
1

Lecture 7

Implementing Prolog
unification, backtracking with coroutines

Ras Bodik
with Mangpo and Ali

Hack Your Language!
CS164: Introduction to Programming
Languages and Compilers, Spring 2013

UC Berkeley

Plan for today

More programming under the abstraction

developing abstractions that others can conveniently use

Previously, we extended a language with constructs

- iterators, lazy list concatenation, regexes

- mostly using coroutines

Today, we will build Prolog, an entirely new language

PA3 is assigned today: Prolog on top of your PA2 coroutines

2

In lecture today

Find a partner. Get a paper and pencil.

You will solve a series of exercises
leading to a Prolog interpreter.

3

Prolog refresher

4

Program:

eat(ras, vegetables).

eat(ras, fruits).

eat(lion, ras).

Queries:

eat(ras, lion)?

eat(ras, X)?

Structure of Programs

works(ras). Fact (Axiom)

works(thibaud) :- works(ras). Rule

works(X)? Query

In a rule:

 a(X, Y) :- b(X,Z), c(Z,Y)

Variable

Constant

(atom)

Head

Body

Free Variable

Clause

Variables in functional and logical programs

Functional programs

- values of expressions are bound to symbols (variables)

- environment: map from symbols to values

- symbols stay constant after created

Imperative programs

- as in functional, but binding can be changed later

- here, variables could be called “assignables”

Logic programs

- the role of symbol binding is replaced by unification

- note: unification will be undone during backtracking

6

Unification

Unification is what happens during matching

ie, during goal answering

unify(term1, term2) yields most general unifier (mgu)

a(1,Y) | a(X,2)

a(X) | b(X)

a(1,Y) | a(2,X)

a(1, Y) | a(1, X)

unify answers false when terms are not compatible

7

Exercise 1

Find the mgu for this unification:

 a(X,Y) | a(b(Y),c(Z))

8

Lists

Lists are written [a, b, c]

which is the same as [a | [b,c]]

using the notation [Head | Tail]

so [a, b, c] is really desugared fully to [a | [b | [c | []]]]

The notation [H | T] is itself sugar for .(H,T)

9

Exercise 2

Find mgu for this unification:

 a([1|X]) | a(X)

The unification algorithm

See the simple description in The Art of Prolog

Chapter 4.1, pages 88-91.

on reserve in the library

11

C
h

o
ic

e
o
f

cl
a
u

se
 b
ac

k
tr

ac
k
in

g

b
y

 o
ra

cl
e

n
o

t
n

ee
d

ed

1 n

number of clauses on the rhs of rules

Today, you will design a series of algorithms

12

C
h

o
ic

e
o
f

cl
a
u

se
 b
ac

k
tr

ac
k
in

g

a(X) :- b(X).

b(Y) :- c(Y).

c(1).

c(2).

a(X) :- b(X), c(X).

b(2).

c(1).

c(2).

b
y

 o
ra

cl
e

n
o

t
n

ee
d

ed

a(X) :- b(X).

b(Y) :- c(Y).

c(1).

a(X) :- b(X), c(X).

b(1).

c(1).

1 n

number of clauses on the rhs of rules

We will start with subsets of Prolog

13

C
h

o
ic

e
o
f

cl
a
u

se
 b
ac

k
tr

ac
k
in

g

deterministic algorithm

(all steps determined by the algorithm)

b
y

 o
ra

cl
e

non-deterministic algorithm

(crucial choices made by oracle)

n
o

t
n

ee
d

ed

deterministic algorithm

(all steps determined by the algorithm)

1 n

number of clauses on the rhs of rules

Some algorithms will use “magic”

14

C
h

o
ic

e
o
f

cl
a
u

se
 b
ac

k
tr

ac
k
in

g

b
y

 o
ra

cl
e

n
o

t
n

ee
d

ed

a(X) :- b(X).

b(Y) :- c(Y).

c(1).

1 n

number of clauses on the rhs of rules

Algorithm (1, no choice)

15

Prolog execution is finding a proof of query truth

Program:

a(X) :- b(X).

b(Y) :- c(Y).

c(1).

