
Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Haoyuan Li, Justin Ma, Murphy McCauley,
Michael Franklin, Scott Shenker, Ion Stoica

spark-project.org
UC BERKELEY

Processing Big Data with Small Programs

Outline
The big data problem

MapReduce

Spark

How it works

Users' experience

The Big Data Problem

Data is growing faster than computation speeds

Growing data sources
»Web, mobile, scientific, …

Cheap storage
»Doubling every 18 months

Stalling CPU speeds
»Even multicores not enough

Examples
Facebook’s daily logs: 60 TB

1000 genomes project: 200 TB

Google web index: 10+ PB

Cost of 1 TB of disk: $50

Time to read 1 TB from disk: 6 hours (50 MB/s)

The Big Data Problem
Single machine can no longer process or even
store all the data!

Only solution is to distribute over large clusters

Google Datacenter

How do we program this thing?

Traditional Network Programming

Message-passing between nodes

Really hard to do at scale:
»How to split problem across nodes?

• Important to consider network and data locality

»How to deal with failures?

• If a typical server fails every 3 years, a 10,000-node cluster
sees 10 faults / day!

»Even worse: stragglers (node is not failed, but slow)

Almost nobody does this!

Data-Parallel Models
Restrict the programming interface so that the
system can do more automatically

“Here’s an operation, run it on all of the data”
» I don’t care where it runs (you schedule that)
» In fact, feel free to run it twice on different nodes

Biggest example: MapReduce

MapReduce
First widely popular programming model for
data-intensive apps on clusters

Published by Google in 2004
»Processes 20 PB of data / day

Popularized by open-source Hadoop project
»40,000 nodes at Yahoo!, 70 PB at Facebook

MapReduce Programming Model

Data type: key-value records

Map function:

(Kin, Vin) list(Kinter, Vinter)

Reduce function:

(Kinter, list(Vinter)) list(Kout, Vout)

Example: Word Count
class SplitWords: public Mapper {
public:
virtual void Map(const MapInput& input) {

const string& text = input.value();
const int n = text.size();
for (int i = 0; i < n;) {

// Skip past leading whitespace
while ((i < n) && isspace(text[i]))

i++;
// Find word end
int start = i;
while ((i < n) && !isspace(text[i]))

i++;
if (start < i)

Emit(text.substr(start,i-start), "1");
}

}
};

(Google MapReduce API)

class Sum: public Reducer {
public:
virtual void Reduce(ReduceInput* input) {

// Iterate over all entries with the
// same key and add the values
int64 value = 0;
while (!input->done()) {

value += StringToInt(input->value());
input->NextValue();

}
// Emit sum for input->key()
Emit(IntToString(value));

}
};

Example: Word Count

(Google MapReduce API)

Word Count Execution

the quick
brown fox

the fox
ate the
mouse

how now
brown

cow

Map

Map

Map

Reduce

Reduce

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1

mouse, 1
quick, 1

the, 1
brown, 1

fox, 1

quick, 1

the, 1
fox, 1
the, 1

how, 1
now, 1

brown, 1
ate, 1

mouse, 1

cow, 1

Input Map Shuffle & Sort Reduce Output

MapReduce Execution
Automatically split work into many small tasks

Send map tasks to nodes based on data locality

Load-balance dynamically as tasks finish

Fault Recovery
If a task fails, re-run it and re-fetch its input

If a node fails, re-run its map tasks on others

If a task is slow, launch 2nd copy on other node

Summary
By providing a data-parallel model, MapReduce
greatly simplified cluster programming:

»Automatic division of job into tasks
»Locality-aware scheduling
»Load balancing
»Recovery from failures & stragglers

But… the story doesn’t end here!

When an Abstraction is Useful…

People want to compose it!

Most real applications require multiple MR steps
»Google indexing pipeline: 21 steps
»Analytics queries (e.g. count clicks & top K): 2-5 steps
» Iterative algorithms (e.g. PageRank): 10’s of steps

Problems with MapReduce

1. Programmability
»Multi-step jobs create spaghetti code

• 21 MR steps -> 21 mapper and reducer classes

»Lots of boilerplate wrapper code per step
»API doesn’t provide type safety

• Can pass the wrong Mapper class for a given data type

Problems with MapReduce

2. Performance
»MR only provides acyclic data flow (read from disk ->

process -> write to disk)
»Expensive for applications that need to reuse data

• Iterative algorithms (e.g. PageRank)

• Interactive data mining (repeated queries on same data)

»Users often hand-optimize by merging steps together

Spark
Aims to address both problems

Programmability: embedded DSL in Scala
»Functional transformations on collections
»Type-safe, automatically optimized
»5-10x less code than MR
» Interactive use from Scala shell

Performance: in-memory computing primitives
»Can run 10-100x faster than MR

Spark Programmability

#include "mapreduce/mapreduce.h"

