
1

Lecture 4

Building Control Abstractions
with Coroutines
iterators, tables, comprehensions, coroutines,
lazy iterators, composing iterators

Ras Bodik
with help from

Mangpo and Ali

Hack Your Language!
CS164: Introduction to Programming
Languages and Compilers, Spring 2013

UC Berkeley

Administrativia

Let us know right away if you don’t have a team

Optional (but recommended) homework

It will help you with PA1

See the web page that shows lecture notes

2

Today

• iterators (the for construct)

• comprehensions

• coroutines

• lazy iterators

• composing lazy iterators

• producer/consumer patterns

3

For loops and other iterators

4

Iterators

Whenever a language includes collections

or allows you to build one

we also want constructs for iterating over them

Example: d3 selections (sets of DOM nodes)

The each operator in

aSelection.each(aFunction)

is an iterator (implemented as a function)

5

Let’s design a for iterator (behavior)

Desired behavior: say want to iterate from 1 to 10:

for x in iter(10) { print x }

Q1: Is iter a keyword in the language? No, a function.

Q2: What does it return? An iterator function.

function iter(n) {

def i = 0

function () {

if (i < n) { i = i + 1; i }

else { null }

} }

6

Let’s design a for iterator (generality)

Q3: In general, what constructs to permit in __ ?

for x in __ { print x }

A: Any expression that returns an iterator function.

– the syntax of for thus is: for ID in E { S }

– these are all legal programs:
for x in myIter { S }

for x in myIterArray[2] { S }

for x in myIterFactoryFactory()() { S } // 
7

Let’s design a for iterator (scoping)

Q4: What is the scope x?

for x in E { S }

Q5: In what environment should E be evaluated?

In particular, should the environment include x?

E should be evaluated in e, the environment of for.

S should be evaluated in e extended with the binding for x.

8

Implementing the for iterator

We are done with the design of behavior (semantics).

Now to implementation. We’ll desugar it, of course.

for ID in E { S }

-->

{ // a block to introduce new scope

def t1 = E

def ID = t1()

while (ID != null) {

S

ID = t1()

}

} 9

Side note: the block scope

A new scope can be introduced by desugaring, too:

{ S } --> (function(){ S })()

This trick is used in JS programs to restrict symbol
visibility, ie to implement a simple module construct.

10

Iterator factory for tables

Assume we are using the table (dict) as array:

def t = {}; t[0] = 1; t[1] = 2

for x in asArray(t) { print x }

def asArray(tbl) {

def i = 0

// your exercise: fill in the rest

} 11

Summary of key concepts

• Iterators and loops are useful for collections and
also just to repeat some statement

• We want iterators that work in a modular way, ie,
any library can provide a “iterator factory”

• When desugaring for x in E { S }, S turns into a
closure that accesses x as a nonlocal variable

12

Test yourself

Optional homework, posted on the course web page

(understand surprises behind Python comprehensions)

13

Hint for the optional homework

Why should a desugar rule not touch the body?

for id in E:

body

should not modify the body.

If you are the compiler, you want to translate for without
regard for what’s in the body. That is, the desugar rule
should not have to peek into the subtree body. Otherwise
there will be many special cases based on what’s in body.

A simple, modular compiler desugars body recursively

14

Comprehensions

15

Comprehensions

A map operation over anything that is itererable.

[toUpperCase(v) for v in elements([“a”,“b”)]

-->

[“A”, “B”]

General syntax:

[E1 for ID in E2]

Can E1, E2 be comprehension expressions?
16

Comprehensions

Desugaring rule (case specific to this example):

[toUpperCase(v) for v in elements(list)]

--->
$1 = []

for v in elements(list) { append($1, toUpperCase(v)) }

$1

17

Homework: write a general desugar rule

make sure it works work on nested comprehensions

mat = [[1, 2, 3],
[4, 5, 6],
[7, 8, 9],
]

print [[row[i] for row in mat]

for i in [0, 1, 2]

]
--> [[1, 4, 7], [2, 5, 8], [3, 6, 9]]

"To avoid apprehension when nesting list
comprehensions, read from right to left" 18

Our abstraction stack is growing nicely

comprehensions

for + iterators

if + while

lambda

19

Lazy iterators

20

Print all permutations of a list

def permgen(a,n=len(a)) {

if (n <= 1) {

print(a)

} else {

for i in iter(n) {

a[n],a[i] = a[i],a[n]

permgen(a,n-1)

a[n],a[i] = a[i],a[n]

} } }

permgen(["a","b","c"])

21

Now let’s try to wrap permgen in an iterator

We want to be able to write

for p in permIterator(list) {

print p

if (condition(p))

return p // find first p with some property

}

The loop may iterate only over some permutations, so
let’s not compute and store all O(2n) of them in a list.
Let’s compute them lazily, as needed by the loop.