Goal (query):

?- a(Z).

Answer:

true

Z = 1

16

Proof that the query holds:

c(1) base fact, implies that …

c(Y) holds, which implies that …

b(Y) holds, which implies that …

b(X) holds, which implies that …

a(X) holds, which implies that …

a(Z) holds.

The last one is the query

so the answer is true!

Recall “c(Y) holds” means

exists value for Y such that C(Y) holds.

Proof tree

Program:

a(X) :- b(X).

b(Y) :- c(Y).

c(1).

Goal (query):

?- a(Z).

Answer:

true

Z = 1

17

These steps form a proof tree

a(Z)

a(X)

 b(X)

 b(Y)

 c(Y)

 c(1)

 true

N.B. this would be a proof tree, rather than a
chain, if rhs’s had multiple goals.

Let’s trace the process of the computation

Program:

a(X) :- b(X).

b(Y) :- c(Y).

c(1).

Goal (query):

?- a(Z).

Answer:

true

Z = 1

18

Two operations do all the work:

a(Z) the query is our initial goal

a(X) match head of a(X):-b(X)

 b(X) reduce goal a(X) to goal b(X)

 b(Y) match head of b(Y):-c(Y)

 c(Y) reduce b(Y) to c(Y)

 c(1) match head of c(1).

 true we matched a fact

The operations:

1) match goal to a head of clause C

2) reduce goal to rhs of C

Now develop an outline of the interpreter

Student answer:

19

Algorithm (1,no choice) w/out handling of mgus

def solve(goal):

 match goal against the head C.H of a clause C

 // how many matches are there? Can assume 0/1

 if no matching head found:

 return FAILURE // done

 if C has no rhs:

 return SUCCESS // done, found a fact

 else // reduce the goal to the rhs of C

 return solve(C.rhs)

Note: we ignore the handling of mgus here, to focus on how
the control flows in the algorithm. We’ll do mgus next …

20

Concepts: Reduction of a goal. Unifier.

We reduce a goal to a subgoal

If the current goal matches the head of a clause C,
then we reduce the goal to the rhs of C.

Result of solving a subgoal is a unifier (mgu)

or false, in the case when the goal is not true

But what do we do with the unifiers?

are these mgus merged? If yes, when?

21

An algorithmic question: when to merge mgus

Program:

a(X) :- b(X).

b(Y) :- c(Y).

c(1).

Goal (query):

?- a(Z).

Answer:

true

Z = 1

22

Unifications created in matching

a(Z)

a(X) Z=X

 b(X)

 b(Y) X=Y

 c(Y)

 c(1) Y=1

 true

Result is conjunction of these mgus:

Z=X, X=Y, Y=1

So, the answer is Z=1

variables X,Y are suppressed in answer

Design question: How do MGUs propagate?

23

Down the recursion? or …

a(Z)

a(X) Z=X

 b(X)

 b(Y) Z=X, X=Y

 c(Y)

 c(1) Z=X, X=Y, Y=1

 true

MGUs propagate the answer

24

… up the recursion or …

a(Z)

a(X) Z=X Z=X,X=Y,Y=1

 b(X)

 b(Y) X=Y X=Y,Y=1

 c(Y)

 c(1) Y=1 Y=1

 true

MGUs propagate the answer

25

… or both?

a(Z)

a(X) Z=X Z=X,X=Y,Y=1

 b(X)

 b(Y) Z=X,X=Y Z=X,X=Y,Y=1

 c(Y)

 c(1) Z=X,X=Y,Y=1 Z=X,X=Y,Y=1

 true

Both up and down propagation is needed

26

Consider program:

a(X,Y,Z) :- b(X,Y,Z).

b(A,B,C) :- c(A,B), d(C).

c(1,2).

d(1).

Down propagation: needed to propagate constraints

given query a(X,X,Z)?, goal c(X,Y) must be reduced to
c(X,X) so that match with c(1,2) fails

Up propagation: needed to compute the answer to q.

given query a(X,Y,Z)?, we must show that Z=1 is in the
result. So we must propagate the mgus up the recursion.

