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Today

Why study Prolog

- our abstraction stack

Introduction to Prolog

- facts and queries

- generalization, instantiation, and the Prolog semantics

- rules

- functors: AST and a simple interpreter 

- working with lists

- a simple AST rewrite engine
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Reading

Compulsory: 

Adventures in Prolog, a tutorial (Chapters 1-11)

Optional:

The Art of Prolog, on reserve in Engineering Library 

(starting Friday evening, Feb 8).
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http://www.amzi.com/AdventureInProlog/advtop.php


Why logic programming?
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Our abstraction stack

Parsing (PA4), Analysis of Programs, Types

– we’ll express each with Prolog rules

– (not all will require backtracking)

Logic programming (PA3)

- a convenient layer over backtracking

- enables rule-based programming, inference

Coroutines (PA2)

- enable lazy iterators and backtracking

- ex: regex matching: for all matches of patt1, match patt2

Closures and lexical scoping (PA1)

– enable, for example, iterators 

– ex: d3.select(someNodes).each(aClosure) 5



Infrastructure
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Software

Software: 

install SWI Prolog

Usage: 

?- [likes].    # loads file likes.pl

Content of file likes.pl:

likes(john,mary).

likes(mary,jim).

After loading, we can ask a query:

?- likes(X,mary).  #who likes mary?

X = john ;             # type semicolon to ask “who else?”

false.                  # no one else
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http://www.swi-prolog.org/Download.html


Facts, queries, and variables
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Facts and queries

(Database of) two facts:

likes(john, mary).   # relation: facts with same name, eg likes

likes(mary, jim). # relation is a.k.a. predicate

Boolean queries (answers are true or false)

?- likes(john,jim).     # sometimes we use syntax likes(a,b)?

false

Existential queries (is there X s/t likes(X,jim) holds?)

?- likes(X,jim).         # variables start with capital letters

mary # atoms start with capital letters
9



goals, facts, and queries

Syntactically, facts and queries look similar

goal:  likes(jim, mary)        

notice that there is no dot at the end of goal

fact: likes(jim, mary).        

states that the goal likes(jim,mary) is true

query: likes(jim, mary)?      sometimes we write ?- goal.

asks whether the goal likes(jim, mary) is true
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Terminology

Ground terms (do not contain variables)

father(a,b). # fact (a is father of b)

?- father(a,b). # query (is a father of b?)

Non-ground terms (contain variables)

likes(X,X). # fact: everyone likes himself

?- likes(Y,mary). # query: who likes mary?

Variables in facts are universally quantified

for whatever X, it is true that X likes X

Variables in queries are existentially quantified

does there exist an X such that X likes mary?
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Example

A single fact
likes(X,X).

Queries:
?- likes(a,b).

false.

?- likes(a,a).

true.

?- likes(X,a).

X = a.

?- likes(X,Y).

X = Y.             <-- Answers to queries need not be fully grounded

?- likes(A,A).

true.
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Generalization and Deduction 
via Substitution for Variables
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Generalization (a deduction rule)

Facts

father(abraham,isaac).

Query

?- father(abraham,X).   

This query is a generalization of the fact

We answer the query by finding a substitution {X=isaac}.

This substitution turns the query into a fact that exists in the 
database, leading to true.  Well, the answer also shows the 
substitution. 
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Instantiation (another deduction rule)

Rather than writing 

plus(0,1,1).  plus(0,2,2).  …

We write

plus(0,X,X). # 0+x=x

plus(X,0,X). # x+0=x

Query

?- plus(0,3,3). # this query is instantiation of plus(0,X,X).

yes

We answer by finding a substitution {X=3}.
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Prolog semantics

How the Prolog interpreter answers a query:

p(a,a).      # fact 1

p(a,b).      # fact 2

p(b,c).      # fact 3

?- p(a,A).   # This query raises one goal, p(a,A)   

A = a ;        # going top down across facts, the goal matches 1

A = b.         # and when asked for next match, it matches 2.

We’ll generalize this algorihm when we add rules.
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Rules
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Rules

Rules define new relationships in terms of existing ones

parent(X,Y) :- father(X,Y).

parent(X,Y) :- mother(X,Y).

grandfather(X,Y) :-father(X,Z), parent(Z,Y).

Assume facts 

father(john,mary).  

mother(mary,jim).

Now ask the query

?- grandfather(X,Y).

X = john,

Y = jim ;

false. 18



The Prolog semantics

Prolog algorithms in the presence of rules:

father(john,mary).  

mother(mary,jim).

grandfather(fim, fum).         # 1 

parent(X,Y) :- father(X,Y).

parent(X,Y) :- mother(X,Y).                                        

grandfather(X,Y) :-father(X,Z), parent(Z,Y).   # 2

?- grandfather(X,Y).

X = fim, Y = fum ;    # matches fact 1 from relation ‘grandfather’

X = john, Y = jim ;    # matches head (lhs) of rule 2, which then 

# creates two new goals from the rhs of 2.

false.                          # lhs = left-hand-side
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So Prolog can do a simple inference!

1801 - Joseph Marie Jacquard uses punch cards to instruct a 
loom to weave "hello, world" into a tapestry. Redditers of the 
time are not impressed due to the lack of tail call recursion, 
concurrency, or proper capitalization.