22

First attempt at wrapping permgen in iterator

def permIterator(lst) {

def permgen(a,n=len(a)) {

if (n = 1) {

__________ // print(a)

} else {

for i in iter(n) {

a[n],a[i] = a[i],a[n]

permgen(a,n-1)

a[n],a[i] = a[i],a[n]

} } }

lambda () { permgen(lst) } // the iterator

} 23

What is our stumbling block?

The call stack in for p in permIterator (lst){S(p)}

when permgen attempts to pass a permutation to for:
inside while loop

iteror

permgen(n)

…

permgen(1)

Why can’t permgen pass the permutation to iterator?

- it would need to return all the way to top of recursion

- this would make to lose all context

- here, context = value of i for each recursion level

24

Ideas for workarounds?

Rewrite permgen to be iterative.

Unfortunately, trading recursion for a loop will force us
maintain the context (a copy of i for each list element). The
code will be uglier.

Reverse the master-slave relationship.

At the moment, for is the master. It calls the iterator
(slave). Critically, its master decides when to stop iterating,
conveniently without having to communicate this decision
to the slave. --- Once permgen is the master, we pass to it
the body of for as a closure. This body is the slave who
decides when to stop iterating (it’s when condition(p)
holds). This decision needs to be communicated to the
master permgen. So we need implement a termination
protocol between master and slave. 25

We need something like a goto

Idea: Jump from permgen to the while loop and back,

preserving permgen context on its call stack

Two execution contexts, each with own stack:

26

permgen call stack
permgen(n-1)
…
permgen(0)
“return” to while

while call stack
inside while loop
iter-lambda
“call” permgen

Coroutines

27

Coroutines == “cooperating threads”

Cooperating =

– one thread of control (one PC)

– coroutines themselves decide when control is
transferred between them
• as opposed to an OS scheduler deciding when to preempt the

running thread and transfer control (as in timeslicing)

– transfer done with a yield statement

Many flavors of coroutines exist.

28

Asymmetric Coroutines

Asymmetric: notion of master vs. slave

symmetric c/r can be implemented on top of symmetric

Benefits of asymmetric coroutines:

- easier to understand for the programmer because from
the master the transfer looks like an ordinary call

- easier to implement (you’ll do it in PA2)

29

Asymmetric Coroutines

Three constructs:

coroutine(body) master creates cortn

resume(co, arg) call into cortn co

yield(arg) return to master

Body is a closure

30

Example

31

def co = create_coroutine(

lambda(){

print(1)

yield

print(2)

yield

print(3)

})

resume(co) -->
resume(co) -->
resume(co) -->
resume(co) -->

Example

32

def co = create_coroutine(lambda(){

yield 1

yield 2

yield 3

})

print(resume(co)) -->

print(resume(co)) -->

print(resume(co)) -->

resume(co) -->

Iterator factory for permgen

33

def permgen(a, n=len(a)) {

if (n <= 1) { yield(a) /* print(a) */ }

else {

for i=1 to n {

a[n],a[i] = a[i],a[n]

permgen(a,n-1)

a[n],a[i] = a[i],a[n]

} } }

def permIterator(lst) {

def co = coroutine(

function(l) { permgen(l); null })

function () { resume(co, lst) }

}

What can we do with coroutines

define control abstractions impossible with functions:

lazy iterators

push or pull producer-consumer patterns

bactracking

regexes

exceptions

34

Iterate over multiple
collections simultaneously

35

Problem: Merge two binary search trees

You are given two binary search trees. Print the
“merge” of the trees, traversing each tree only once.

