
Review: Lexical Scope vs. Dynamic Scoping

Lexical Scoping

• Non-local variables are associated with declarations

at compile time

• Find the smallest block syntactically enclosing the

reference and containing a declaration of the variable

Dynamic Scoping

• Non-local variables are associated with declarations

at run time

• Find the most recent, currently active run-time stack

frame containing a declaration of the variable

CS 314 fall’02 lecture 7, page 1



Lexical Scoping Example

scope of a declaration: Portion of program to which the

declaration applies

Program

x, y: integer // declarations of x and y

begin

Procedure B // declaration of B

y, z: real // declaration of y and z

begin

. . .

y = x + z // occurrences of y, x, and z

if (...) call B // occurrence of B

end

Procedure C // declaration of C

x: real // declaration of x

begin

. . .

call B // occurrence of B

end

. . .

call C // occurrence of C

call B // occurrence of B

end

CS 314 fall’02 lecture 7, page 2



Lexical Scoping Example

Calling chain: MAIN ⇒ C ⇒ B ⇒ B

y
z

y
x

x

y
z

C

B

B

MAIN

control link

access link

CS 314 fall’02 lecture 7, page 3



Scoping and the Run-time Stack

Access links and control links may be used to look

for non-local variable references.

Static Scope:

Access link points to stack frame of the most
recently activated lexically enclosing procedure

⇒ Non-local name binding is determined at compile

time, and implemented at run-time

Dynamic Scope:

Control link points to stack frame of caller

⇒ Non-local name binding is determined and

implemented at run-time

CS 314 fall’02 lecture 7, page 4



Lexical scoping (de Bruijn notation)

Symbol table matches declarations and occurrences.

⇒ Each name can be represented as a pair

(nesting level, local index).

Program

(1,1), (1,2): integer // declarations of x and y

begin

Procedure (1,3) // declaration of B

(2,1), (2,2): real // declaration of y and z

begin

. . . // occurrences of y, x, and z

(2,1) = (1,1) + (2,2)

if (...) call (1,3) // occurrence of B

end

Procedure (1,4) // declaration of C

(2,1): real // declaration of x

begin

. . .

call (1,3) // occurrence of B

end

. . .

call (1,4) // occurrence of C

call (1,3) // occurrence of B

end

CS 314 fall’02 lecture 7, page 5



Access to non-local data

How does the code find non-local data at run-time?

Real globals

• visible everywhere

• translated into an address at compile time

Lexical scoping

• view variables as (level,offset) pairs

(compile-time symbol table)

• look-up of (level,offset) pair uses chains of access

links (at run-time)

• optimization to reduce access cost: display

Dynamic scoping

• variable names are preserved

• look-up of variable name uses chains of control links

(at run-time)

• optimization to reduce access cost: reference table

CS 314 fall’02 lecture 7, page 6



Access to non-local data (lexical scoping)

Two important problems arise

1. How do we map a name into a (level,offset) pair?

We use a block structured symbol table

(compile-time)

• when we look up a name, we want to get the

most recent declaration for the name

• the declaration may be found in the current

procedure or in any nested procedure

2. Given a (level,offset) pair, what’s the address?

Two classic approaches

(run-time)

⇒ access links (static links)

⇒ displays

CS 314 fall’02 lecture 7, page 7



Access to non-local data (lexical scoping)

To find the value specified by (l, o)

• need current procedure level, k

• if k = l, is a local value

• if k > l, must find l’s activation record

⇒ follow k − l access links

• k < l cannot occur

Maintaining access links:

If procedure p is nested immediately within procedure q,

the access link for p points to the activation record of

the most recent activation of q.

• calling level k + 1 procedure

1. pass my FP as access link

2. my backward chain will work for lower levels

• calling procedure at level l ≤ k

1. find my link to level l − 1 and pass it

2. its access link will work for lower levels

CS 314 fall’02 lecture 7, page 8



The display

To improve run-time access costs, use a display.

• table of access links for lower levels

• lookup is index from known offset

• takes slight amount of time at call

• a single display or one per frame

Access with the display

assume a value described by (l, o)

• find slot as DP[l] in display pointer array

• add offset to pointer from slot

“setting up the activation frame” now includes display

manipulation.

CS 314 fall’02 lecture 7, page 9



Display management

Single global display: simple method

on entry to a procedure at level l

save the level l display value

push FP into level l display slot

on return

restore the level l display value

CS 314 fall’02 lecture 7, page 10



Run-time storage organization

To maintain procedure abstractions, the compiler must

adopt some conventions to govern memory use.

Code space

• fixed size

• statically allocated

Data space

• fixed size data may be statically allocated

• variable size data must be dynamically allocated

• dynamic allocation on stack or heap depending on

lifetime of data item (e.g.: variable number of

arguments to procedure)

Runtime (Control) stack

• dynamic slice of activation tree

• usually supported in hardware

CS 314 fall’02 lecture 7, page 11



Run-time storage organization

Typical memory layout

C
o
d
e

S
t
a
t
i
c

H
e
a
p

S
t
a
c
k

Logical Address Space

low high

free
memory

The classical scheme

• allows both stack and heap maximal freedom

• code and static may be separate or intermingled

CS 314 fall’02 lecture 7, page 12



Run-time storage organization

Where do local variables go?

When can we allocate them on a stack?

Key issue is lifetime of local names

Downward exposure:

• called procedures may reference my variables

• dynamic scoping

• lexical scoping

Upward exposure:

• can I return a reference to my variables?

• functions that return functions

With only downward exposure, the compiler can

allocate the frames on the run-time stack

CS 314 fall’02 lecture 7, page 13



Run-time storage organization

Each variable must be assigned a storage class

(base address for static area, stack, heap)

Static or global variables

• addresses compiled into code (relocatable)

• allocated at compile-time

• limited to fixed size objects

Procedure local variables

Put them on the stack —

• if sizes are fixed, or known at procedure invocation

time, and

• if lifetimes are limited, i.e., values are not preserved

CS 314 fall’02 lecture 7, page 14



Run-time storage organization

Storage classes (con’t):

Dynamically allocated variables

Put them on the heap —

• pointers may lead to non-local lifetimes

• (usually) an explicit allocation

• explicit or implicit deallocation (garbage collection)

CS 314 fall’02 lecture 7, page 15



Next Lecture

Things to do:

Start working on project as soon as possible. Will be

posted by Friday evening.

Next time:

• aliases and dangling references

• garbage collection

• read Louden, Ch. 5 (5.5-5.7)

CS 314 fall’02 lecture 7, page 16


