
1

Lecture 2

Unit Conversion Calculator
Expressions, values, types. Their
representation and interpretation.

Ras Bodik
with Mangpo and Ali

Hack Your Language!
CS164: Introduction to Programming
Languages and Compilers, Spring 2013

UC Berkeley

Administrativia

These are supplementary slides.

Review the material and the sample code to
understand interpreters.

2

Course grading

Projects (PA1-9) 45%

Homeworks (HW1-3) 15%

Midterms 20%

Final project 15%

Class participation 5%

Class participation: many alternatives

– ask and answer questions during lectures or recitations,

– discuss topics on the newsgroup,

– post comments to lectures notes (to be added soon)

3

Summary of last lecture

What’s a programming abstraction?

– data types

– operations on them and

– constructs for composing abstractions into bigger ones

Example of small languages that you may design

– all built on abstractions tailored to a domain

What’s a language?

- a set of abstractions composable into bigger ones

Why small languages?

- see next slide and lecture notes

4

MapReduce story

5

What’s a “true” language

Composable abstractions

not composable:

– networking socket: an abstraction but can’t build a
“bigger” socket from a an existing socket

composable:

– regexes: foo|bar* composes regexes foo and bar*

6

Today

Programs (expressions), values and types

their representation in the interpreter

their evaluation

Finding errors in incorrect programs

where do we catch the error?

Using unit calculator as our running study

it’s an interpreter of expressions with fun extensions

7

Recall Lecture 1

Your boss asks: “Could our search box answers some semantic
questions?” You build a calculator:

Then you remember cs164 and easily add unit conversion.

How long a brain could function on 6 beers --- if alcohol energy was not converted to fat.

8

Programs from our calculator language

Example:

34 knots in mph # speed of S.F. ferry boat

--> 39.126 mph

Example: # volume * (energy / volume) / power = time

half a dozen pints * (110 Calories per 12 fl oz) / 25 W in days

--> 1.704 days

9

Constructs of the Calculator Language

10

What do we want from the language

• evaluate arithmetic expressions

• … including those with physical units

• check if operations are legal (area + volume is not)

• convert units

11

What additional features may we want

what features we may want to add?

– think usage scenarios beyond those we saw

– talk to your neighbor

– we’ll add some of these in the next lecture

can we view these as user extending the language?

12

Additional features we will implement in Lec3

• allow users to extend the language with their units

• … with new measures (eg Ampere)

• bind names to values

• bind names to expressions (lazy evaluation)

13

We’ll grow the language a feature at a time

1. Arithmetic expressions

2. Physical units for (SI only)

3. Non-SI units

4. Explicit unit conversion

14

Sublanguage of arithmetic expressions

A programming language is defined as

Syntax: set of valid program strings

Semantics: how the program evaluates

15

Syntax

The set of syntactically valid programs is large.

So we define it recursively:

E ::= n | E op E | (E)

op ::= + | - | * | / | ^

E is set of all expressions expressible in the language.

n is a number (integer or a float constant)

Examples: 1, 2, 3, …, 1+1, 1+2, 1+3, …, (1+3)*2, …

16

Semantics (Meaning)

Syntax defines what our programs look like:

1, 0.01, 0.12131, 2, 3, 1+2, 1+3, (1+3)*2, …

But what do they mean? Let’s try to define e1 + e2

Given the values e1 and e2,

the value of e1 + e2 is the sum of the two values.

We need to state more. What is the range of ints?

Is it 0..232-1 ?

Our calculator borrows Python’s unlimited-range integers

How about if e1 or e2 is a float?

Then the result is a float.

