
1

Lecture 6

Logic Programming
rule-based programming with Prolog

Ras Bodik
with Mangpo, Ali

Hack Your Language!
CS164: Introduction to Programming
Languages and Compilers, Spring 2013

UC Berkeley

Today

Why study Prolog

- our abstraction stack

Introduction to Prolog

- facts and queries

- generalization, instantiation, and the Prolog semantics

- rules

- functors: AST and a simple interpreter

- working with lists

- a simple AST rewrite engine

2

Reading

Compulsory:

Adventures in Prolog, a tutorial (Chapters 1-11)

Optional:

The Art of Prolog, on reserve in Engineering Library

(starting Friday evening, Feb 8).

3

http://www.amzi.com/AdventureInProlog/advtop.php

Why logic programming?

4

Our abstraction stack

Parsing (PA4), Analysis of Programs, Types

– we’ll express each with Prolog rules

– (not all will require backtracking)

Logic programming (PA3)

- a convenient layer over backtracking

- enables rule-based programming, inference

Coroutines (PA2)

- enable lazy iterators and backtracking

- ex: regex matching: for all matches of patt1, match patt2

Closures and lexical scoping (PA1)

– enable, for example, iterators

– ex: d3.select(someNodes).each(aClosure) 5

Infrastructure

6

Software

Software:

install SWI Prolog

Usage:

?- [likes]. # loads file likes.pl

Content of file likes.pl:

likes(john,mary).

likes(mary,jim).

After loading, we can ask a query:

?- likes(X,mary). #who likes mary?

X = john ; # type semicolon to ask “who else?”

false. # no one else
7

http://www.swi-prolog.org/Download.html

Facts, queries, and variables

8

Facts and queries

(Database of) two facts:

likes(john, mary). # relation: facts with same name, eg likes

likes(mary, jim). # relation is a.k.a. predicate

Boolean queries (answers are true or false)

?- likes(john,jim). # sometimes we use syntax likes(a,b)?

false

Existential queries (is there X s/t likes(X,jim) holds?)

?- likes(X,jim). # variables start with capital letters

mary # atoms start with capital letters
9

goals, facts, and queries

Syntactically, facts and queries look similar

goal: likes(jim, mary)

notice that there is no dot at the end of goal

fact: likes(jim, mary).

states that the goal likes(jim,mary) is true

query: likes(jim, mary)? sometimes we write ?- goal.

asks whether the goal likes(jim, mary) is true

10

Terminology

Ground terms (do not contain variables)

father(a,b). # fact (a is father of b)

?- father(a,b). # query (is a father of b?)

Non-ground terms (contain variables)

likes(X,X). # fact: everyone likes himself

?- likes(Y,mary). # query: who likes mary?

Variables in facts are universally quantified

for whatever X, it is true that X likes X

Variables in queries are existentially quantified

does there exist an X such that X likes mary?
11

Example

A single fact
likes(X,X).

Queries:
?- likes(a,b).

false.

?- likes(a,a).

true.

?- likes(X,a).

X = a.

?- likes(X,Y).

X = Y. <-- Answers to queries need not be fully grounded

?- likes(A,A).

true.

12

Generalization and Deduction
via Substitution for Variables

13

Generalization (a deduction rule)

Facts

father(abraham,isaac).

Query

?- father(abraham,X).

This query is a generalization of the fact

We answer the query by finding a substitution {X=isaac}.

This substitution turns the query into a fact that exists in the
database, leading to true. Well, the answer also shows the
substitution.

14

Instantiation (another deduction rule)

Rather than writing

plus(0,1,1). plus(0,2,2). …

We write

plus(0,X,X). # 0+x=x

plus(X,0,X). # x+0=x

Query

?- plus(0,3,3). # this query is instantiation of plus(0,X,X).

yes

We answer by finding a substitution {X=3}.

15

Prolog semantics

How the Prolog interpreter answers a query:

p(a,a). # fact 1

p(a,b). # fact 2

p(b,c). # fact 3

?- p(a,A). # This query raises one goal, p(a,A)

A = a ; # going top down across facts, the goal matches 1

A = b. # and when asked for next match, it matches 2.

We’ll generalize this algorihm when we add rules.
16

Rules

17

Rules

Rules define new relationships in terms of existing ones

parent(X,Y) :- father(X,Y).

parent(X,Y) :- mother(X,Y).

grandfather(X,Y) :-father(X,Z), parent(Z,Y).

Assume facts

father(john,mary).

mother(mary,jim).

Now ask the query

?- grandfather(X,Y).

X = john,

Y = jim ;

false. 18

The Prolog semantics

Prolog algorithms in the presence of rules:

father(john,mary).

mother(mary,jim).

grandfather(fim, fum). # 1

parent(X,Y) :- father(X,Y).

parent(X,Y) :- mother(X,Y).

grandfather(X,Y) :-father(X,Z), parent(Z,Y). # 2

?- grandfather(X,Y).

X = fim, Y = fum ; # matches fact 1 from relation ‘grandfather’

X = john, Y = jim ; # matches head (lhs) of rule 2, which then

creates two new goals from the rhs of 2.

false. # lhs = left-hand-side
19

So Prolog can do a simple inference!

1801 - Joseph Marie Jacquard uses punch cards to instruct a
loom to weave "hello, world" into a tapestry. Redditers of the
time are not impressed due to the lack of tail call recursion,
concurrency, or proper capitalization.

