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The Big Data Problem

Data is growing faster than computation speeds

Growing data sources
»Web, mobile, scientific, …

Cheap storage
»Doubling every 18 months

Stalling CPU speeds
»Even multicores not enough



Examples
Facebook’s daily logs: 60 TB

1000 genomes project: 200 TB

Google web index: 10+ PB

Cost of 1 TB of disk: $50

Time to read 1 TB from disk: 6 hours (50 MB/s)



The Big Data Problem
Single machine can no longer process or even 
store all the data!

Only solution is to distribute over large clusters



Google Datacenter

How do we program this thing?



Traditional Network Programming

Message-passing between nodes

Really hard to do at scale:
»How to split problem across nodes?

• Important to consider network and data locality

»How to deal with failures?

• If a typical server fails every 3 years, a 10,000-node cluster 
sees 10 faults / day!

»Even worse: stragglers (node is not failed, but slow)

Almost nobody does this!



Data-Parallel Models
Restrict the programming interface so that the 
system can do more automatically

“Here’s an operation, run it on all of the data”
» I don’t care where it runs (you schedule that)
» In fact, feel free to run it twice on different nodes

Biggest example: MapReduce



MapReduce
First widely popular programming model for 
data-intensive apps on clusters

Published by Google in 2004
»Processes 20 PB of data / day

Popularized by open-source Hadoop project
»40,000 nodes at Yahoo!, 70 PB at Facebook



MapReduce Programming Model

Data type: key-value records

Map function:

(Kin, Vin)  list(Kinter, Vinter)

Reduce function:

(Kinter, list(Vinter))  list(Kout, Vout)



Example: Word Count
class SplitWords: public Mapper {
public:
virtual void Map(const MapInput& input) {

const string& text = input.value();
const int n = text.size();
for (int i = 0; i < n; ) {

// Skip past leading whitespace
while ((i < n) && isspace(text[i]))

i++;
// Find word end
int start = i;
while ((i < n) && !isspace(text[i]))

i++;
if (start < i)

Emit(text.substr(start,i-start), "1");
}

}
};

(Google MapReduce API)



class Sum: public Reducer {
public:
virtual void Reduce(ReduceInput* input) {

// Iterate over all entries with the
// same key and add the values
int64 value = 0;
while (!input->done()) {

value += StringToInt(input->value());
input->NextValue();

}
// Emit sum for input->key()
Emit(IntToString(value));

}
};

Example: Word Count

(Google MapReduce API)



Word Count Execution
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MapReduce Execution
Automatically split work into many small tasks

Send map tasks to nodes based on data locality

Load-balance dynamically as tasks finish



Fault Recovery
If a task fails, re-run it and re-fetch its input

If a node fails, re-run its map tasks on others

If a task is slow, launch 2nd copy on other node



Summary
By providing a data-parallel model, MapReduce
greatly simplified cluster programming:

»Automatic division of job into tasks
»Locality-aware scheduling
»Load balancing
»Recovery from failures & stragglers

But… the story doesn’t end here!



When an Abstraction is Useful…

People want to compose it!

Most real applications require multiple MR steps
»Google indexing pipeline: 21 steps
»Analytics queries (e.g. count clicks & top K): 2-5 steps
» Iterative algorithms (e.g. PageRank): 10’s of steps



Problems with MapReduce

1. Programmability
»Multi-step jobs create spaghetti code

• 21 MR steps -> 21 mapper and reducer classes

»Lots of boilerplate wrapper code per step
»API doesn’t provide type safety

• Can pass the wrong Mapper class for a given data type



Problems with MapReduce

2. Performance
»MR only provides acyclic data flow (read from disk -> 

process -> write to disk)
»Expensive for applications that need to reuse data

• Iterative algorithms (e.g. PageRank)

• Interactive data mining (repeated queries on same data)

»Users often hand-optimize by merging steps together



Spark
Aims to address both problems

Programmability: embedded DSL in Scala
»Functional transformations on collections
»Type-safe, automatically optimized
»5-10x less code than MR
» Interactive use from Scala shell

Performance: in-memory computing primitives
»Can run 10-100x faster than MR



Spark Programmability

#include "mapreduce/mapreduce.h"

// User’s map function
class SplitWords: public Mapper {
public:
virtual void Map(const MapInput& input)
{
const string& text = input.value();
const int n = text.size();
for (int i = 0; i < n; ) {
// Skip past leading whitespace
while (i < n && isspace(text[i]))
i++;