…

1972 - Alain Colmerauer designs the logic language Prolog. His 
goal is to create a language with the intelligence of a two year 
old. He proves he has reached his goal by showing a Prolog 
session that says "No." to every query.

http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
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http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html


Database programming

A database programming rule

brother(Brother, Sib) :-

parent(P, Brother), 

parent(P, Sib),

male(Brother),

Brother \= Sib.  # same as \=(Brother,Sib)

This rule assumes that we have defined relations 
parent and male.  (The \= relation is a built-in.)
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Database programming

In cs164, we will translate SQL-like queries to Prolog.  
But Prolog can also express richer (recursive) queries:

descendant(Y,X) :- parent(X,Y).

descendant(Y,X) :- parent(X,Z), descendant(Y,Z).
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Order of rules and clauses matters

1) Given a goal, Prolog matches facts and rules top-
down as they appear in the file. 

ex: on slide 19, #1 matches before #2 matches.

2) If the rhs of a rule raises multiple goals, they are 
answered left-to-right.

ex: on slide 19, match 2, father(X,Z) is resolved before 
parent(Z,Y). 

23



Test yourself

Make sure you understand why these three variants 
of descendants have different behaviors:

v1:

descendant(Y,X) :- parent(X,Y).

descendant(Y,X) :- parent(X,Z), descendant(Y,Z).

v2:

descendant(Y,X) :- parent(X,Z), descendant(Y,Z).

descendant(Y,X) :- parent(X,Y).

v3:

descendant(Y,X) :- parent(X,Y).

descendant(Y,X) :- descendant(Y,Z), parent(X,Z).
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Compound terms
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Compound terms

Compound term = functors and arguments.

Name of functor is an atom (lower case), not a Var.

example: cons(a, cons(b, nil))

A rule:

car(Head, List) :- List = cons(Head,Tail).

car(Head, cons(Head,Tail)). # equivalent to the above

Query:

?- car(Head, cons(a, cons(b, nil)).
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A simple interpreter

A representation of an abstract syntax tree

int(3)

plus(int(3),int(2))
plus(int(3),minus(int(2),int(3)))

An interpreter

eval(int(X),X).

eval(plus(L,R),Res) :-

eval(L,Lv), 

eval(R, Rv), 

Res is Lv + Rv.

eval(minus(L,R),Res) :-

# same as plus
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Working with lists
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Lists

Lists are just compounds with special, clearer syntax.

Cons is denoted with a dot ‘.’

.(a,[]) is same as [a|[]] is same as [a]

.(a,.(b,[])) [a|[b|[[]]] [a,b]

.(a,X) [a|X] [a|X]

29



predicate “Am I a list?”

Let’s test whether a value is a list

list([]).

list([X|Xs]) :- list(Xs).

Note the common Xs notation for a list of X’s.
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Let’s define the predicate member

Desired usage:

?- member(b, [a,b,c]).

true
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Lists

car([X|Y],X). 

cdr([X|Y],Y). 

cons(X,R,[X|R]). 

meaning ... 

– The head (car) of [X|Y] is X.

– The tail (cdr) of [X|Y] is Y.

– Putting X at the head and Y as the tail constructs (cons) the 
list [X|R].

From: http://www.csupomona.edu/~jrfisher/www/prolog_tutorial 32
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An operation on lists:

The predicate member/2:

member(X,[X|R]).

member(X,[Y|R]) :- member(X,R).

One can read the clauses the following way: 

X is a member of a list whose first element is X. 

X is a member of a list whose tail is R if X is a member of R.
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List Append

append([],List,List).

append([H|Tail],X,[H|NewTail]) :-
append(Tail,X,NewTail).

?- append([a,b],[c,d],X).

X = [a, b, c, d].

?- append([a,b],X,[a,b,c,d]).

X = [c, d].

This is “bidirectional” programming

Variables can act as both inputs and outputs
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More on append

?- append(Y,X,[a,b,c,d]).

Y = [],

X = [a, b, c, d] ;

Y = [a],

X = [b, c, d] ;

Y = [a, b],

X = [c, d] ;

Y = [a, b, c],

X = [d] ;

Y = [a, b, c, d],

X = [] ;

false.
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Exercise for you

Create an append query with infinitely many answers.

?- append(Y,X,Z).

Y = [],

X = Z ;

Y = [_G613],

Z = [_G613|X] ;

Y = [_G613, _G619],

Z = [_G613, _G619|X] ;

Y = [_G613, _G619, _G625],

36



Another exercise: desugar AST

Want to rewrite each instance of 2*x with x+x:

rewrite(times(int(2),R), plus(Rr,Rr)) :-

!, rewrite(R,Rr).

rewrite(times(L,int(2)), plus(Lr,Lr)) :-

!, rewrite(L,Lr).

rewrite(times(L,R),times(Lr,Rr)) :-

!, rewrite(L,Lr),rewrite(R,Rr).

rewrite(int(X),int(X)).
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And another exercise

Analyze a program:

1) Translate a program into facts. 

2) Then ask a query which answers whether a program 
variable is a constant at the of the program.

Assume the program contains two statement kinds

S ::= S*  |  def ID = n  |  if (E) ID = n

You can translate the program by hand
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Some other cool examples to find in tutorials 

compute the derivative of a function

this is example of symbolic manipulation

solve a math problem  by searching for a solution:

“Insert +/- signs between 1 2 3 4 5 so that the result is 5.”
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