Algorithm (1,no choice) with unification, style 1

solve(goal, mgu):

 // match goal against the head C.H of a
 // clause C, producing a new mgu.

 // unify goal and head wrt constraints in mgu

 mgu = unify(goal, head, mgu)

 if no matching head found:

 return nil // nil signifies FAILURE

 if C has no rhs:

 return mgu // this signifies SUCCESS

 else

 // solve and return the updated mgu

 return solve(C.rhs, mgu)
27

Algorithm (1,no choice) with unification, style 2

 solve(goal):

 // mgus’ve been substituted into goal and head

 mgu = unify(goal,head)

 if no matching head found:

 return nil // nil signifies FAILURE

 if C has no rhs:

 return mgu // this signifies SUCCESS

 else

 sub_goal = substitute(mgu,C.rhs)

 sub_mgu = solve(sub_goal)

 return merge(mgu, sub_mgu)

28

Unify and subst used in PA3

29

unify: Are two terms compatible? If yes, give a unifier
 a(X, Y) | a(1, 2) --> {X -> 1, Y -> 2}

subst: Apply Substitution on clauses
 subst[a(X, Y), {X -> ras, Y -> Z}] --> a(ras, Z)

Summary of Algorithm for (1, no choice)

The algorithm is a simple recursion that reduces the
goal until we answer true or fail.

the match of a goal with a head produces the mgu

The answer is the most general unifier

if the answer is true

mgus are unified as we return from recursion

This algorithm is implemented in the PA3 starter kit

30

Discussion

Style 1:

unify() performs the substitution of vars in goal, head based
on the mgu argument. This is expensive.

Style 2:

mgus are substituted into new goals. This is done just once.

But we need to merge the mgus returned from goals.
This merge always succeeds (conflicts such as X=1, X=2 can’t arise)

PA3 uses the second style.

In the rest of the lecture, we will abstract mgus.

You’ll retrofit handling of mgus into algorithms we’ll cover.

31

Example executed on PA3 Prolog

a(X) :- b(X).

b(Y) :- c(Y).

c(1).

a(I)?

Goal: a(I)

Unify: a(X_1) and a(I)

 Unifier: {X_1->I }

Goal: b(I)

Unify: a(X_2) and b(I)

 Unifier: null

Unify: b(Y_3) and b(I)

 Unifier: {Y_3->I }

Goal: c(I)

Unify: a(X_4) and c(I)

 Unifier: null

Unify: b(Y_5) and c(I)

 Unifier: null

Unify: c(1) and c(I)

 Unifier: {I->1 }

I = 1

Asking for solution 2

Unify: c(1) and b(I)

 Unifier: null

Unify: b(Y_8) and a(I)

 Unifier: null

Unify: c(1) and a(I)

 Unifier: null

None

32

C
h

o
ic

e
o
f

cl
a
u

se
 b
ac

k
tr

ac
k
in

g

b
y

 o
ra

cl
e

n
o

t
n

ee
d

ed

New concepts: unifier, proof

tree

Implementation: reduce a

goal and recurse

a(X) :- b(X), c(X).

b(1).

c(1).

1 n

number of clauses on the rhs of rules

Algorithm (n, no choice)

33

Resolvent

Resolvent: the set of goals that need to be answered

with one goal on rhs, we have always just one pending goal

Resolvent goals form a stack. The algorithm:

1) pop a goal

2) finds a matching clause for a goal, as in (1, no choice)

3) if popped goal answered, goto 1

4) else, push goals from rhs to the stack, goto 1

This is a conceptual stack.

