
1

Lecture 16

Review
Grammar rewriting, language abstractions, ideas
for final projects

Ras Bodik
Ali and Mangpo

Hack Your Language!
CS164: Introduction to Programming
Languages and Compilers, Spring 2013

UC Berkeley

Today

Grammar disambiguation via rewriting

- if-then-else

- google calculator

Modular operators

- queues

- game trees

DSLs

- d3 joins

- ideas for final projects

2

Grammar rewriting

3

Why grammar rewriting

Scenario 1: your parser doesn’t disambiguate

ie, %left, %right are not supported

Scenario 2: declarative disambiguation too weak

sometimes %left, %right can’t help you

Example for scenario 2: 3/4/m/s in the google calc

- parses into ((3/4)/(m/s))

- That is, there is one symbol (‘/’) which serves two roles

- similar to how ‘-’ is both a unary and binary operator

4

Grammar rewriting

Rewrite the grammar into a unambiguous grammar

new grammar describes the same language (set of strings)

but eliminates undesirable parse trees

Example: Rewrite the ambiguous

E E + E | E * E | (E) | int

into

E E + T | T E generates T+T+…+T

T T * F | F T generates F*F*…*F

F int | (E)

Draw a few parse trees and you will see that new grammar

– enforces precedence of * over + (* are lower in the tree)

– enforces left-associativity of + and * 5

6

Parse tree with the new grammar

The int * int + int has only one parse tree now

Note: these parse tress omit the F nonterminal to save space

E

E

E E

E*

int +

intint

E

T

T int

T+

int

*

E

int

Rewriting the grammar: what’s the trick?

Trick 1: Fixing precedence (* computed before +)

E → E + E | E * E | id

In the parse tree for id + id * id, we want id*id to be
subtree of E+E.

How to do this by rewriting? Create a new
nonterminal (T)

– make it derive id*id, …

– ensure T’s trees are nested in E’s of E+E

Your new grammar (associativity is still ambig):

E → E + E | T

T → T * T | id

Rewriting the grammar: what’s the trick? (part 2)

Trick 2: Fixing associativity (+, *, associate to the left)

E → E + E | T

T → T * T | id

In the parse tree for id +1 id +2 id, we want the left
id+id to be subtree of E +2 id. Same for id*id*id.

Trick: use left recursion

– it will ensure that +, * associate to the left

New grammar (a simple change):

E → E + T | T

T → T * id | id

Summary

You can think of the rewrite in two alternative ways:

- Force the operators that must be evaluated first to be
lower in the tree. Holds for both precedence and
associativity.

- Make sure your grammar only generates only correct
trees.

9

10

Ambiguity: The Dangling Else

Consider the ambiguous grammar

S if E then S

| if E then S else S

| OTHER

11

The Dangling Else: Example

The expression

if E1 then if E2 then S3 else S4

has two parse trees

if

E1 if

E2 S3 S4

if

E1 if

E2 S3

S4

Typically we want the second form

12

The Dangling Else: A Fix

Usual rule: else matches the closest unmatched then

We can describe this in a grammar

Idea:
– distinguish matched and unmatched then’s

– force matched then’s into lower part of the tree

Example

New grammar describes the same set of strings
but forces matched ifs (those that have an else part) to the
bottom of parse tree

Define two new non-terminals for IF:
• matched IF

• unmatched IF

13

Rewritten if-then-else grammar

S MIF /* all then are matched */

| UIF /* some then are unmatched */

MIF if E then MIF else MIF

| OTHER

UIF if E then S

| if E then MIF else UIF

Notes:
– notice that MIF does not refer to UIF,

– so all unmatched ifs (if-then) will be high in the tree

15

The Dangling Else: Example Revisited

• The expression if E1 then if E2 then S3 else S4

if

E1 if

E2 S3 S4

if

E1 if

E2 S3

S4

• Not valid because the then
expression is not a MIF

• A valid parse tree (for a UIF)

Modular operators

16

Why design new abstractions

The only method for writing large software is through
modularity – clear, composable abstractions

Composable:

can snap them together with operators like Legos

17

Create a dataflow on streams

Process the values from merge(t1,t2)

We can apply operations :
for v in toUppercaseF(merge(tree1,tree2)) { process(v) }

How to create “filters” like toUpperCaseF?

18

A filter element of the pipeline

def filter(ant)

def co = coroutine(function() {

while (True) {

--resume antecessor to obtain value

def x=ant()

-- yield transformed value

yield(f(x))

} }

lambda() { resume(co,0) }

}

consumer(filter1(filter2(producer())))

19

How to implement such pipelines

Producer-consumer patter: often a pipeline structure

producer filter consumer

All we need to say in code is
consumer(filter(producer()))

Producer-driven (push) or consumer-driven (pull)

This decides who initiates resume(). In pull, the consumer
resumes to producer who yields datum to consumer.

Each producer, consumer, filter is a coroutine

Who initiates resume is the main coroutine.

