we need to disallow to prevent 
reading of pass_private? 

 
read about the ability to read private fields with java reflection API 

 

 

8 

http://tutorials.jenkov.com/java-reflection/private-fields-and-methods.html


Poor attacker 

It’s frustrating to the attacker that  

 

(1) he holds a pointer a to the Java object, and  

 

(2) knows that password is at address a+16 bytes 

 

yet he can’t read out password_private from that 
memory location. 

 

9 



10 

Why can’t any program read that field? 

1. Type safety prevents variables from storing 
incorrectly-typed values.   

B b = new A()    disallowed by compiler unless A extends B 
 

2. Array-bounds checks prevent buffer overflows 

3. Can’t manipulate pointers (addresses) and hence 
cannot change where the reference points. 

 

Together, these checks prevent execution of arbitrary 
user code… 

Unless the computer breaks! 



11 

Memory Errors 

A flip of some bit in memory 

Can be caused by cosmic ray, or deliberately through 
radiation (heat) 



12 

Memory Errors 

0x4400 0x4400 

0x4404 

0x4408 

0x440C 

0x4410 

after bit 3 is flipped: 0x4408 

Exploitable! 



Attack in C language 

Before we describe the attack in Java, how would one 
forge (manufacture) a pointer in C 

 

union {  int i; char * s; } u; 

 

Here, i and s are names for the same location. 

u.i = 1000 

u.s[0] --> reads the character at address 1000 

 
http://stackoverflow.com/questions/4748366/can-we-use-pointer-in-union 

13 

http://stackoverflow.com/questions/4748366/can-we-use-pointer-in-union
http://stackoverflow.com/questions/4748366/can-we-use-pointer-in-union
http://stackoverflow.com/questions/4748366/can-we-use-pointer-in-union
http://stackoverflow.com/questions/4748366/can-we-use-pointer-in-union
http://stackoverflow.com/questions/4748366/can-we-use-pointer-in-union
http://stackoverflow.com/questions/4748366/can-we-use-pointer-in-union
http://stackoverflow.com/questions/4748366/can-we-use-pointer-in-union
http://stackoverflow.com/questions/4748366/can-we-use-pointer-in-union
http://stackoverflow.com/questions/4748366/can-we-use-pointer-in-union
http://stackoverflow.com/questions/4748366/can-we-use-pointer-in-union
http://stackoverflow.com/questions/4748366/can-we-use-pointer-in-union


14 

Overview of the Java Attack 

Step 1: use a memory error to obtain two variables p 
and q, such that  

1. p == q (i.e., p and q point to same memory loc) and    

2. p and q have incompatible, custom static types 

Cond (2) normally prevented by the Java type system. 

 

Step 2: use p and q from Step 1 to write values into 
arbitrary memory addresses 

– Fill a block of memory with desired machine code 

– Overwrite dispatch table entry to point to block 

– Do the virtual call corresponding to modified entry 



15 

The two Custom Classes For Step 1 Attack 

class A { 

  A a1; 

  A a2; 

  B b;   // for Step 1 

  A a4; 

  int i; // for address 

         // in Step 2 

} 

class B { 

  A a1; 

  A a2; 

  A a3; 

  A a4; 

  A a5; 

} 

Assume 3-word object header 



Step 2 (Writing arbitrary memory) 

int offset = 8 * 4;    // Offset of i field in A 
A p; B q;              // Initialized in Step 1, p == q;  
                       // assume both p and q point to an A 
 
void write(int address, int value) { 
  p.i = address – offset; 
  q.a5.i = value; // q.a5 is an integer treated as a pointer 
} 

 
Example: write 337 to address 0x4020 

A header 

A 

A 

B 

A 

0x4000 

p 

q 

0x4020 

0x4004 

0x4000 

337 

p.i q.a5 

… 

q.a5.i 

this location can be accessed  
as both q.a5 and p.i 



Step 1 (Exploiting The Memory Error) 

A header 

A 

A 

B 

A 

int 

B header 

A 

A 

A 

A 

A 

0x6000 

0x600C 

0x6010 

0x6014 

0x6018 

0x601C 

0x6020 

0x602C 

0x6030 

0x6034 

0x6038 

0x603C 

B orig; 
A tmp1 = orig.a1; 
B bad = tmp1.b; 

orig 

tmp1 

bad 

The heap has one A object, many B objects.  All fields of type A point to the 
only A object that we need here.  Place this object close to the many B objects.   

B header 



18 

Step 1 (Exploiting The Memory Error) 

A header 

A 

A 

B 

A 

int 

B header 

A 

A 

A 

A 

A 

0x6000 

0x600C 

0x6010 

0x6014 

0x6018 

0x601C 

0x6020 

0x602C 

0x6030 

0x6034 

0x6038 

0x603C 

B orig; 
A tmp1 = orig.a1; 
B bad = tmp1.b; 

orig flip bit 0x40 in orig.a1 

tmp1 

bad 

Now bad points to an A object! 
 
Note: it is a coincidence that orig.a points to 
the top of the object header.  It could equally 
likely point into a an object of type B. 

B header 

A 

A 

A 

A 

A 

0x6040 

0x604C 

0x6050 

0x6054 

0x6058 

0x605C 

tmp1.b 



Step 1 (cont) 

A p; // pointer to single A object 
while (true) { 
  for (int i = 0; i < b_objs.length; i++) { 
    B orig = b_objs[i]; 
 
    A tmp1 = orig.a1; // Step 1, really check all fields 
    B q = tmp1.b; 
 
    Object o1 = p; Object o2 = q; // check if we found a flip          
    if (o1 == o2) {    
      writeCode(p,q); // now we’re ready to invoke Step 2 
} } } 

Iterate until you discover that a flip happened. 

