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Reflection on HW1 

In HW1, most of you wrote your first web mash-up.  

 

Congratulations!!! 

 

Lessons from HW1: 
- modern programs use multiple languages: HTML, CSS, JS, regex, d3 

- can accomplish a lot with a few lines of code 

- but languages and tools not so easy to learn 

- in CS164, we’ll learn skills to improve tools and languages,  

- and learn how to learn languages faster  
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Our plan 

Today’s lecture: 

- mostly a CS61A refresher, on interpreters and scoping 

- get hands-on practice with these concepts in PA1 

PA1 assigned today (due Monday): 

- we’ll give you an interpreter with dynamic scoping 

- you extend it with lexical scoping, calls, and little more 

PA logistics 

- work in teams of two or three (solo not allowed) 

- team collaboration via Mercurial (emailing files no ok) 

Next lecture: 

- developing program constructs with coroutines  

- lazy iterators, regular expressions, etc 
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Outline 

• The architecture of a compiler and interpreter 

• Surface syntax, the core language, and desugaring 

• Interpreter for arithmetic and units 

• Delaying the evaluation: Compilation 

• Adding functions and local variables 

• We want to reuse code: high-order functions 

• Nested scopes: dynamic scoping 

• Fixing language for reusability: static scoping 
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The architecture and  
program representation 
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Basic Interpreter and Compiler Architecture 

                                “1 * (2 + input())” 

 

 

 

 

 

 

 

 

           interpreter                                      compiler  
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Basic Interpreter and Compiler Architecture 

• why AST representation? 

– encodes order of evaluation 

– allows divide and conquer recursive evaluation 

• parser turns flat text into a tree 

– so that programmers need no enter trees 

• source language vs target language 

– for interpreters, we usually talk about host languages 

• AST is a kind of a program intermediate form (IR).   

– an idealized assembly is another. More on this in PA2. 
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More typical Interpreter and Compiler 

 

 

 

 

 

 

 

 

 

Lowering motivated by desire for simple core lang 
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Example of code before and after lowering 

Input to google unit calculator 

half a pint * 100 Cal 

 

AST after parsing: 

 

 

AST after lowering: 
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Advanced Interpreter and Compiler 

 

 

 

 

 

 

 

 

 

Example systems: V8 JS engine; gcc C compiler 
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More on lowering 

Effectively, we have two languages  

– surface language 

– core language 

 

Example:  

– for (i = 0,n) { … } is surface syntax 

– can be desugared to while (…) 

 

These rewrites are  

- expand a node (eg for) without looking at the rest of AST 
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First way to lower the AST: tree rewrite 

AST rewriting (sits between parsing and interpreter) 

 
while (E) { S }    parser    AST with While node 

          rewriter   AST w/out While node 
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Second way to desugar: in the parser 

during “syntax-directed translation” (more later) 

 
while (E) { S }  parser   AST w/out While node 

 

S ::= 'while' '(' E ')' '{' S_list '}'     

 

   %{ return ('exp', ('call',  

                      ('var', 'While'),  

                      [('lambda',[], [('exp',n3.val)]),  

                       ('lambda',[], n6.val)]))         

   %} 
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Summary of key concepts 

• Interpreter works on ASTs, programmers on text  

• Parser turns text into AST 

• AST encodes evaluation order 

• Want a simple interpreter ==> a small core language  

• Clunky core ==> design friendly surface syntax 

• Surface syntax expanded (lowered, desugared) 

• Desugaring can happen already in the parser 

• Lowering means we have 2 langs: surface and core 

• Interpreter evaluates the AST, compiler translates it  

• Result of compilation is a program in target lang 
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Test yourself (what you need to know) 

• Design an AST for this code fragment: x.f[i,j]. 

• Why are parens in (x+y)*z not needed in the AST? 

• Rewrite a small JS program into AST form. 
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The AST interpreter 
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The core language 

First we need to decide what language to interpret 

 

Lets assume expressions over int constants and + - / *. 