We know how to print values of one tree:

def preorder(node) {

if (node) {

preorder(node.left)

print(node.key)

preorder(node.right)

} }

But how do you traverse two trees at once?
36

Preorder tree iterator

First step: Create a preorder iterator based on c/r.

def preorder(node)

if (node) {

preorder(node.left)

yield(node.key)

preorder(node.right)

}

null

}

def preorder_iterator(tree) {

def co = coroutine(lambda(t){ preorder(t) })

lambda () { resume(co, tree) }

}
37

Now we do “merge sort” over trees

def merge(t1,t2) {

def it1=preorder_iterator(t1)

def it2=preorder_iterator(t2)

def v1=it1()

def v2=it2()

while (v1 || v2) {

if (v1 != null and (v2==null or v1<v2)) {

print(v1); v1=it1()

} else {

print(v2); v2=it2()

}

}

}

38

Exercise for you, part 1

Wrap merge(t1,t2) in an iterator so that you can do

for v in mergeTreeIterator(tree1,tree2) {

process(v)

}

function mergeTreeIterator(tree1,tree2) {

}

39

Exercise, part 2

Write an iterator for merging of three trees

for v in merge3TreeIterator(tr1,tr2,tr3)

Build the iterator on top of mergeTreeIterator

40

Consumer-Producer Pattern

41

Create a dataflow on streams

Process the values from merge(t1,t2)

We can apply operations :
for v in toUppercaseF(merge(tree1,tree2)) { process(v) }

How to create “filters” like toUpperCaseF?

42

A filter element of the pipeline

def filter(ant)

def co = coroutine(function() {

while (True) {

--resume antecessor to obtain value

def x=ant()

-- yield transformed value

yield(f(x))

} }

lambda() { resume(co,0) }

}

consumer(filter(filter(producer())))

43

How to implement such pipelines

Producer-consumer patter: often a pipeline structure

producer  filter  consumer

All we need to say in code is
consumer(filter(producer()))

Producer-driven (push) or consumer-driven (pull)

This decides who initiates resume(). In pull, the consumer
resumes to producer who yields datum to consumer.

Each producer, consumer, filter is a coroutine

Who initiates resume is the main coroutine.

In for x in producer, the main coroutine is the for loop.
44

Summary

Coroutines allow powerful control abstractions

iterators but also backtracking, which we’ll cover soon

You will implement coroutines in PA2

we’ll describe the implementation in L5

45

What you need to know

• Iterators

• Programming with coroutines

• Write push and pull producer-consumer patterns

46

HW3

• Will prepare you for the project

47

Glossary

48

Reading

Required:

Chapter on coroutines from the Lua textbook

Recommended:

Python generators are coroutines

Fun:

More applications of coroutines are in Revisiting Coroutines

49

http://www.lua.org/pil/9.html
http://www.python.org/dev/peps/pep-0255/
http://www.inf.puc-rio.br/~roberto/docs/MCC15-04.pdf

Acknowledgements

Our course language, including its coroutines, are
modeled after Lua, a neat extensible language.

Many examples in this lecture come from
Programming in Lua, a great book. Read the 1st edition
on the web but consider buying the 2nd edition.

http://www.lua.org/pil/

Coroutine examples are from Revisiting Coroutines.

50

http://www.lua.org/pil/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.58.4017&rep=rep1&type=pdf

Backtracking

51

Problem: Regex matching

We are given a (an abstract syntax tree) of a regex.
The goal is to decide if the regex matches a string.

Pattern ("abc"|"de")."x" can be defined as follows:

patt = seq(alt(prim("abc"),prim("de")),prim("x"))

which effectively encodes the pattern’s AST.

seq, alt, prim are coroutines.

52

Regex matching with coroutines

-- matching a string literal (primitive goal)

def prim(str) {

lambda(S,pos) {

def len = len(str)

if (sub(S,pos,pos+len-1)==str) {

yield(pos+len)

} } }
-- alternative patterns (disjunction)

def alt(patt1,patt2) {

lambda(S,pos) { patt1(S,pos); patt2(S,pos) }

}

-- sequence of sub-patterns (conjunction)

def seq(patt1,patt2) {

lambda(S,pos) {

def btpoint=coroutine.wrap(function(){ patt1(S,pos) })

for npos in btpoint { patt2(S,npos) }

} } 53

And now the main match routine

def match(S,patt) {

def m=coroutine.wrap(lambda(){ patt(S,0) })

for (pos in m) {

if (pos==len(S)) {

return true

}

}

return false

}

match(“de”, alt(prim("abc"),prim("de")))

--> true

54