// User’s map function
class SplitWords: public Mapper {
public:
virtual void Map(const MapInput& input)
{
const string& text = input.value();
const int n = text.size();
for (int i = 0; i < n;) {
// Skip past leading whitespace
while (i < n && isspace(text[i]))
i++;

// Find word end
int start = i;
while (i < n && !isspace(text[i]))
i++;

if (start < i)
Emit(text.substr(

start,i-start),"1");
}

}
};

REGISTER_MAPPER(SplitWords);

// User’s reduce function
class Sum: public Reducer {
public:
virtual void Reduce(ReduceInput* input)
{
// Iterate over all entries with the
// same key and add the values
int64 value = 0;
while (!input->done()) {
value += StringToInt(

input->value());
input->NextValue();

}
// Emit sum for input->key()
Emit(IntToString(value));

}
};

REGISTER_REDUCER(Sum);

int main(int argc, char** argv) {
ParseCommandLineFlags(argc, argv);
MapReduceSpecification spec;
for (int i = 1; i < argc; i++) {
MapReduceInput* in= spec.add_input();
in->set_format("text");
in->set_filepattern(argv[i]);
in->set_mapper_class("SplitWords");

}

// Specify the output files
MapReduceOutput* out = spec.output();
out->set_filebase("/gfs/test/freq");
out->set_num_tasks(100);
out->set_format("text");
out->set_reducer_class("Sum");

// Do partial sums within map
out->set_combiner_class("Sum");

// Tuning parameters
spec.set_machines(2000);
spec.set_map_megabytes(100);
spec.set_reduce_megabytes(100);

// Now run it
MapReduceResult result;
if (!MapReduce(spec, &result)) abort();
return 0;
}

Full Google WordCount:

Spark Programmability

Spark WordCount:

val file = spark.textFile(“hdfs://...”)

val counts = file.flatMap(line => line.split(“ ”))
.map(word => (word, 1))
.reduceByKey(_ + _)

counts.save(“out.txt”)

Spark Performance

Iterative machine learning apps:

121

4.1

0 50 100 150

K-means Clustering

Spark

Hadoop MR

sec

80

0.96

0 50 100

Logistic Regression

Spark

Hadoop MR

sec

Outline
The big data problem

MapReduce

Spark

How it works

Users' experience

Spark In More Detail

Three concepts:
»Resilient distributed datasets (RDDs)

• Immutable, partitioned collections of objects

• May be cached in memory for fast reuse

»Operations on RDDs

• Transformations (define RDDs), actions (compute results)

»Restricted shared variables (broadcast, accumulators)

Goal: make parallel programs look like local
ones

Example: Log Mining
Load error messages from a log into memory, then
interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”))

messages = errors.map(_.split(‘\t’)(2))

messages.cache()

Block 1

Block 2

Block 3

Worker

Worker

Worker

Driver

messages.filter(_.contains(“foo”)).count

messages.filter(_.contains(“bar”)).count

. . .

tasks

results

Cache 1

Cache 2

Cache 3

Base RDDTransformed RDD

Action

Result: full-text search of Wikipedia
in <1 sec (vs 20 sec for on-disk data)
Result: search 1 TB data in 5-7 sec

(vs 170 sec for on-disk data)

Fault Recovery

RDDs track lineage information that can be used
to efficiently reconstruct lost partitions

Ex: messages = textFile(...).filter(_.startsWith(“ERROR”))
.map(_.split(‘\t’)(2))

HDFS File Filtered RDD Mapped RDD
filter

(func = _.contains(...))
map

(func = _.split(...))

Fault Recovery Results

119

57 56 58 58

81

57 59 57 59

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10

It
e

ra
tr

io
n

 t
im

e
 (

s)

Iteration

Failure happens

Example: Logistic Regression

Goal: find best line separating two sets of points

target

random initial line

Example: Logistic Regression

val data = spark.textFile(...).map(readPoint).cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
val gradient = data.map(p =>

(1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x
).reduce(_ + _)
w -= gradient

}

println("Final w: " + w)

w automatically
shipped to cluster

Logistic Regression Performance

110 s / iteration

first iteration 80 s
further iterations 1 s0

10

20

30

40

50

60

1 10 20 30

R
u

n
n

in
g

 T
im

e
 (

m
in

)

Number of Iterations

Hadoop

Spark

Other RDD Operations

Transformations
(define a new RDD)

map
filter

sample
groupByKey
reduceByKey

cogroup

flatMap
union
join

cross
mapValues

...

Actions
(output a result)

collect
reduce

take
fold

count
saveAsTextFile

saveAsHadoopFile
...