Need not be implemented as an explicit stack
34

Algorithm

For your reference, here is algorithm (1,no choice)

solve(goal):

 match goal against the head C.H of a clause C

 if no matching head found:

 return FAILURE

 if C has no rhs: // C is a fact

 return SUCCESS

 else // reduce the goal to the rhs of C

 return solve(C.rhs)

35

Student algorithm

36

What to change in (n, no choice)?

solve(goal):

 match goal against a head C.H of a clause C

 if no matching head found:

 return FAILURE

 if C has no rhs: // C is a fact

 return SUCCESS

 else // reduce goal to the goals in the rhs of C

 for each goal in C.rhs

 if solve(goal) == FAILURE

 return FAILURE

 end for

 // goals on the rhs were solved successfully

 return SUCCESS

37

Your exercise

Add handling of mgus to (n, no choice)

38

Summary

The for-loop across rhs goals effectively pops the
goals from the top of the conceptual resolver stack

This stack is comprised of all rhs rules to be visited by
the for loops on the call stack of the algorithm.

39

Example executed on PA3 Prolog

a(X) :- b(X), c(X).
b(1).
c(1).

a(I)?

Asking for solution 1
Goal: a(I)
Unify: a(X_1) and a(I)
 Unifier: {X_1->I }
Goal: b(I)
Unify: a(X_2) and b(I)
 Unifier: null
Unify: b(1) and b(I)
 Unifier: {I->1 }
Goal: c(1)
Unify: a(X_4) and c(1)
 Unifier: null
Unify: b(1) and c(1)
 Unifier: null
Unify: c(1) and c(1)
 Unifier: {}
I = 1

Asking for solution 2
Unify: c(1) and b(I)
 Unifier: null
Unify: b(1) and a(I)
 Unifier: null
Unify: c(1) and a(I)
 Unifier: null
None

40

C
h

o
ic

e
o
f

cl
a
u

se
 b
ac

k
tr

ac
k
in

g

b
y

 o
ra

cl
e a(X) :- b(X).

b(Y) :- c(Y).

c(1).

c(2).

n
o

t
n

ee
d

ed

New concepts: unifier, proof

tree

Implementation: reduce a

goal and recurse

Concept: resolvent

Implementation: recursion deals

with reduced goals; iteration

deals with rhs goals

1 n

number of clauses on the rhs of rules

Algorithm (1, oracular choice)

41

Search tree

First, assume we want just one solution (if one exists)

– ie, no need to enumerate all solutions in this algorithm

We’ll visualize the space of choices with a search tree

– Node is the current goal

– Edges lead to possible reductions of the goal

Number of children of a node depends on _______

your answer:

42

Example search tree (for Append)

43

append([],Ys,Ys).

append([X|Xs],Ys,[X|Zsl) :- append(Xs,Ys,Zs).

from The Art of Prolog.

Example

• Program: TODO

• Trace: holes filled in by students

• Show search tree

44

Algorithm

student answer:

45

Algorithm for (1,oracle choice)

solve(goal):

 match goal against a head C.H of a clause C

 if multiple matches exist: ask the oracle to pick one

 if no matching head found:

 return FAILURE

 if C has no rhs:

 return SUCCESS

 else

 solve(C.rhs)

Oracle is guaranteed to pick a head that is part of a proof tree

assuming a solution exists
46

Summary

We relied on an oracle to make just the right choice

The choice is clairvoyant: takes into consideration
choices to be made by oracles down the search tree

Asking an oracle is known as non-determinism. It
simplifies explanations of algorithms.

We will have to implement the oracle with
backtracking in (1, backtracking)

47

C
h

o
ic

e
o
f

cl
a
u

se
 b
ac

k
tr

ac
k
in

g

b
y

 o
ra

cl
e

New concept: search tree

Implementation: ask oracle

for the right choice.

a(X) :- b(X), c(X).

b(2).

c(1).

c(2).

n
o

t
n

ee
d

ed

New concepts: unifier, proof

tree

Implementation: reduce a

goal and recurse

Concept: resolvent

Implementation: recursion deals

with reduced goals; iteration

deals with rhs goals

1 n

number of clauses on the rhs of rules

Algorithm (n, oracular choice)

48

Analysis of this problem

Nothing too different from (1,oracle), except that we
are dealing with a resolvent (ie, 2+ pending goals)

We deal with them as in (n, no choice), by first
reducing the goal on top of the conceptual stack

As in (1,oracular choice), which of the alternative
matches to take is up to the oracle.