We say this concisely with a grammar: 

 

E := n  |  E+E  |  E-E  |  E/E  |  E*E 

 

This (recursive) grammar defines structure of AST: 

- leaves are integer constants (denoted n)  

- internal nodes are operators (+ - / *) 

17 



A recursive interpreter (part 1) 

First, we need to define the AST node 

 class N(op, arg1, arg2) { 

                // operator, left and right children 

} 

 

Example AST, for input 1 + 2 
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A recursive interpreter (part 2) 

Now we can evaluate the AST: 

 

// method eval is in the AST node class N 

function eval() {  

 switch (this.op) { 

 case 'int-lit': return this.arg1 

 case ’+’:       return this.arg1.eval() + this.arg2.eval(); 

 case ’*’:       return this.arg1.eval() * this.arg2.eval(); 

 … 

 } 

} 
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Intermediate values 

Intermediate values = values of sub-expressions 

 

Q: Consider evaluation of  (1+(2+(3+4))). 

Where are 1 and 2 stored while 3+4 is computed? 

 

A: the stack of the recursive interpreter. 
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Dynamic type checking 

Dynamic type checking: performed at evaluation time 

Static is performed at compile time (before inputs known) 

Example: 1 m + 2 sec is a type error 

note that we converted 1 m + 1 ft into 1 m + 0.3 ft, so no err 

Example: object + string should also raise an error 

– some languages may coerce object to string and concat 

– or do some other strange type conversion 

Sample interpreter code: 

case ’/’:       var v1 = this.arg1.eval() 

  var v2 = this.arg2.eval() 

  ___________________ ; ________________ 
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Runtime type information 

Note: values must be tagged with run-time type 

or this type info must be obvious from the runtime value  
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Interpreter for the unit calculator 

Same as before except values are pairs (value, unit) 

 

 E := (n, U)  |  E+E  |  E-E  |  E/E  |  E*E 

 U := m  |  ft  |  s  |  min  |  … 

 

Operations now must add/mul values as well as types 

 

 see posted code of this unit interpreter  
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Evaluating abstract values 

The AST can be “evaluated” in non-standard ways 

 

Example:  compute the type of the AST 

more precisely, compute the type of the value that the AST 
will evaluate to once we know the values in input vars 

 

This type computation is possible even without  
knowing the input values, provided the programmer 
annotated the types of variables 
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Summary of key concepts 

• AST interpreter recursively evaluates the AST 

• Typically, values flow bottom-up 

• Intermediate values stored on interpreter’s stack 

• Interpreter performs dynamic type checking 

• Values can also be abstract, eg static types 
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Test yourself 

• Extend google calculator to handle in conversion, 
eg  2 ft / s in yard / minute 
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Compilation 
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Compiler: an interpreter that produces code 

Compilation is a special evaluation of the program 
(w/out knowing inputs) that produces target code.  

This target code, when itself evaluated on input 
values, evaluates the input program. 

 

The challenge is to define a compositional compiler: 

given the AST E of the form E1+E2, we want to  

i) compile E1 into target code T1 

ii) compile E2 into target code T2 

iii) create target code T for E by combining T1 and T2 
(ideally without changing T1 and T2). 
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Intermediate values, again 

Must agree on where T1 will leave the values of E1. 

same contract will hold for target code of all sub-ASTs 

A simple strategy: push the value to the stack 

we will call it data stack, called ds 

 

The target code T for AST E composes T1 and T2: 

 <T1 code>   

 <T2 code> 

 ds.push(ds.pop() + ds.pop())   
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Sample compiler 

 
// compile: AST -> String 

 

function compile(n) {   

 switch (n.op) { 

 case “int”: return “ds.push(” + n.arg1 + “)\n” 

 case “+”:   return compile(n.arg1) \ 

                     + compile(n.arg2) \ 

                     + “ds.push( ds.pop() + ds.pop() )\n” 

 ... 

  } 

} 
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Summary of key concepts 

• Compiler: a non-standard interpreter that evaluates  
the input AST into a target code 

• Target code, when run, evaluates the input AST 

• Compilation defers evaluation; strips some 
interpreter overhead; and translates program from 
source language to target language 

• Target code may keep live values in a data stack. 
This is slow.  We’ll use “registers” in PA2 

• Target code itself can do non-standard evaluation 
of the input AST, eg draw a picture of this AST 

 
31 



Test yourself 

• Write an AST pass that emits d3 code that draws 
the original AST 
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Adding functions and local variables 
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We now add functions 

Functions will have parameters and local variables 

 

Our core language: 

 

 E := n  |  E+E  |  E-E  |  E/E  |  E*E   

      |  function(id*) { E }     // the (anonym) function value 

                   |  E(E*)                             // function application (call) 

      |  id                                    // an identifier (var name) 

      |  let id = E in E               // let binding (var declaration) 
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Now we desugar a JS-like surface language 

Variable definitions 

 

var x = 1   let x = 1 in  

var y = x + 1 ---> let y = x + 1 in  

x+y    x + y 

 

Named function definitions 

 

function f(x) { body }      ---> var f = function(x) { body } 
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How to look up values of variables? 