…

1972 - Alain Colmerauer designs the logic language Prolog. His
goal is to create a language with the intelligence of a two year
old. He proves he has reached his goal by showing a Prolog
session that says "No." to every query.

http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html

20

http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html

Database programming

A database programming rule

brother(Brother, Sib) :-

parent(P, Brother),

parent(P, Sib),

male(Brother),

Brother \= Sib. # same as \=(Brother,Sib)

This rule assumes that we have defined relations
parent and male. (The \= relation is a built-in.)

21

Database programming

In cs164, we will translate SQL-like queries to Prolog.
But Prolog can also express richer (recursive) queries:

descendant(Y,X) :- parent(X,Y).

descendant(Y,X) :- parent(X,Z), descendant(Y,Z).

22

Order of rules and clauses matters

1) Given a goal, Prolog matches facts and rules top-
down as they appear in the file.

ex: on slide 19, #1 matches before #2 matches.

2) If the rhs of a rule raises multiple goals, they are
answered left-to-right.

ex: on slide 19, match 2, father(X,Z) is resolved before
parent(Z,Y).

23

Test yourself

Make sure you understand why these three variants
of descendants have different behaviors:

v1:

descendant(Y,X) :- parent(X,Y).

descendant(Y,X) :- parent(X,Z), descendant(Y,Z).

v2:

descendant(Y,X) :- parent(X,Z), descendant(Y,Z).

descendant(Y,X) :- parent(X,Y).

v3:

descendant(Y,X) :- parent(X,Y).

descendant(Y,X) :- descendant(Y,Z), parent(X,Z).
24

Compound terms

25

Compound terms

Compound term = functors and arguments.

Name of functor is an atom (lower case), not a Var.

example: cons(a, cons(b, nil))

A rule:

car(Head, List) :- List = cons(Head,Tail).

car(Head, cons(Head,Tail)). # equivalent to the above

Query:

?- car(Head, cons(a, cons(b, nil)).

26

A simple interpreter

A representation of an abstract syntax tree

int(3)

plus(int(3),int(2))
plus(int(3),minus(int(2),int(3)))

An interpreter

eval(int(X),X).

eval(plus(L,R),Res) :-

eval(L,Lv),

eval(R, Rv),

Res is Lv + Rv.

eval(minus(L,R),Res) :-

same as plus
27

Working with lists

28

Lists

Lists are just compounds with special, clearer syntax.

Cons is denoted with a dot ‘.’

.(a,[]) is same as [a|[]] is same as [a]

.(a,.(b,[])) [a|[b|[[]]] [a,b]

.(a,X) [a|X] [a|X]

29

predicate “Am I a list?”

Let’s test whether a value is a list

list([]).

list([X|Xs]) :- list(Xs).

Note the common Xs notation for a list of X’s.

30

Let’s define the predicate member

Desired usage:

?- member(b, [a,b,c]).

true

31

Lists

car([X|Y],X).

cdr([X|Y],Y).

cons(X,R,[X|R]).

meaning ...

– The head (car) of [X|Y] is X.

– The tail (cdr) of [X|Y] is Y.

– Putting X at the head and Y as the tail constructs (cons) the
list [X|R].

From: http://www.csupomona.edu/~jrfisher/www/prolog_tutorial 32

http://www.csupomona.edu/~jrfisher/www/prolog_tutorial

An operation on lists:

The predicate member/2:

member(X,[X|R]).

member(X,[Y|R]) :- member(X,R).

One can read the clauses the following way:

X is a member of a list whose first element is X.

X is a member of a list whose tail is R if X is a member of R.

33

List Append

append([],List,List).

append([H|Tail],X,[H|NewTail]) :-
append(Tail,X,NewTail).

?- append([a,b],[c,d],X).

X = [a, b, c, d].

?- append([a,b],X,[a,b,c,d]).

X = [c, d].

This is “bidirectional” programming

Variables can act as both inputs and outputs

34

More on append

?- append(Y,X,[a,b,c,d]).

Y = [],

X = [a, b, c, d] ;

Y = [a],

X = [b, c, d] ;

Y = [a, b],

X = [c, d] ;

Y = [a, b, c],

X = [d] ;

Y = [a, b, c, d],

X = [] ;

false.
35

Exercise for you

Create an append query with infinitely many answers.

?- append(Y,X,Z).

Y = [],

X = Z ;

Y = [_G613],

Z = [_G613|X] ;

Y = [_G613, _G619],

Z = [_G613, _G619|X] ;

Y = [_G613, _G619, _G625],

36

Another exercise: desugar AST

Want to rewrite each instance of 2*x with x+x:

rewrite(times(int(2),R), plus(Rr,Rr)) :-

!, rewrite(R,Rr).

rewrite(times(L,int(2)), plus(Lr,Lr)) :-

!, rewrite(L,Lr).

rewrite(times(L,R),times(Lr,Rr)) :-

!, rewrite(L,Lr),rewrite(R,Rr).

rewrite(int(X),int(X)).

37

And another exercise

Analyze a program:

1) Translate a program into facts.

2) Then ask a query which answers whether a program
variable is a constant at the of the program.

Assume the program contains two statement kinds

S ::= S* | def ID = n | if (E) ID = n

You can translate the program by hand

38

Some other cool examples to find in tutorials

compute the derivative of a function

this is example of symbolic manipulation

solve a math problem by searching for a solution:

“Insert +/- signs between 1 2 3 4 5 so that the result is 5.”

39