 

19 



20 

Results (Govindavajhala and Appel) 

With software-injected memory errors, took over 
both IBM and Sun JVMs with 70% success rate 

think why not all bit flips lead to a successful exploit 

 

Equally successful through heating DRAM with a lamp 

 

Defense: memory with error-correcting codes 

– ECC often not included to cut costs 

 

Most serious domain of attack is smart cards 

 



Reflections on Trusting Trust 

a Berkeley graduate, former cs164 student (maybe :-) 

better known for his work on Unix 

Ken Thompson, Turing Award, 1983 

we also know him for his regex-to-NFA compilation 



Stage I: What does this program print? 

char s[] = {  

‘ ’, ‘0’, ‘ ’, ‘}’, ‘;’, ‘\n’, ‘\n’, ‘/’, ‘*’, ‘ ’, ‘T’, …, 0 }; 

 

/* The string is a representation of the body of this program  

 * from ‘0’ to the end. 

 */ 

 

main() { 

 int i; 

 printf(“char s[] = {\n”); 

 for (i=0; s[i]; i++) printf(“%d, ”, s[i]); 

 printf(“%s”, s); 

} 

22 



Stage I Lesson 

• The array of chars in green is the “DNA” that allows 
the program to reproduce itself forever.   

• So, each time the program prints itself, it needs to 
print this array, so that it can print itself again 

23 



Stage II:  A portable compiler 

A compiler for C can compile itself 

– because the compiler is written in C 

 

It is therefore portable to other platforms.  

– Just recompile it on the new platform. 

 

 

24 



Stage II:  An example of a portable feature 

 How Compiler Translates Escaped Char Literals: 
 … 

 c = next(); 

 if (c != ‘\\’) return c; 

 c = next(); 

 if (c == ‘\\’) return ‘\\’; 

 if (c == ‘n’) return ‘\n’; 

 … 

Note that this is portable code:  
– ‘\n’ is 0x0a on an ASCII platform but 0x15 on EBDIC 

– the same compiler code will work correctly on both 

 



Stage II: the bootstrapping problem 

You want to extend the language with the ‘\v’ literal 
– which can again be n on one machine on m on another 

– you want to write into the compiler the portable expression ‘\v’ 

 

 c = next(); 

 if (c != ‘\\’) return c; 

 c = next(); 

 if (c == ‘\\’) return ‘\\’; 

 if (c == ‘n’) return ‘\n’; 

 if (c == ‘v’) return ‘\v’; 

 

26 



Stage II: solving the bootstrapping problem 

Your compiled (.exe) compiler does not accept \v, so you teach  it:  
– write this code first, compile it, and make it your binary C compiler 

• now your exe compiler accepts \v in input programs 

– then edit 11 to ‘\v’ in the compiler source code 
• now your compiler source code is portable 

– how about other platforms? 
 

 c = next(); 

 if (c != ‘\\’) return c; 

 c = next(); 

 if (c == ‘\\’) return ‘\\’; 

 if (c == ‘n’) return ‘\n’; 

 if (c == ‘v’) return 11; 

 27 



Stage II: discussion 

By compiling ‘\v’ into 11 just once, we taught the 
compiler forever that ‘\v’ == 11 (on that platform). 

The term “taught” is not too much of a stretch 

– no matter how many times you now recompile the 
compiler, it will perpetuate the knowledge 



Stage III 

This is a routine that compiles one line of source code 

 

compile(char s[]) { 

 … 

} 

 

Unix utils are written in C and compiled with the C 
compiler.   

 

He who controls the compiler … 

 29 



Stage III 

This is a routine that compiles one line of source code 

 

compile(char s[]) { 

 if (match(s, “pattern”)) { 

    compile(“bug”); 

    return; 

 } 

} 

 

What is an interesting “pattern” and “bug” 

30 



Stage III 

You can make the login program accept your secret pswd 

 

pattern:  if(hash(pswd)==stored[user]) 

 

bug: if(hash(pswd)==stored[user] || \ 

        hash(pswd)==8132623192L) 

 

Thompson created a backdoor into Unix, by having the 
compiler hack the login program 

31 



Stage III 

This hack of the compiler would be easy to spot by reading the 
compiler code.  So, the trick is this: 

 
compile(char s[]) { 

 if (match(s, “pattern1”)) { 

    compile(“bug1”); return; 

 } 

 if (match(s, “patter2”)) { 

    compile(“bug2”); return; 

 } 

} 

 

What is an interesting “pattern” and “bug” 



Stage III 

The second pattern/bug is triggered when the 
compiler compiles itself 

– it compiles the clean compile function into the one with 
the two hacks 

The first pattern/bug triggered when the compiler 
compiles login.c 

– as before 

33 



Your excercise 

Figure out what pattern2/bug2 needs to be 

 

How resilient is Thompson’s technique to changes in 
the compiler source code?  Will it work when 
someone entirely rewrites the compiler? 

34 



35 

Summary 

PL knowledge useful beyond language design and 
implementation  

Helps programmers understand the behavior of their code 

 

Compiler techniques can help to address other problems 
like security (big research area) 

 

Safety and security are hard 

– Assumptions must be explicit 