There are more subtleties, as we painfully learn soon.
17

How to represent a program?

concrete syntax abstract syntax
(input program) (internal program representation)

1+2 (‘+’, 1, 2)

(3+4)*2 (‘*’, (‘+’, 3, 4), 2)

18

The interpreter

Recursive descent over the abstract syntax tree

ast = ('*', ('+', 3, 4), 5)

print(eval(ast))

def eval(e):

if type(e) == type(1): return e

if type(e) == type(1.1): return e

if type(e) == type(()):

if e[0] == '+': return eval(e[1]) + eval(e[2])

if e[0] == '-': return eval(e[1]) - eval(e[2])

if e[0] == '*': return eval(e[1]) * eval(e[2])

if e[0] == '/': return eval(e[1]) / eval(e[2])

if e[0] == '^': return eval(e[1]) ** eval(e[2])
19

How we’ll grow the language

1. Arithmetic expressions

2. Physical units for (SI only)

3. Non-SI units

4. Explicit unit conversion

20

Add values that are physical units (SI only)

Example:

(2 m) ^ 2 --> 4 m^2

Concrete syntax:

E ::= n | U | E op E | (E)

U ::= m | s | kg

op ::= + | - | * | | / | ^

Abstract syntax: represent SI units as string constants

3 m^2 ('*', 3, ('^', 'm', 2))

21

A question: catching illegal programs

Our language now allows us to write illegal programs.

Examples: 1 + m, 2ft – 3kg.

Question: Where should we catch such errors?

a) in the parser (as we create the AST)

b) during the evaluation of the AST

c) parser and evaluator will cooperate to catch this bug

d) these bugs cannot generally (ie, all) be caught

Answer:

b: parser has only a local (ie, node and its children) view of
the AST, hence cannot tell if ((m))+(kg) is legal or not.

22

Representing values of units

How to represent the value of ('^', 'm', 2) ?

A pair (numeric value, Unit)

Unit a map from an SI unit to its exponent:

('^', 'm', 2) → (1, {'m':2})

('*', 3, ('^', 'm', 2)) → (3, {'m':2})

23

The interpreter

def eval(e):

if type(e) == type(1): return (e,{})

if type(e) == type('m'): return (1,{e:1})

if type(e) == type(()):

if e[0] == '+': return add(eval(e[1]), eval(e[2]))

…

def sub((n1,u1), (n2,u2)):

if u1 != u2: raise Exception(“Subtracting incompatible units")

return (n1-n2,u1)

def mul((n1,u1), (n2,u2)):

return (n1*n2,mulUnits(u1,u2))

Read rest of code at:
http://bitbucket.org/bodik/cs164fa09/src/9d975a5e8743/L3-ConversionCalculator/Prep-for-lecture/ConversionCalculator.py

24

http://bitbucket.org/bodik/cs164fa09/src/9d975a5e8743/L3-ConversionCalculator/Prep-for-lecture/ConversionCalculator.py

How we’ll grow the language

1. Arithmetic expressions

2. Physical units for (SI only) code (link)

3. Non-SI units

4. Explicit unit conversion

You are expected to read the code

It will prepare you for PA1

25

http://bitbucket.org/bodik/cs164fa09/src/9d975a5e8743/L3-ConversionCalculator/Prep-for-lecture/ConversionCalculator.py

Step 3: add non-SI units

Trivial extension to the syntax

E ::= n | U | E op E | (E)

U ::= m | s | kg | ft | year | …

But how do we extend the interpreter?

We will evaluate ft to 0.3048 m.

This effectively converts ft to m at the leaves of the AST.

We are canonicalizing non-SI values to their SI unit

SI units are the “normalized type” of our values

26

The code

def eval(e):

if type(e) == type(1): return (e,{})

if type(e) == type(1.1): return (e,{})

if type(e) == type('m'): return lookupUnit(e)

def lookupUnit(u):

return {

'm' : (1, {'m':1}),

'ft' : (0.3048, {'m':1}),

'in' : (0.0254, {'m':1}),

's' : (1, {'s':1}),

'year' : (31556926, {'s':1}),

'kg' : (1, {'kg':1}),

'lb' : (0.45359237, {'kg':1})

}[u];

Rest of code at :
http://bitbucket.org/bodik/cs164fa09/src/c73c51cfce36/L3-ConversionCalculator/Prep-for-lecture/ConversionCalculator.py