Demo

Beyond RDDs
So far we’ve seen that RDD operations can use
variables from outside their scope

By default, each task gets a read-only copy of
each variable (no sharing)

Good place to enable other sharing patterns!
»Broadcast variables
»Accumulators

Example: Collaborative Filtering

Goal: predict users’ movie ratings based on past
ratings of other movies

R =

1 ? ? 4 5 ? 3
? ? 3 5 ? ? 3
5 ? 5 ? ? ? 1
4 ? ? ? ? 2 ?

Movies

Users

Model and Algorithm

Model R as product of user and movie feature
matrices A and B of size U×K and M×K

Alternating Least Squares (ALS)
» Start with random A & B
» Optimize user vectors (A) based on movies
» Optimize movie vectors (B) based on users
» Repeat until converged

R A=
BT

Serial ALS
var R = readRatingsMatrix(...)

var A = // array of U random vectors
var B = // array of M random vectors

for (i <- 1 to ITERATIONS) {
A = (0 until U).map(i => updateUser(i, B, R))
B = (0 until M).map(i => updateMovie(i, A, R))

}

Range objects

Naïve Spark ALS
var R = readRatingsMatrix(...)

var A = // array of U random vectors
var B = // array of M random vectors

for (i <- 1 to ITERATIONS) {
A = spark.parallelize(0 until U, numSlices)

.map(i => updateUser(i, B, R))

.collect()
B = spark.parallelize(0 until M, numSlices)

.map(i => updateMovie(i, A, R))

.collect()
}

Problem:
R re-sent

to all
nodes in

each
iteration

Efficient Spark ALS
var R = spark.broadcast(readRatingsMatrix(...))

var A = // array of U random vectors
var B = // array of M random vectors

for (i <- 1 to ITERATIONS) {
A = spark.parallelize(0 until U, numSlices)

.map(i => updateUser(i, B, R.value))

.collect()
B = spark.parallelize(0 until M, numSlices)

.map(i => updateMovie(i, A, R.value))

.collect()
}

Solution:
mark R as
broadcast

variable

Result: 3× performance improvement

Scaling Up Broadcast

Initial version (HDFS) Cornet P2P broadcast

0

50

100

150

200

250

10 30 60 90

It
e

ra
ti

o
n

 t
im

e
 (

s)

Number of machines

Communication

Computation

0

50

100

150

200

250

10 30 60 90

It
e

ra
ti

o
n

 t
im

e
 (

s)

Number of machines

Communication

Computation

[Chowdhury et al, SIGCOMM 2011]

Accumulators
Apart from broadcast, another common sharing
pattern is aggregation

»Add up multiple statistics about data
»Count various events for debugging

Spark’s reduce operation does aggregation, but
accumulators are another nice way to express it

Usage
val badRecords = sc.accumulator(0)
val badBytes = sc.accumulator(0.0)

records.filter(r => {
if (isBad(r)) {
badRecords += 1
badBytes += r.size
false

} else {
true

}
}).save(...)

printf(“Total bad records: %d, avg size: %f\n”,
badRecords.value, badBytes.value / badRecords.value)

Accumulator[Int]

Accumulator[Double]

Accumulator Rules
Create with SparkContext.accumulator(initialVal)

“Add” to the value with += inside tasks
»Each task’s effect only counted once

Access with .value, but only on master
»Exception if you try it on workers

Retains efficiency and fault
tolerance!

Outline
The big data problem

MapReduce

Spark

How it works

Users' experience

Components
Driver program connects to
cluster and schedules tasks

Workers run tasks, report
results and variable updates

Data shared through
Hadoop file system (HDFS) Driver

Workers

HDFS
user code,

broadcast vars

tasks,
results

Master

local
cache

Execution Process

rdd1.join(rdd2)
.groupBy(…)
.filter(…)

RDD Objects

build operator DAG

DAG Scheduler

split graph into
stages of tasks

submit each
stage as ready

DAG

Task Scheduler

TaskSet

launch tasks via
cluster manager

retry failed or
straggling tasks

Cluster
manager

Worker

execute tasks

store and serve
blocks

Block
manager

Threads

Task

Job Scheduler
Captures RDD
dependency graph

Pipelines functions
into “stages”

Cache-aware for
data reuse & locality

Partitioning-aware
to avoid shuffles

join

union

groupBy

map

Stage 3

Stage 1

Stage 2

A: B:

C: D:

E:

F:

G:

= cached partition

Language Integration
No changes to Scala!

Scala closures are Serializable Java objects
»Contain references to outer variables as fields
»Serialize on driver, load & call on workers

val str = “hi”

rdd.map(x => str + x)

class Closure1 {
String str;
String call(String x) {
return str + x;

}
}

“hi”str:

Shared Variables

Play tricks with Java serialization!

class Broadcast<T> {
private transient T value; // will not be serialized
private int id = Broadcast.newID();

Broadcast(T value) {
this.value = value;
this.id = BroadcastServer.newId();
BroadcastServer.register(id, value);

}

// Called by Java when object is deserialized
private void readObject(InputStream s) {
s.defaultReadObject();
value = BroadcastFetcher.getOrFetch(id); // local registry

}
}

Shared Variables

Play tricks with Java serialization!

class Accumulator<T> {
private transient T value; // will not be serialized
private int id = Accumulator.newID();
...