// Find word end
int start = i;
while (i < n && !isspace(text[i]))
i++;

if (start < i)
Emit(text.substr(

start,i-start),"1");
}

}
};

REGISTER_MAPPER(SplitWords);

// User’s reduce function
class Sum: public Reducer {
public:
virtual void Reduce(ReduceInput* input)
{
// Iterate over all entries with the
// same key and add the values
int64 value = 0;
while (!input->done()) {
value += StringToInt(

input->value());
input->NextValue();

}
// Emit sum for input->key()
Emit(IntToString(value));

}
};

REGISTER_REDUCER(Sum);

int main(int argc, char** argv) {
ParseCommandLineFlags(argc, argv);
MapReduceSpecification spec;
for (int i = 1; i < argc; i++) {
MapReduceInput* in= spec.add_input();
in->set_format("text");
in->set_filepattern(argv[i]);
in->set_mapper_class("SplitWords");

}

// Specify the output files     
MapReduceOutput* out = spec.output();
out->set_filebase("/gfs/test/freq");
out->set_num_tasks(100);
out->set_format("text");
out->set_reducer_class("Sum");

// Do partial sums within map
out->set_combiner_class("Sum");

// Tuning parameters 
spec.set_machines(2000);
spec.set_map_megabytes(100);
spec.set_reduce_megabytes(100);

// Now run it
MapReduceResult result;
if (!MapReduce(spec, &result)) abort();
return 0;
}

Full Google WordCount:



Spark Programmability

Spark WordCount:

val file = spark.textFile(“hdfs://...”)

val counts = file.flatMap(line => line.split(“ ”))
.map(word => (word, 1))
.reduceByKey(_ + _)

counts.save(“out.txt”)



Spark Performance

Iterative machine learning apps:
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Spark In More Detail

Three concepts:
»Resilient distributed datasets (RDDs)

• Immutable, partitioned collections of objects

• May be cached in memory for fast reuse

»Operations on RDDs

• Transformations (define RDDs), actions (compute results)

»Restricted shared variables (broadcast, accumulators)

Goal: make parallel programs look like local 
ones



Example: Log Mining
Load error messages from a log into memory, then 
interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”))

messages = errors.map(_.split(‘\t’)(2))

messages.cache()

Block 1

Block 2

Block 3

Worker

Worker

Worker

Driver

messages.filter(_.contains(“foo”)).count

messages.filter(_.contains(“bar”)).count

. . .

tasks

results

Cache 1

Cache 2

Cache 3

Base RDDTransformed RDD

Action

Result: full-text search of Wikipedia 
in <1 sec (vs 20 sec for on-disk data)
Result: search 1 TB data in 5-7 sec

(vs 170 sec for on-disk data)



Fault Recovery

RDDs track lineage information that can be used 
to efficiently reconstruct lost partitions

Ex: messages = textFile(...).filter(_.startsWith(“ERROR”))
.map(_.split(‘\t’)(2))

HDFS File Filtered RDD Mapped RDD
filter

(func = _.contains(...))
map

(func = _.split(...))



Fault Recovery Results
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Example: Logistic Regression

Goal: find best line separating two sets of points

target

random initial line



Example: Logistic Regression

val data = spark.textFile(...).map(readPoint).cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
val gradient = data.map(p =>

(1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x
).reduce(_ + _)
w -= gradient

}

println("Final w: " + w)

w automatically 
shipped to cluster



Logistic Regression Performance
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Other RDD Operations

Transformations
(define a new RDD)

map
filter

sample
groupByKey
reduceByKey

cogroup

flatMap
union
join

cross
mapValues

...

Actions
(output a result)

collect
reduce

take
fold

count
saveAsTextFile

saveAsHadoopFile
...



Demo



Beyond RDDs
So far we’ve seen that RDD operations can use 
variables from outside their scope

By default, each task gets a read-only copy of 
each variable (no sharing)

Good place to enable other sharing patterns!
»Broadcast variables
»Accumulators



Example: Collaborative Filtering

Goal: predict users’ movie ratings based on past 
ratings of other movies

R =

1 ? ? 4 5 ? 3
? ? 3 5 ? ? 3
5 ? 5 ? ? ? 1
4 ? ? ? ? 2 ?

