.
RNRE

Ras Bodik
with Mangpo, Ali

Lecture 6

Logic Programming

rule-based programming with Prolog

Hack Your Language!

CS164: Introduction to Programming
Languages and Compilers, Spring 2013
UC Berkeley

Today

——— e —

Why study Prolog
- our abstraction stack

Introduction to Prolog
- facts and queries
- generalization, instantiation, and the Prolog semantics
- rules
- functors: AST and a simple interpreter
- working with lists
- asimple AST rewrite engine

Reading

?

Compulsory:
Adventures in Prolog, a tutorial (Chapters 1-11)

Optional:
The Art of Prolog, on reserve in Engineering Library
(starting Friday evening, Feb 8).

http://www.amzi.com/AdventureInProlog/advtop.php

Why logic programming?

Our abstraction stack
——— e ——— e

Parsing (PA4), Analysis of Programs, Types
— we’ll express each with Prolog rules
— (not all will require backtracking)
Logic programming (PA3)
a convenient layer over backtracking
enables rule-based programming, inference

Coroutines (PA2)

enable lazy iterators and backtracking

ex: regex matching: for all matches of patt1, match patt2
Closures and lexical scoping (PA1)

— enable, for example, iterators
— ex:d3.select(someNodes).each(aClosure)

Infrastructure

Software
e —— e

Software:
install SWI Prolog
Usage:
?- [likes]. # loads file likes.pl
Content of file likes.pl:
likes(john,mary).

likes(mary,jim).
After loading, we can ask a query:
2- likes(X,mary). #who likes mary?
X =john; # type semicolon to ask “who else?”
false. # no one else

http://www.swi-prolog.org/Download.html

Facts, queries, and variables

Facts and queries
e

(Database of) two facts:
likes(john, mary). #relation: facts with same name, eg likes
likes(mary, jim). # relation is a.k.a. predicate

Boolean queries (answers are true or false)
?- likes(john,jim). # sometimes we use syntax likes(a,b)?
false

Existential queries (is there X s/t likes(X,jim) holds?)
2- likes(X,jim). # variables start with capital letters

mary # atoms start with capital letters

goals, facts, and queries
B —— R

Syntactically, facts and queries look similar

goal: likes(jim, mary)
notice that there is no dot at the end of goal

fact: likes(jim, mary).
states that the goal likes(jim,mary) is true

query: likes(jim, mary)? sometimes we write 2- goal.

asks whether the goal likes(jim, mary) is true

10

Terminology
-

Ground terms (do not contain variables)
father(a,b). # fact (a is father of b)
?- father(a,b). # query (is a father of b?)
Non-ground terms (contain variables)

¥ likes(X,X). # fact: everyone likes himself
3 2- likes(Y,mary). # query: who likes mary?

Variables in facts are universally quantified
for whatever X, it is true that X likes X

Variables in queries are existentially quantified

does there exist an X such that X likes mary?
11

Example
e

A single fact

likes(X,X). |
Queries:

?- likes(a,b).

false.

?- likes(a,a).

true.

?- likes(X,a).

X=a.

2- likes(X,Y).

X=Y. <-- Answers to queries need not be fully grounded

?- likes(A,A).

true.

12

Generalization and Deduction
via Substitution for Variables

13

Generalization (a deduction rule)
e ——
Facts

father(abraham,isaac).

Query
?- father(abraham,X).

This query is a generalization of the fact

We answer the query by finding a substitution {X=isaac}.
This substitution turns the query into a fact that exists in the
database, leading to true. Well, the answer also shows the
substitution.

14

Instantiation (another deduction rule)
— e

Rather than writing
plus(0,1,1). plus(0,2,2). ...
We write
plus(0,X,X). # 0+X=X
plus(X,0,X). # X+0=X
Query

?- plus(0,3,3). # this query is instantiation of plus(0,X,X).
yes
We answer by finding a substitution {X=3}.

15

Prolog semantics
e ——

How the Prolog interpreter answers a query:

p(a,a). #fact1
p(a,b). #fact2
p(b,c). #facts3

- p(a,A). # This query raises one goal, p(a,A)

A=a; #goingtop down across facts, the goal matches 1
A =Db. # and when asked for next match, it matches 2.

We’ll generalize this algorihm when we add rules.

16

Rules

17

Rules
—— e —

Rules define new relationships in terms of existing ones
parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).
grandfather(X,Y) :-father(X,2), parent(z,Y).
Assume facts
father(john,mary).
mother(mary,jim).
Now ask the query
?- grandfather(X,Y).
X =john,
Y =jim;
false.

18

The Prolog semantics
S ——

Prolog algorithms in the presence of rules:

father(john,mary).

mother(mary,jim).

grandfather(fim, fum). # 1

parent(X,Y) :- father(X,Y).

parent(X,Y) :- mother(X,Y).

grandfather(X,Y) :-father(X,2), parent(Z,Y). #2

2- grandfather(X,Y).

X=fim,Y =fum; # matches fact1from relation ‘grandfather’

X =john, Y =jim; # matches head (Ihs) of rule 2, which then
creates two new goals from the rhs of 2.

false. # lhs = left-hand-side

19

So Prolog can do a simple inference!

r

1801 - Joseph Marie Jacquard uses punch cards to instruct a
loom to weave "hello, world" into a tapestry. Redditers of the
time are not impressed due to the lack of tail call recursion,
concurrency, or proper capitalization.