27

http://bitbucket.org/bodik/cs164fa09/src/c73c51cfce36/L3-ConversionCalculator/Prep-for-lecture/ConversionCalculator.py

How we’ll grow the language

1. Arithmetic expressions

2. Physical units for (SI only) code (link) 44LOC

3. Add non-SI units code (link) 56LOC

3.5 Revisit integer semantics (a coersion bug)

4. Explicit unit conversion

28

http://bitbucket.org/bodik/cs164fa09/src/9d975a5e8743/L3-ConversionCalculator/Prep-for-lecture/ConversionCalculator.py
https://bitbucket.org/bodik/cs164fa09/src/c73c51cfce36/L3-ConversionCalculator/Prep-for-lecture/ConversionCalculator.py

Coercion revisited

To what should "1 m / year" evaluate?

our interpreter outputs 0 m / s

problem: value 1 / 31556926 * m / s was rounded to zero

Because we naively adopted Python coercion rules

They are not suitable for our calculator.

We need to define and implement our own.

Keep a value in integer type whenever possible. Convert to
float only when precision would otherwise be lost.

Read the code: explains when int/int is an int vs a float

http://bitbucket.org/bodik/cs164fa09/src/204441df23c1/L3-ConversionCalculator/Prep-for-lecture/ConversionCalculator.py

29

http://bitbucket.org/bodik/cs164fa09/src/204441df23c1/L3-ConversionCalculator/Prep-for-lecture/ConversionCalculator.py

How we’ll grow the language

1. Arithmetic expressions

2. Physical units for (SI only) code (link) 44LOC

3. Add non-SI units code (link) 56LOC

3.5 Revisit integer semantics (a coersion bug)

code (link) 64LOC

4. Explicit unit conversion

30

http://bitbucket.org/bodik/cs164fa09/src/9d975a5e8743/L3-ConversionCalculator/Prep-for-lecture/ConversionCalculator.py
https://bitbucket.org/bodik/cs164fa09/src/c73c51cfce36/L3-ConversionCalculator/Prep-for-lecture/ConversionCalculator.py
http://bitbucket.org/bodik/cs164fa09/src/204441df23c1/L3-ConversionCalculator/Prep-for-lecture/ConversionCalculator.py

Explicit conversion

Example:

3 ft/s in m/year --> 28 855 653.1 m / year

The language of the previous step:

E ::= n | U | E op E | (E)

U ::= m | s | kg | J | ft | in | …

op ::= + | - | * | ε | / | ^

Let's extend this language with “E in C”

31

Where in the program can "E in C" appear?

Attempt 1:

E ::= n | U | E op E | (E) | E in C

That is, is the construct "E in C" a kind of expression?

If yes, we must allow it wherever expressions appear.

For example in (2 m in ft) + 3 km.

For that, E in C must yield a value. Is that what we want?

Attempt 2:

P ::= E | E in C

E ::= n | U | E op E | (E)

"E in C" is a top-level construct.

It decides how the value of E is printed.
32

Next, what are the valid forms of C?

Attempt 1:

C ::= U op U

U ::= m | s | kg | ft | J | …

op ::= + | - | * | ε | / | ^

Examples of valid programs:

Attempt 2:

C ::= C * C | C C | C / C | C ^ n | U

U ::= m | s | kg | ft | J | …

33

How to evaluate C?

Our ideas:

34

How to evaluate C?

What value(s) do we need to obtain from sub-AST C?