Movies

Users



Model and Algorithm

Model R as product of user and movie feature 
matrices A and B of size U×K and M×K

Alternating Least Squares (ALS)
» Start with random A & B
» Optimize user vectors (A) based on movies
» Optimize movie vectors (B) based on users
» Repeat until converged

R A=
BT



Serial ALS
var R = readRatingsMatrix(...)

var A = // array of U random vectors
var B = // array of M random vectors

for (i <- 1 to ITERATIONS) {
A = (0 until U).map(i => updateUser(i, B, R))
B = (0 until M).map(i => updateMovie(i, A, R))

}

Range objects



Naïve Spark ALS
var R = readRatingsMatrix(...)

var A = // array of U random vectors
var B = // array of M random vectors

for (i <- 1 to ITERATIONS) {
A = spark.parallelize(0 until U, numSlices)

.map(i => updateUser(i, B, R))

.collect()
B = spark.parallelize(0 until M, numSlices)

.map(i => updateMovie(i, A, R))

.collect()
}

Problem:
R re-sent 

to all 
nodes in 

each 
iteration



Efficient Spark ALS
var R = spark.broadcast(readRatingsMatrix(...))

var A = // array of U random vectors
var B = // array of M random vectors

for (i <- 1 to ITERATIONS) {
A = spark.parallelize(0 until U, numSlices)

.map(i => updateUser(i, B, R.value))

.collect()
B = spark.parallelize(0 until M, numSlices)

.map(i => updateMovie(i, A, R.value))

.collect()
}

Solution: 
mark R as 
broadcast 

variable

Result: 3× performance improvement



Scaling Up Broadcast

Initial version (HDFS) Cornet P2P broadcast
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Accumulators
Apart from broadcast, another common sharing 
pattern is aggregation

»Add up multiple statistics about data
»Count various events for debugging

Spark’s reduce operation does aggregation, but 
accumulators are another nice way to express it



Usage
val badRecords = sc.accumulator(0)
val badBytes = sc.accumulator(0.0)

records.filter(r => {
if (isBad(r)) { 
badRecords += 1
badBytes += r.size
false

} else {
true

}
}).save(...)

printf(“Total bad records: %d, avg size: %f\n”,
badRecords.value, badBytes.value / badRecords.value)

Accumulator[Int]

Accumulator[Double]



Accumulator Rules
Create with SparkContext.accumulator(initialVal)

“Add” to the value with += inside tasks
»Each task’s effect only counted once

Access with .value, but only on master
»Exception if you try it on workers

Retains efficiency and fault 
tolerance!
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Components
Driver program connects to 
cluster and schedules tasks

Workers run tasks, report 
results and variable updates

Data shared through 
Hadoop file system (HDFS) Driver

Workers

HDFS
user code, 

broadcast vars

tasks,
results

Master

local 
cache



Execution Process

rdd1.join(rdd2)
.groupBy(…)
.filter(…)

RDD Objects

build operator DAG

DAG Scheduler

split graph into 
stages of tasks

submit each 
stage as ready

DAG

Task Scheduler

TaskSet

launch tasks via 
cluster manager

retry failed or 
straggling tasks

Cluster
manager

Worker

execute tasks

store and serve 
blocks

Block 
manager

Threads

Task



Job Scheduler
Captures RDD 
dependency graph

Pipelines functions
into “stages”

Cache-aware for
data reuse & locality

Partitioning-aware
to avoid shuffles

join

union

groupBy

map

Stage 3

Stage 1

Stage 2

A: B:

C: D:

E:

F:

G:

= cached partition



Language Integration
No changes to Scala!

Scala closures are Serializable Java objects
»Contain references to outer variables as fields
»Serialize on driver, load & call on workers

val str = “hi”

rdd.map(x => str + x)

class Closure1 {
String str;
String call(String x) {
return str + x;

}
} 

“hi”str:



Shared Variables

Play tricks with Java serialization!

class Broadcast<T> {
private transient T value;  // will not be serialized
private int id = Broadcast.newID();

Broadcast(T value) {
this.value = value;
this.id = BroadcastServer.newId();
BroadcastServer.register(id, value);

}

// Called by Java when object is deserialized
private void readObject(InputStream s) {
s.defaultReadObject();
value = BroadcastFetcher.getOrFetch(id); // local registry

}
}



Shared Variables

Play tricks with Java serialization!

class Accumulator<T> {
private transient T value;  // will not be serialized
private int id = Accumulator.newID();
...