1972 - Alain Colmerauer designs the logic language Prolog. His
goal is to create a language with the intelligence of a two year
old. He proves he has reached his goal by showing a Prolog
session that says ""No." to every query.

http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html

20

http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html

Database programming
- e

A database programming rule
brother(Brother, Sib) :-
parent(P, Brother),
parent(P, Sib),
male(Brother),
Brother \=Sib. # same as \=(Brother,Sib)

This rule assumes that we have defined relations
parent and male. (The \=relation is a built-in.)

21

Database programming
- e

In ¢s164, we will translate SQL-like queries to Prolog.

But Prolog can also express richer (recursive) queries:

same X olistinct s

1
descendant(Y,X) :- parent(X,Y). B
descendant(Y,X) :- parent(X,Z), descendant(Y,Z2).

22

Order of rules and clauses matters
e

1) Given a goal, Prolog matches facts and rules top-
down as they appear in the file.

ex: on slide 19, #1 matches before #2 matches.

2) If the rhs of a rule raises multiple goals, they are
answered left-to-right.

ex: on slide 19, match 2, father(X,Z) is resolved before
parent(Z,Y).

23

Test yourself

?

Make sure you understand why these three variants
of descendants have different behaviors:

V1.

descendant(Y,X) :-
.- parent(X,Z), descendant(Y,Z2).

descendant(Y,X)
V2:

descendant(Y,X) :-
.- parent(X,Y).

descendant(Y,X)
V3:

descendant(Y,X) :-
descendant(Y,X) :-

parent(X,Y).

parent(X,2), descendant(Y,2).

parent(X,Y).
descendant(Y,Z), parent(X,2).

24

Compound terms

25

Compound terms
e ——

Compound term = functors and arguments.

Name of functor is an atom (lower case), not a Var.
example: cons(a, cons(b, nil))

A rule:

car(Head, List) :- List = cons(Head, Tail).

car(Head, cons(Head,Tail)). # equivalent to the above
Query:

?- car(Head, cons(a, cons(b, nil)).

26

A simple interpreter
e

A representation of an abstract syntax tree

int(3)

plus(int(3),int(2))
plus(int(3),minus(int(2),int(3)))

An interpreter
eval(int(X),X).
eval(plus(L,R),Res) :-

eval(L,Lv),

eval(R, Rv),

Resis Lv + Rv.
eval(minus(L,R),Res) :-

same as plus

27

Working with lists

28

Lists

w

Lists are just compounds with special, clearer syntax.

Cons is denoted with a dot ‘.’

(a,[]) is same as a|[]] is sameas a]
(a,-(b,[])) a|[b|[[]]] a,b]
(3,X) a|X] a|X]

29

predicate “Am | a list?”
——— e —— e

Let’s test whether a value is a list

list([]).
list([X|Xs]) :- list(Xs).

Note the common Xs notation for a list of X’s.

30

Let’s define the predicate member
e

Desired usage:
- member(b, [a,b,c]).
true

31

Lists

e
car([X]|Y],X).
cdr([X]|Y],Y).
cons(X,R,[X|R]).

meaning ...

— The head (car) of [X|Y] is X.

— The tail (cdr) of [X|Y]is Y.

— Putting X at the head and Y as the tail constructs (cons) the
list [X|R].

From: http://www.csupomona.edu/~jrfisher/www/prolog_tutorial 32

http://www.csupomona.edu/~jrfisher/www/prolog_tutorial

-

member (X, [X|R]).
member (X, [Y|R]) :- member(X,R).

One can read the clauses the following way:

Xis a member of a list whose first element is X.
Xis a member of a list whose tail is R if Xis a member of R.

33

List Append

?

append([],List,List).

append([H|Tail], X, [H|NewTail]) :-
append(Tail, X,NewTail).

?- append([a,b],[c,d],X).

X =[a, b, c, d].

?- append([a,b],X,[a,b,c,d]).
X = [c, d].

This is “bidirectional” programming
Variables can act as both inputs and outputs

34

More on append
-

?- append(Y,X,[a,b,c,d]).
=[],
= :aJ b, c, d] ’

= [b, ¢, d] ;

[a, b],

= [c, d] ;

= [a, b, c],

= [d] ;

= [a, b, ¢, d],

X < X < X < X < X <
|
Q

35

Exercise for you
B ——

Create an append query with infinitely many answers.

?- append(Y,X,Z).

Y =11,
X =7 ;

Y = [_G613],
Z = [_G613|X] ;

Y = [G613, G619],
Z = [G613, _G619]|X] ;

- P o P]

Another exercise: desugar AST
=

Want to rewrite each instance of 2*x with x+x:
rewrite(times(int(2),R), plus(Rr,Rr)) :-
I, rewrite(R,Rr).
rewrite(times(L,int(2)), plus(Lr,Lr)) :-
', rewrite(L,Lr).
rewrite(times(L,R),times(Lr,Rr)) :-
', rewrite(L,Lr),rewrite(R,Rr).
rewrite(int(X),int(X)).

37

And another exercise
—— e —

Analyze a program:
1) Translate a program into facts.

2) Then ask a query which answers whether a program
variable is a constant at the of the program.

Assume the program contains two statement kinds
Su=S* | defID=n | if(E)ID=n
You can translate the program by hand

38

Some other cool examples to find in tutorials
e ————— e

compute the derivative of a function
this is example of symbolic manipulation

solve a math problem by searching for a solution:
“Insert +/- signs between 12 3 4 5 so that the resultis 5.”

39