49

What to change in (n, no choice)?

solve(goal):

 match goal against a head C.H of a clause C

 if multiple matches exist: ask the oracle to pick one

 if no matching head found:

 return FAILURE

 if C has no rhs: // C is a fact

 return SUCCESS

 else // reduce goal to the goals in the rhs of C

 for each goal in C.rhs

 if solve(goal) == FAILURE

 // oracle failed to find a solution for goal

 return FAILURE

 end for

 // goals on the rhs were solved successfully

 return SUCCESS

50

C
h

o
ic

e
o
f

cl
a
u

se
 b
ac

k
tr

ac
k
in

g

a(X) :- b(X).

b(Y) :- c(Y).

c(1).

c(2).

b
y

 o
ra

cl
e

New concept: search tree

Implementation: ask oracle

for the right choice.

as below, with oracular choice

n
o

t
n

ee
d

ed

New concepts: unifier, proof

tree

Implementation: reduce a

goal and recurse

Concept: resolvent

Implementation: recursion deals

with reduced goals; iteration

deals with rhs goals

1 n

number of clauses on the rhs of rules

Algorithm (1, backtracking)

51

Implementing the oracle

We can no longer ask the oracle which of the
(potentially multiple) matching heads to choose.

We need to iterate over these matches, testing
whether one of them solves the goal. If we fail, we
return to try the next match. This is backtracking.

Effectively, backtracking implements the oracle.

The backtracking process corresponds to dfs traversal
over the search tree. See The Art of Prolog.

52

Algorithm for (1,backtracking)

solve(goal):

 for each match of goal with a head C.H of a clause C

 // this match is found with unify(), of course

 current_goal = C.rhs

 res = solve(current_goal)

 if res == SUCCESS:

 return res

 end for

 return FAILURE

Again, this algorithm ignores how mgus are handled.
This is up to you to figure out.

53

Example

a(X) :- b(X).

b(Y) :- c(Y).

b(3).

c(1).

c(2).

?- a(Z)

When interpreter reaches c(1), its call stack is:

bottom

solve a(Z): matched the single a(X) head

solve b(Z): matched head b(Y); head b(3) still to explore

solve c(Z): matched head c(1); head c(2) still to explore

54

The implementation structure

1) Recursion is used to solves the new subgoal.

2) For loop used to iterate over alternative clauses.

Backtracking is achieved by returning to higher level
of recursion and taking the next iteration of the loop.

55

Example executed on PA3 Prolog

a(X) :- b(X).
b(Y) :- c(Y).
c(1).
c(2).

a(I)?

Asking for solution 1
Goal: a(I)
Unify: a(X_1) and a(I)
 Unifier: {X_1->I }
Goal: b(I)
Unify: a(X_2) and b(I)
 Unifier: null
Unify: b(Y_3) and b(I)
 Unifier: {Y_3->I }
Goal: c(I)
Unify: a(X_4) and c(I)
 Unifier: null
Unify: b(Y_5) and c(I)
 Unifier: null
Unify: c(1) and c(I)
 Unifier: {I->1 }
I = 1

Asking for solution 2
Unify: c(2) and c(I)
 Unifier: {I->2 }
I = 2

Asking for solution 3
Unify: c(1) and b(I)
 Unifier: null
Unify: c(2) and b(I)
 Unifier: null
Unify: b(Y_10) and a(I)
 Unifier: null
Unify: c(1) and a(I)
 Unifier: null
Unify: c(2) and a(I)
 Unifier: null
None

56

C
h

o
ic

e
o

f
cl

a
u

se
 b
ac

k
tr

ac
k
in

g

Concept: backtracking is dfs

of search tree.