1. conversion ratio between the unit C and its SI unit

ex: (ft/year)/(m/s) = 9.65873546 × 10-9

2. a representation of C, for printing

ex: ft * m * ft --> {ft:2, m:1}

35

How we’ll grow the language

1. Arithmetic expressions

2. Physical units for (SI only) code 44LOC

3. Add non-SI units code 56LOC

3.5 Revisit integer semantics (a coersion bug)

code 64LOC

4. Explicit unit conversion code 78LOC

this step also includes a simple parser: code 120LOC

You are asked to understand the code.

you will understand the parser code in later chapters

36

http://bitbucket.org/bodik/cs164fa09/src/9d975a5e8743/L3-ConversionCalculator/Prep-for-lecture/ConversionCalculator.py
https://bitbucket.org/bodik/cs164fa09/src/c73c51cfce36/L3-ConversionCalculator/Prep-for-lecture/ConversionCalculator.py
http://bitbucket.org/bodik/cs164fa09/src/204441df23c1/L3-ConversionCalculator/Prep-for-lecture/ConversionCalculator.py
http://bitbucket.org/bodik/cs164fa09/src/fd06b6df0b9c/L3-ConversionCalculator/Prep-for-lecture/ConversionCalculator.py
https://bitbucket.org/bodik/cs164fa09/src/fd06b6df0b9c/L3-ConversionCalculator/Prep-for-lecture/L0_parser.py

Where are we?

The grammar:

P ::= E | E in C

E ::= n | E op E | (E) | U

op ::= + | - | * | ε | / | ^

U ::= m | s | kg | ft | cup | acre | l | …

C ::= U | C * C | C C | C/C | C^n

After adding a few more units, we have google calc:

34 knots in mph --> 39.126 mph

37

What you need to know

• Understand the code of the calculator

• Able to read grammars (descriptors of languages)

38

Key concepts

programs, expressions

are parsed into abstract syntax trees (ASTs)

values

are the results of evaluating the program,

in our case by traversing the AST bottom up

types

are auxiliary info (optionally) propagated with values during
evaluation; we modeled physical units as types

39

Part 2

Grow the calculator language some more.

Allow the user to

- add own units

- reuse expressions

40

Review of progress so far

Example:

34 knots in mph # speed of S.F. ferry boat

--> 39.126 mph

Example: # volume * (energy / volume) / power = time

half a dozen pints * (110 Calories per 12 fl oz) / 25 W in days

--> 1.704 days

Now we will change the language to be extensible

41

How we’ll grow the language

1. Arithmetic expressions

2. Physical units for (SI only) code 44LOC

3. Add non-SI units code 56LOC

4. Explicit unit conversion code 78LOC

this step also includes a simple parser: code 120LOC

5. Allowing users to add custom non-SI units

42

http://bitbucket.org/bodik/cs164fa09/src/9d975a5e8743/L3-ConversionCalculator/Prep-for-lecture/ConversionCalculator.py
https://bitbucket.org/bodik/cs164fa09/src/c73c51cfce36/L3-ConversionCalculator/Prep-for-lecture/ConversionCalculator.py
http://bitbucket.org/bodik/cs164fa09/src/fd06b6df0b9c/L3-ConversionCalculator/Prep-for-lecture/ConversionCalculator.py
https://bitbucket.org/bodik/cs164fa09/src/fd06b6df0b9c/L3-ConversionCalculator/Prep-for-lecture/L0_parser.py

Growing language w/out interpreter changes

We want to design the language to be extensible

– Without changes to the base language

– And thus without changes to the interpreter

For calc, we want the user to add new units

– Assume the language knows about meters (feet, …)

– Users may wan to add, say, Angstrom and light year

How do we make the language extensible?

43

Our ideas

minute = 60 s

yard = 36 inch

44

Bind a value to an identifier

minute = 60 s

hour = 60 minute

day = 24 hour

month = 30.5 day // maybe not define month?

year = 365 day

km = 1000 m

inch = 0.0254 m

yard = 36 inch

acre = 4840 yard^2

hectare = (100 m)^2

2 acres in hectare → 0.809371284 hectare

45

Implementing user units

Assume units extends existing measures.