Environment: maps symbols (var names) to values 

– think of it as a list of (symbol, value) pairs 

– env is passed to interpreter so that it can look up values 

– env.lookup(sym) finds returns value of first sym in env 

 
function eval(n, env) {   

 switch (n.op) { 

 case “int”: return n.arg1 

 case “id”:  return env.lookup(n.arg1) 

 case “+”:   return eval(n.arg1, env) + eval(n.arg2, env) 

 case “function”:  // function (ID:arg1) { B:arg2 } 

       return new FunctionObj(ID, B)   

 …  

}} 
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How to look up values of variables 

 
function eval(n, env) {   

 switch (n.op) { 

 ... 

 case “let”:  var init_v  = eval(n.arg2, env) 

              van new_env = prepend(env, (n.arg1, init_v)) 

        return eval(n.arg3, new_env) 

 

 case “apply”:  var fun = eval(n.arg1, env) 

   var arg = eval(n.arg2, env) 

   var new_env = prepend(env, (______, ____)) 

         return eval(fun.body, new_env) 

}} 
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Example 

 

let x = 1 in  

 

 

let f = function (a) { a+1 }  in  

 

 

f(x+1) 
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Summary of key concepts (1) 

• environment: maps symbols to values 

• … can be thought of as (ordered) list of pairs 

 

• … can be implemented as stack of frames, as in C 

• Locals and parameters are stored in a frame 

• Frames are pushed onto the call stack at call time 

• … popped when the function returns 

• … also pushed when entering body of let (a block 
scope in C) 
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Summary of key concepts (2) 

• Passing by value: evaluate args, then apply function 

 

• Function is an “ordinary” value bound to a symbol 

• Such value can be “passed round”, they are first-
class values 

• It can also be passed around (more on this later) 
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Test yourself 

• In C, returning the address of a local from a 
function may lead to what bugs problems? 

• In our current core language, what constructs are 
not first-class value?  A: symbols (names of vars).  
We don’t have a way to say “let x = name(y)”.   
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Implementing If and While via desugaring 
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Defining control structures  

They change the flow of the program 

– if (E) S else S 

– while (E) S 

– while (E1) S finally E2    // E2 executes even when we break 

 

There are many more control structures 

– exceptions 

– coroutines 

– continuations 

– event handlers 
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Assume we are given a built-in conditional 

Meaning of  ite(E1, E2, E3) 

evaluate all three expressions, denote their values v1, v2, v3 

if v1 == true then evaluate to v2, 

else evaluate to v3 

 

Why is this factorial program incorrect? 

 

def fact(n) {  

  ite(n<1, 1, n*fact(n-1)) 

} 
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Ifelse 

Can we implement ifelse with just functions? 

 

def fact(n) { 

 def true_branch() { 1 } 

 def false_branch() { n * fact(n-1) } 

 ifelse (n<2, true_branch, false_branch) 

} 

 

def ifelse (e, th, el) { 

 x = ite(e, th, el) 

 x() 

} 
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Same with anonymous functions 
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def fact(n) { 

    if (n<2, function() { 1 } 

           , function() { n*fact(n-1) } )  

} 



If 

How to define if on top of if-else? 

 

 

 

def if(e,th) {  

    cond(e, th, lambda(){} )()  

}  

 

47 



While 

Can we develop while using first-class functions? 