Implementation: b/tracking

remembers remaining choices

in a for loop on the call stack.

a(X) :- b(X), c(X).

b(2).

c(1).

c(2).

b
y

 o
ra

cl
e

New concept: search tree

Implementation: ask oracle

for the right choice.

as below, with oracular choice

n
o

t
n
ee

d
ed

New concepts: unifier, proof

tree

Implementation: reduce a

goal and recurse

Concept: resolvent

Implementation: recursion deals

with reduced goals; iteration

deals with rhs goals

1 n

number of clauses on the rhs of rules

Algorithm (n, backtracking)

57

Algorithm (n,backtracking) is the key task in PA3

You will design and implement this algorithm in PA3

here, we provide useful hints

Key challenge: having to deal with a resolver

we no longer have a single pending subgoal

This will require a different backtracking algo design

one that is easier to implement with coroutines

We will show you an outline of algo (2, backtracking)

you will generalize it to (n,backtracking)

58

Example

This example demonstrates the need to handle
backtracking with coroutines:

a(X) :- b(X,Y), c(Y).

b(1,1).

b(2,2).

c(2).

The subgoal b(X,Y) has two solutions.

Only the second one will make c(Y) succeed.

We need a way to backtrack to the “solver” of b(X,Y)

and ask it for the next solution

59

Algorithm (2, backtracking)

Restriction: we have exactly two goals on the rhs
call them rhs[0] and rhs[1]

solutions(goal) returns a solution iterator
the iterator uses yield to provide the next solution to goal

(2,backtracking):
for sol0 in solutions(rhs[0])

 for sol1 in solutions(rhs[1])

 if sol0 and sol1 “work together”: return SUCCESS

return FAILURE

Again, we are abstracting the propagation of mgus
as a result, we need to use the informal term “goals work together”;

it means: given mgus found in sol0, there exists a valid sol1.

60

Algorithm (2,backtracking), cont.

solve() must be adapted to work as a coroutine.
Key step: replace return with yield.

solve(goal):

 for each match of goal with a head C.H of a clause C

 current_goal = C.rhs

 res = solve(current_goal)

 if res == SUCCESS:

 yield res return res

 return FAILURE // think whether this needs to be yield, too

61

The complete view of control transfer

 head(A,B)….

 head(X,Y) :- a(X), b(X,Z), c(Y, Z, D)

 head(X,Y)….

iterate over alternative rules recursive function conjunction()

coroutine process()
coroutine process()

coroutine process()

Example executed on PA3 Prolog

a(X) :- b(X), C(X).
b(2).
c(1).
c(2).

a(I)?

Asking for solution 1
Goal: a(I)
Unify: a(X_1) and a(I)
 Unifier: {X_1->I }
Goal: b(I)
Unify: a(X_2) and b(I)
 Unifier: null
Unify: b(2) and b(I)
 Unifier: {I->2 }
Goal: c(2)
Unify: a(X_4) and c(2)
 Unifier: null
Unify: b(2) and c(2)
 Unifier: null
Unify: c(1) and c(2)
 Unifier: null
Unify: c(2) and c(2)
 Unifier: {}
I = 2

Asking for solution 2
Unify: c(1) and b(I)
 Unifier: null
Unify: c(2) and b(I)
 Unifier: null
Unify: b(2) and a(I)
 Unifier: null
Unify: c(1) and a(I)
 Unifier: null
Unify: c(2) and a(I)
 Unifier: null
None

63

C
h

o
ic

e
o

f
cl

a
u

se
 b
ac

k
tr

ac
k
in

g

Concept: backtracking is dfs

of search tree.

Implementation: b/tracking

remembers remaining choices

on the call stack.

You will design and implement

this algorithm in PA3

b
y

 o
ra

cl
e

New concept: search tree

Implementation: ask oracle

for the right choice.

as below, with oracular choice

n
o

t
n
ee

d
ed

New concepts: unifier, proof

tree

Implementation: reduce a

goal and recurse

Concept: resolvent

Implementation: recursion deals

with reduced goals; iteration

deals with rhs goals

1 n

number of clauses on the rhs of rules

Algorithm (n, backtracking)

64

Reading

Required

The Art of Prolog, Chapters 4, 6, and search trees in Ch 5.

(on reserve in Kresge and in Google Books.)

Recommended

HW2: backtracking with coroutines (the regex problem)

Insightful

Logic programming via streams in CS61A textbook (SICP).

65