We want the user to add ft when m or yard is known

46

How we’ll grow the language

1. Arithmetic expressions

2. Physical units for (SI only) code 44LOC

3. Add non-SI units code 56LOC

4. Explicit unit conversion code 78LOC

this step also includes a simple parser: code 120LOC

5. Allowing users to add custom non-SI units

6. Allowing users to add custom measures

47

http://bitbucket.org/bodik/cs164fa09/src/9d975a5e8743/L3-ConversionCalculator/Prep-for-lecture/ConversionCalculator.py
https://bitbucket.org/bodik/cs164fa09/src/c73c51cfce36/L3-ConversionCalculator/Prep-for-lecture/ConversionCalculator.py
http://bitbucket.org/bodik/cs164fa09/src/fd06b6df0b9c/L3-ConversionCalculator/Prep-for-lecture/ConversionCalculator.py
https://bitbucket.org/bodik/cs164fa09/src/fd06b6df0b9c/L3-ConversionCalculator/Prep-for-lecture/L0_parser.py

How do we add new measures?

No problem for Joule, as long you have kg, m, s:

J = kg m^2 / s^2

But other units must be defined from first principles:

Electric current:

– Ampere

Currency:

– USD, EUR, YEN, with BigMac as the SI unit

Coolness:

– DanGarcias, with Fonzie as the SI unit
48

http://uncyclopedia.wikia.com/wiki/Cool

Our ideas

Attempt 1:

when we evaluate a = 10 b and b is not known, add it as
a new SI unit.

This may lead to spuriously SI units introduced due to typos.

Attempt 2:

ask the user to explicitly declare the new SI unit:

SI Ampere

49

Our solution

Add into language a construct introducing an SI unit

SI A // Ampere

mA = 0.0001 A

SI BigMac

USD = BigMac / 3.57 // BigMac = $3.57

GBP = BigMac / 2.29 // BigMac = £2.29

With “SI <id>”, language needs no built-in SI units

SI m

km = 1000 m

inch = 0.0254 m

yard = 36 inch 50

Implementing SI id

51

How we’ll grow the language

1. Arithmetic expressions

2. Physical units for (SI only) code 44LOC

3. Add non-SI units code 56LOC

4. Explicit unit conversion code 78LOC

this step also includes a simple parser: code 120LOC

5. Allowing users to add custom non-SI units

6. Allowing users to add custom measures code

7. Reuse of values

52

http://bitbucket.org/bodik/cs164fa09/src/9d975a5e8743/L3-ConversionCalculator/Prep-for-lecture/ConversionCalculator.py
https://bitbucket.org/bodik/cs164fa09/src/c73c51cfce36/L3-ConversionCalculator/Prep-for-lecture/ConversionCalculator.py
http://bitbucket.org/bodik/cs164fa09/src/fd06b6df0b9c/L3-ConversionCalculator/Prep-for-lecture/ConversionCalculator.py
https://bitbucket.org/bodik/cs164fa09/src/fd06b6df0b9c/L3-ConversionCalculator/Prep-for-lecture/L0_parser.py
https://bitbucket.org/bodik/cs164fa09/raw/82f5c9b14b64/L3-ConversionCalculator/Prep-for-lecture/ConversionCalculator.py

Motivating example

Compute # of PowerBars burnt on a 0.5 hour-long run

SI m, kg, s

lb = 0.454 kg; N = kg m / s^2

J = N m; cal = 4.184 J

powerbar = 250 cal

0.5hr * 170lb * (0.00379 m^2/s^3) in powerbar

--> 0.50291 powerbar

Want to retype the formula after each morning run?

0.5 hr * 170 lb * (0.00379 m^2/s^3)

53

Reuse of values

To avoid typing

170 lb * (0.00379 m^2/s^3)

… we’ll use same solution as for introducing units:

Just name the value with an identifier.

c = 170 lb * (0.00379 m^2/s^3)

28 min * c

… next morning

1.1 hour * c

Should time given be in min or hours?

Either. Check this out! Calculator converts automatically!