// Called by Java when object is deserialized
private void readObject(InputStream s) {
s.defaultReadObject();
value = zero(); // initialize local value to 0 of type T
AccumulatorManager.register(this); // worker will send our

// value back to master
}

void add(T t) { value.add(t); }
}

Interactive Shell
Scala interpreter compiles each line as,
essentially, a separate source file (!)

Modifications to allow use with Spark:
»Altered code generation to make each line typed

capture references to objects it depends on (as fields)
»Added server to ship generated classes to workers

Outline
The big data problem

MapReduce

Spark

How it works

Users' experience

Some Users

500 user meetup, 12 companies contributing code

User Applications

Crowdsourced traffic estimation (Mobile Millennium)

Video analytics & anomaly detection (Conviva)

Ad-hoc queries from web app (Quantifind)

Twitter spam classification (Monarch)

DNA sequence analysis (SNAP)

…

Conviva GeoReport

SQL aggregations on many keys w/ same filter

40× gain over Hive from avoiding repeated I/O,
deserialization and filtering

0.5

20

0 5 10 15 20

Spark

Hive

Time (hours)

What do Users Say?
“Matei, we are doing predictive analytics on unstructured data and have been a
Cascading/Pig shop [Hadoop]. We are a pretty small startup with 12 people and
our first client is using our system to do predictions for […].

Recently someone tried to compute the same predictions in straight Java and it
turned out that a single box could outperform Pig running on 4 machines by
several orders of magnitude. Then we started trying Spark and it was even better
(the Java code was just a prototype and not optimized). Spark took the 60min Pig
job running on 4 servers down to 12s running on 1 server.

So needless to say, we are porting our Pig code to Spark (which also shrinks it
down to a much smaller size) and will be running out next product version on it.”

What do Users Say?
“For simple queries, writing the query in Spark is harder than writing it in Hive
[SQL over Hadoop]. However, it is much easier to write complicated queries in
Spark than in Hive. Most real-world queries tend to be quite complex; hence the
benefit of Spark. We can leverage the full power of the Scala programming
language, rather than relying on the limited syntax offered by SQL. For example,
the Hive expression IF(os=1, “Windows”, IF(os=2, “OSX”, IF(os=3, “Linux”,
“Unknown”))) can be replaced by a simple match clause in Scala. You can also use
any Java/Scala library to transform the data.”

What do Users Say?
Spark jobs are amazingly easy to test
Writing a test in Spark is as easy as:

class SparkTest {
@Test
def test() {
// this is real code...
val sc = new SparkContext("local", "MyUnitTest")
// and now some psuedo code...
val output = runYourCodeThatUsesSpark(sc)
assertAgainst(output)

}
}

As a technical aside, this “local” mode starts up an in-process Spark instance, backed
by a thread-pool, and actually opens up a few ports and temp directories, because it’s
a real, live Spark instance. Granted, this is usually more work than you want to be
done in an unit test (which ideally would not hit any file or network I/O), but the
redeeming quality is that it’s fast. Tests run in ~2 seconds.

Interesting Takeaways

Users are as excited about the ease of use as
about the performance

»Even seasoned distributed programmers

Ability to use a “full” programming language
(classes, functions, etc) is appreciated over SQL

»Hard to see in small examples, but matters in big apps

Embedded nature of DSL helps w/ software eng.
»Call Spark in unit tests, call into existing Scala code
» Important in any real software eng. setting!

Spark in Java and Python

To further expand Spark’s usability, we’ve now
invested substantial effort to add 2 languages

Both support all the Scala features (RDDs,
accumulators, broadcast vars)

Spark in Java
lines.filter(_.contains(“error”)).count()

JavaRDD<String> lines = sc.textFile(...);

lines.filter(new Function<String, Boolean>() {
Boolean call(String s) {
return s.contains(“error”);

}
}).count();

Spark in Python

lines = sc.textFile(sys.argv[1])

counts = lines.flatMap(lambda x: x.split(' ')) \
.map(lambda x: (x, 1)) \
.reduceByKey(lambda x, y: x + y)

Usable interactively from Python shell
Coming out this month

Conclusion

Spark makes parallel programs faster to write &
run with model based on distributed collections

»User API resembles working with local collections
»Caching & lineage-based recovery = fast data sharing

Gets nice syntax while staying soft. eng. friendly

Might be fun to build DSLs on top of!

www.spark-project.org

http://www.spark-project.org