// Called by Java when object is deserialized
private void readObject(InputStream s) {
s.defaultReadObject();
value = zero(); // initialize local value to 0 of type T
AccumulatorManager.register(this); // worker will send our

// value back to master
}

void add(T t) { value.add(t); }
}



Interactive Shell
Scala interpreter compiles each line as, 
essentially, a separate source file (!)

Modifications to allow use with Spark:
»Altered code generation to make each line typed 

capture references to objects it depends on (as fields)
»Added server to ship generated classes to workers
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Some Users

500 user meetup, 12 companies contributing code



User Applications

Crowdsourced traffic estimation (Mobile Millennium)

Video analytics & anomaly detection (Conviva)

Ad-hoc queries from web app (Quantifind)

Twitter spam classification (Monarch)

DNA sequence analysis (SNAP)

…



Conviva GeoReport

SQL aggregations on many keys w/ same filter

40× gain over Hive from avoiding repeated I/O, 
deserialization and filtering
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What do Users Say?
“Matei, we are doing predictive analytics on unstructured data and have been a 
Cascading/Pig shop [Hadoop]. We are a pretty small startup with 12 people and 
our first client is using our system to do predictions for […].

Recently someone tried to compute the same predictions in straight Java and it 
turned out that a single box could outperform Pig running on 4 machines by 
several orders of magnitude. Then we started trying Spark and it was even better 
(the Java code was just a prototype and not optimized). Spark took the 60min Pig 
job running on 4 servers down to 12s running on 1 server.

So needless to say, we are porting our Pig code to Spark (which also shrinks it 
down to a much smaller size) and will be running out next product version on it.”



What do Users Say?
“For simple queries, writing the query in Spark is harder than writing it in Hive 
[SQL over Hadoop]. However, it is much easier to write complicated queries in 
Spark than in Hive. Most real-world queries tend to be quite complex; hence the 
benefit of Spark. We can leverage the full power of the Scala programming 
language, rather than relying on the limited syntax offered by SQL. For example, 
the Hive expression IF(os=1, “Windows”, IF(os=2, “OSX”, IF(os=3, “Linux”, 
“Unknown”))) can be replaced by a simple match clause in Scala. You can also use 
any Java/Scala library to transform the data.”



What do Users Say?
Spark jobs are amazingly easy to test
Writing a test in Spark is as easy as:

class SparkTest {
@Test
def test() {
// this is real code...
val sc = new SparkContext("local", "MyUnitTest")
// and now some psuedo code...
val output = runYourCodeThatUsesSpark(sc)
assertAgainst(output)

}
}

As a technical aside, this “local” mode starts up an in-process Spark instance, backed 
by a thread-pool, and actually opens up a few ports and temp directories, because it’s 
a real, live Spark instance. Granted, this is usually more work than you want to be 
done in an unit test (which ideally would not hit any file or network I/O), but the 
redeeming quality is that it’s fast. Tests run in ~2 seconds.



Interesting Takeaways

Users are as excited about the ease of use as 
about the performance

»Even seasoned distributed programmers

Ability to use a “full” programming language 
(classes, functions, etc) is appreciated over SQL

»Hard to see in small examples, but matters in big apps

Embedded nature of DSL helps w/ software eng.
»Call Spark in unit tests, call into existing Scala code
» Important in any real software eng. setting!



Spark in Java and Python

To further expand Spark’s usability, we’ve now 
invested substantial effort to add 2 languages

Both support all the Scala features (RDDs, 
accumulators, broadcast vars)



Spark in Java
lines.filter(_.contains(“error”)).count()

JavaRDD<String> lines = sc.textFile(...);

lines.filter(new Function<String, Boolean>() {
Boolean call(String s) {
return s.contains(“error”);

}
}).count();



Spark in Python

lines = sc.textFile(sys.argv[1])

counts = lines.flatMap(lambda x: x.split(' ')) \
.map(lambda x: (x, 1)) \
.reduceByKey(lambda x, y: x + y) 

Usable interactively from Python shell
Coming out this month



Conclusion

Spark makes parallel programs faster to write & 
run with model based on distributed collections

»User API resembles working with local collections
»Caching & lineage-based recovery = fast data sharing

Gets nice syntax while staying soft. eng. friendly

Might be fun to build DSLs on top of!

www.spark-project.org

http://www.spark-project.org