54

How we’ll grow the language

1. Arithmetic expressions

2. Physical units for (SI only) code 44LOC

3. Add non-SI units code 56LOC

4. Explicit unit conversion code 78LOC

this step also includes a simple parser: code 120LOC

5. Allowing users to add custom non-SI units

6. Allowing users to add custom measures code

7. Reuse of values (no new code needed)

8. Reuse of expressions (bind names to expressions)
55

http://bitbucket.org/bodik/cs164fa09/src/9d975a5e8743/L3-ConversionCalculator/Prep-for-lecture/ConversionCalculator.py
https://bitbucket.org/bodik/cs164fa09/src/c73c51cfce36/L3-ConversionCalculator/Prep-for-lecture/ConversionCalculator.py
http://bitbucket.org/bodik/cs164fa09/src/fd06b6df0b9c/L3-ConversionCalculator/Prep-for-lecture/ConversionCalculator.py
https://bitbucket.org/bodik/cs164fa09/src/fd06b6df0b9c/L3-ConversionCalculator/Prep-for-lecture/L0_parser.py
https://bitbucket.org/bodik/cs164fa09/raw/82f5c9b14b64/L3-ConversionCalculator/Prep-for-lecture/ConversionCalculator.py

Another motivating example

You want to print the current time left to deadline

now = 2011 year + 0 month + 18 day + 15 hour + 40 minute

--- pretend that now is always set to current time of day

Let’s try to compute time to deadline

deadline = 2011 year + 1 month + 3 day // 2/3/2012

timeLeft = deadline - now

timeLeft in day --> time left

Wait for current time to advance. Print time left now.
What does the following print?

timeLeft in day --> updated time left

How to achieve this behavior?
56

timeLeft is bound to an expression

57

Naming values vs. naming expressions

“Naming an expression” means that we evaluate it
lazily when we need its value

58

How we’ll grow the language

1. Arithmetic expressions

2. Physical units for (SI only) code 44LOC

3. Add non-SI units code 56LOC

4. Explicit unit conversion code 78LOC

this step also includes a simple parser: code 120LOC

5. Allowing users to add custom non-SI units

6. Allowing users to add custom measures code

7. Reuse of values (no new code needed)

8. Reuse of expressions code (not fully lazy)
59

http://bitbucket.org/bodik/cs164fa09/src/9d975a5e8743/L3-ConversionCalculator/Prep-for-lecture/ConversionCalculator.py
https://bitbucket.org/bodik/cs164fa09/src/c73c51cfce36/L3-ConversionCalculator/Prep-for-lecture/ConversionCalculator.py
http://bitbucket.org/bodik/cs164fa09/src/fd06b6df0b9c/L3-ConversionCalculator/Prep-for-lecture/ConversionCalculator.py
https://bitbucket.org/bodik/cs164fa09/src/fd06b6df0b9c/L3-ConversionCalculator/Prep-for-lecture/L0_parser.py
https://bitbucket.org/bodik/cs164fa09/raw/82f5c9b14b64/L3-ConversionCalculator/Prep-for-lecture/ConversionCalculator.py
https://bitbucket.org/bodik/cs164fa09/changeset/fa5529bbbda1

Summary: Calculator is an extensible language

Very little built-in knowledge

– Introduce base units with ‘SI name’

– Arithmetic performs general unit types and conversion

No need to define all units in terms of SI units

cal = 4.184 J

Reuse of values by naming the values.

myConstant = 170 lb * (0.00379 m^2/s^3)

0.5 hr * myConstant in powerbar

-> Same mechanism as for introduction of non-SI units!

No need to remember units! Both will work fine!

0.5 hr * myConstant in powerbar

30 minutes * myConstant in powerbar 60

Limitations of calculator

No relational definitions

– We may want to define ft with ‘12 in = ft’

– We could do those with Prolog
• recall the three colored stamps example in Lecture 1

Limited parser

– Google parses 1/2/m/s/2 as ((1/2) / (m/s)) / 2

– There are two kinds of / operators

– Their parsing gives the / operators intuitive precedence

– You will implement his parser in PA6

61

What you were supposed to learn

Binding names to values

– and how we use this to let the user grow the calculator

Introducing new SI units required declaration

- the alternative could lead to hard-to-diagnose errors

names can bind to expressions, not only to values

- these expressions are evaluated lazily

62