 

Let’s desugar  While (E) { E } to functions 

 

var count = 5 

var fact = 1 

While (count > 0) {  

 count = count - 1 

 fact := fact * count 

} 
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While  

var count = 5 

var fact = 1 

while( lambda() { count > 0 },  

       lambda() {  

    count = count - 1 

    fact := fact * count } 

) 

while (e, body) { 

    x = e() 

    if (x, body) 

    if (x, while(e, body)) 

} 
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If, while 

Desugaring while to  

while(lambda() { x < 10 } , 

           lambda() {  

  loopBody 

    }) 

 

may seem ugly, but jQuery, etc, pass functions, too 

$(".-123").hover( 
                               function(){ $(".-123").css("color", "red"); }, 
                               function(){ $(".-123").css("color", "black"); } 

                 ); 
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Smalltalk actually use this model 

Control structures not part of the core language 

Made visually acceptable by special syntax for blocks  

which are (almost) like anonymous functions 

Smalltalk: 
| count factorial |  

count := 5.  

factorial := 1.  

// pass two blocks to function whileTrue 

[ count > 0 ] whileTrue:  

  [ factorial := factorial * (count := count - 1) ] 

Transcript show: factorial  
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Almost the same in Ruby 

count = 5 

fact = 1 

while count > 0 do  

    count = count – 1 

    fact = fact * 1 

end 

 

For efficiency, the conditional is not a lambda. 

But the body remains a block, as in Smalltalk. 
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Also see 

If this is still strange, observe that calls are just goto’s. 

 

 

Lambda: The Ultimate GOTO, Guy Lewis Steele, Jr. 
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Syntactic sugar 

We provide a more readable syntax 

 

While (E) { S }  

 

and desugar this ‘surface’ construct to  

 

while(lambda() { E } , lambda() { S }) 
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Summary of key concepts 

• Control construct: decides which part of the 
program is evaluated next (“where the PC moves”). 

• If, while and other control constructs can be 
desugared to the core constructs, namely function 
definition and function application 

• Parts of if/while are wrapped in lambdas so that we 
can control when to execute them 

• It is necessary that the wrapping function can 
access data not passed via its parameters, ie data 
from outer scopes 
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Test yourself 

• Desugar for to while 

• Once we have lists in our language, desugar list 
comprehension to while 
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Code reuse with high-order functions 
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Looping constructs in DSLs 

d3’s selection.each(f) is also a high-order function 

 

so are the classical list functions such as map and fold 

 

more on these in later lectures 
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Summary of key concepts 

• High-order function accepts a function as argument 

• Map, fold, etc allow reuse by accepting a work fun 

• Passed functions may be also packed in an object 

• This allows syntactically pleasing call chaining 
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Test yourself 

• Write HO functions lfold and rfold over lists 

• Design and implement call chaining for some 
common task (TBD) 

 

 

60 



Dynamic scoping 
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Now let’s put our language to a test 
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var x = 5      // rename count to x 

var fact = 1 

while( lambda() { x > 0 },  

       lambda() {  

    x = x - 1 

    fact := fact * x } 

) 

while (e, body) { 

    x = e() 

    if (x, body) 

    if (x, while(e, body)) 

} 

 

 



Dynamic scoping 

The nesting of scopes (and thus symbols are looked 
up) is determined by the call stack. 

 

It’s called dynamic because the nesting is determined 
by how functions call each other at run-time. 

that is, it is input dependent 

 

we want scoping that is more predictable, that is 
known when program is written  

that is, one that depends on the structure of the program 
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Summary of key concepts 

• Our model of environment, which grows with new 
symbols at each call and let-in, gives rise to dynamic 
scoping. 

• Dynamic scoping = lookup variables following the 
calls stack. 

• Problem: implementations (eg of while) that should 
be invisible to work functions may interfere 

• That is, dynamic scoping is non-modular 
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Test yourself 

• Find a language with dynamic scoping 

• Study its tutorial and learn what dynamic scoping is 
useful for 

• Efficiency of name lookup in dynamic scoping: can 
you think of a constant-time algorithm for finding 
variable x in the environment? 
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Static (aka lexical) Scoping, Closures 
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Static scoping 

Same as in dynamic scoping: 

 
function eval(n, env) {   

 switch (n.op) { 

 case “int”: return n.arg1 

 case “id”:  return env.lookup(n.arg1) 

 case “+”:   return eval(n.arg1, env) + eval(n.arg2, env) 

 case “let”: // same  

 …  

}} 
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How to look up values of variables 

 
function eval(n, env) {   

 switch (n.op) { 

 ... 