In for x in producer, the main coroutine is the for loop.
20

More details on queues

See assigned reading on Lua coroutines.

21

Large or infinite trees

Imagine working with a tree of a large or infinite size.

- the tree could describe a file system
- inner nodes are directories, leaves are files

- or a game tree
- each node is a board configuration

- children are new configurations resulting from moving a piece

Programmers using such trees face two interesting challenges:
- usually, these trees are built lazily: i.e., children are created only

when the client/user of the tree (eg, a traversal that prints a part of
the tree) decides to visit the children

- programmers may want to prune such a tree, so that the traversal
sees only a fragment of the tree, say, the top k levels.

22

Pruning operators

The DSL designer must design a pruning operator that …
- works on all trees

- regardless of whether the tree is lazy or not

- produces a tree iterator, which could be passed to another operator
- one pruning operator may prune depth, another may prune width of tree

Examples:
You might traverse the entire tree breadth-first with a preorder iterator:

for node in preorder(tree) { print(node) }

To prune the traversal to depth 5, you want a prune operator:

for node in preorder(prune(tree, 5)) { print(node) }

Ali prepared an example code with lazy game trees
http://www.cs.berkeley.edu/~bodik/cs164/sp13/lectures/game.lua

the pruning is used in function play_turn(), and is defined in function prune().
23

http://www.cs.berkeley.edu/~bodik/cs164/sp13/lectures/game.lua

DSLs

24

Example of cs164 final projects

From cs164 debugging to education and data
visualization

Build on cs164 artefacts:

- 164 grammar to generate tests

- extend cs164 “HTML” with better modularity

- add mapReduce to 164

25

List of sp12 final projects (1)

• Regular expressions for the common man!

• A language that teaches by allowing you to command virtual spaceships.

• A debugger for the 164 language.

• Adding rendering commands to the L3 language

• Autogenerating (useful) regression tests for the 164 language

• Erlang-style concurrency in 164

• Generating tests for cs164 and cs164-like languages

• scrapes webpages with the power of a thousand beautiful soups

• Sound synthesis language

• Query language for data visualizations

• Regex-like language for chess boards

26

List of sp12 final projects (2)

• Data Visualizer for aggregated data and extension to cs164 browser
language

• Solves logic puzzles written in English.

• quick and easy way to keep large inventory

• Custom and composable widgets for HTML to eliminate boilerplate and
enable fast prototyping

• simplifying Android programming

• algorithm visualization

• simple natural language programming

• Improve BASH script usability and features in Python

• Generalized locator for web elements

• Better scripting and environment management in bash

• Simplifying the RPC development process

27

List of sp12 final projects (3)

• a simple Python to C++ translator

• a simple presentation maker

• Adding MapReduce functionality to cs164

• Semantic version control

• High-level graph manipulation for the baller in all of us.

• A DSL for creating board games

• the declarative templating language for real-time apps

• interfacing with running binaries (x86)

• DSL for building location-based applications

• DSL for generating music

• An Oracle the parses webpages for you based on provide samples from
the page.

• An Intermediate Language Representation for Android Application
Execution Paths

28

Example problems solved by DSL abstractions

Let’s look at d3 data-joins

The problem solved:

- how to explore several data sets, by animating a
data visualization between these data sets

- a subproblem: mapping data to be visualized
with visual data element, such as rectangles and circles

Reading:

- Three Little Circles

- Thinking with Joins

- http://bl.ocks.org/mbostock/3808218

29

http://mbostock.github.com/d3/tutorial/circle.html
http://bost.ocks.org/mike/join/
http://bl.ocks.org/mbostock/3808218

Motivation

We want to visualize a list of data as a bar chart:

[5,10,13,19]

Must map each data point to a bar-like visual element:

eg, a CSS <div> an SVG rectangle

This particular problem is easy. Solution in d3:
d3.select("body").selectAll("div")

.data(dataset)

.enter()

.append("div")

.attr("class", "bar")

.style("height", function(d) {

var barHeight = d * 5;

return barHeight + "px";

});

from: http://alignedleft.com/tutorials/d3/making-a-bar-chart/ 30

http://alignedleft.com/tutorials/d3/making-a-bar-chart/

But now consider changing the data set

On each click/tick, we want to modify the data:

i) change values of element(s) in the data set

- we need to visually animate (ie perform tweening)
between new and old data value

ii) shrink or grow the data set

- we need to remove or add new visual elements

31

data-join: d3 abstraction for this problem

We want to pair up data and elements.

We do it with tthree d3 “selections”:

32http://bost.ocks.org/mike/join/

http://bost.ocks.org/mike/join/

Tutorial on data-join selections

Three Little Circles: http://mbostock.github.com/d3/tutorial/circle.html

Beautifully explains the virtual selections (enter,
update, exit), using the metaphor of the stage.

33

http://mbostock.github.com/d3/tutorial/circle.html