 case “function”:  // function (ID:arg1) { B:arg2 } 

   var f = new Function(ID, B)   

        return (f, env) // closure (fun + its env) 

 

 case “apply”:  var fun = eval(n.arg1, env) 

   var arg = eval(n.arg2, env) 

   var new_env = prepend((fun.par, arg),fun.env) 

         return eval(fun.body, new_env) 

}} 
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Closures 

Closure: a pair (function, environment) 

this is our final representation of "function value" 

 

function: 

– it’s first-class function, ie a value, ie we can pass it around 

– representation keeps know the code of body & params 

– may have free variables, these are bound using the env 

environment: 

– it’s the environment from when the function was created 
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Application of closures 

From the Lua book 

 

names = { "Peter", "Paul", "Mary" } 

grades = { Mary: 10, Paul: 7, Paul: 8 } 

sort(names, function(n1,n2) { 

      grades[n1] > grades[n2] 

} 

 

Sorts the list names based on grades. 
grades not passed to sort via parameters but via closure 
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A cool closure  

c = derivative(sin, 0.001) 

print(cos(10), c(10)) 

   --> -0.83907, -0.83907 

 

def derivative(f,delta) 

    function(x) { 

        (f(x+delta) – f(x))/delta 

    } 

} 
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Summary of key concepts 

• Idea: allow nested functions + allow access only to 
nonlocals in parent (ie statically outer) functions 

• The environment: frames on the parent chain 

• Name resolution for x: first x from on parent chain 

• Solves modularity problems of dynamic scoping 

• Functions are now represented as closures, a pair 
of (function code, function environment)  

• Frames created for a function’s locals survive after 
the function returns 

• This allows creating data on the heap, accessed via 
functions (eg our counting closure) 
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Test yourself 
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Fun Facts 
 

The curse of hasty decisions 
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A language design decision: introducing a var 

Choice 1: explicit introduction (Algol, …, JavaScript) 
def f(x) { 

  # Define ‘a’. This is binding instance of a. 

 var a = x+1 

 return a*a 

} 
 

Choice 2: implicit introduction (BASIC, …, Python) 
def f(x) { 

 a = x+1      # the assignment a=… effectively  

 return a*a   # inserts definition var a into f’s scope 

} 

 

75 



Rewrite this code from JS to Python 2.7 

function getCounter() { 

    var a = 0 

    function counter() { 

        a = a + 1 

        return a 

    } 

    return counter  // returns a counting closure 

} 

var c1 = getCounter() 

var c2 = getCounter() 

console.log(c2())    --> 1 

console.log(c2())    --> 2 

console.log(c1())    --> 1 
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In Python 

An incorrect attempt in Python: 

 

def getCounter(): 

    a = 1 

    def counter(): 

        a = a + 1 <-- Error: local variable 'a'  

        return a   referenced before assignment 

    return bar 

c = getCounter() 

print(c()) 

print(c()) 
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Why are we getting this error? 

def foo(): 

    a = 1 

    def bar(): 

        a = a + 1 

        return a 

    return bar 

 

 

Python rule: “If a name binding operation occurs anywhere within 
a code block, all uses of the name within the block are treated as 
references to the current block['s binding].” 
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Fix in Python 3, a new version of language 

def foo(): 

    a = 1 

    def bar(): 

        nonlocal a 

        a = a + 1 

        return a 

    return bar 

f = foo() 

 

It works but it’s still a mess: where do we bind a? 

in two places, rather than one (a=1 and nonlocal a) 
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Summary of key concepts 

• Decision on how to introduce a symbol seems 
innocuous but has ramifications 

• Often simplifications like implicit binding work 
when the language is simple, eg has no nested 
functions 

• But once the language grows, surprising 
interactions between language features (implicit 
binding and nested functions) may happen 
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Test yourself 
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Summary of lecture 

• Functions and variables suffice to build a big 
language 

• Desugaring bridges what’s convenient to the 
programmer with what’s convenient to the 
interpreter/compiler 
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Reading  

Required: 

none 

Recommended: 

none 

Fun: 

lambda the ultimate GOTO 

Review: 

lexical scoping, environments, and frames: Ch 3.2 in CS61A 

84 

http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-21.html
http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-21.html
http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-21.html

